Advertisement

The Human Breast as a Scent Organ: Exocrine structures, Secretions, Volatile Components, and Possible Functions in Breastfeeding Interactions

  • Benoist Schaal
  • Sébastien Doucet
  • Robert Soussignan
  • Matthias Rietdorf
  • Gunnar Weibchen
  • Wittko Francke

Abstract

Milk and the nipples of mammalian females have long been known to release attraction in conspecific newborns. This applies also to humans, in whom breast odour cues control infant state and directional responses. Such cues from the whole breast as well as from the isolated areola delay crying onset and stimulate positive orientation and oral actions in infants. Native secretions from areolar glands are especially salient to newborns in which they intensify oral-facial actions and respiration. Thus, odorous compounds from areolar glands may be in a position to play a role, among many other determinants, in establishing the processes pertaining to milk production, transfer and intake by infants.

Keywords

Human Milk Sebaceous Gland Scent Gland Mammalian Female Native Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Ackerman, B., and Penneys, N.S. (1971) Montgomery’s tubercles. Obstet. Gynecol. 38, 924–927.Google Scholar
  2. Bingham, P.M., Sreven-Tuttle, D. Lavin, E., and Acree, T. (2003). Odorants in breast milk. Arch. Pediatr. Adolesc. Med. 157, 1031.PubMedCrossRefGoogle Scholar
  3. Blass, E.M., and Teicher, M.H. (1980). Suckling. Science 210, 15–22.PubMedCrossRefGoogle Scholar
  4. Buettner, A. (2002). Influence of human saliva on odorant concentrations: 2. J. Agric Food Chem. 50, 7105–7110CrossRefGoogle Scholar
  5. Burton, J.L., Shuster, S., Cartlidge, M., Libman, L.J., and Martell, U. (1973). Lactation, sebum excretion and melanocyte-stimulating hormone. Nature 243, 349–350.PubMedCrossRefGoogle Scholar
  6. Delaunay-El Allam, M., Marlier, L., and Schaal, B. (2006). Learning at the breast: preference formation for an artificial scent and its attraction against the odor of maternal milk. Infant Behav. Dev. 29, 308–321.PubMedCrossRefGoogle Scholar
  7. Dewey, K.G., Nommsen, L.A., Heinig, M.J., and Cohen, R.J. (2003). Risk factors for suboptimal infant breastdeefing behavior, delayed onset of lactation, and excess neonatal weight loss. Pediatrics 112, 607–619.PubMedCrossRefGoogle Scholar
  8. Doucet, S., Soussignan, R., Sagot, P., and Schaal, B. (2007a). The ’smellscape’ of mother’s breast: effects of odour masking and selective unmasking on neonatal arousal, oral and visual responses. Dev. Psychobiol., 49, 129–138.CrossRefGoogle Scholar
  9. Doucet, S., Soussignan, R., Sagot, P., and Schaal, B. (2007b). Human areolar glands emit odorants affecting behaviour and autonomous responses in newborns. Unpublished manuscript.Google Scholar
  10. Doucet, S., Soussignan, R., Sagot, P., and Schaal, B. (2007c). The areolar glands in postparturient women and their links with breastfeeding, lactation onset and early infant growth. Unpublished manuscript.Google Scholar
  11. Edmond, K.M., Zandoh, C., Quigley, M.A., Amenga-Etego, S., Owusu-Agyei, S. and Kirkwood, B.R. (2006). Delayed breastfeeding initiation increases risk of neonatal mortality. Pediatrics 117, e380–386.PubMedCrossRefGoogle Scholar
  12. Fleming, A. S. (1990). Hormonal and experiential correlates of maternal responsiveness in human mothers. In: N.A. Krasnegor, and R.S. Bridges (Eds.), Mammalian Parenting: Biochemical, Neurobiological and Behavioral determinants. Oxford University Press, New York, pp 184–208.Google Scholar
  13. Francke, W. (1988). Techniken der Strukturzuordnung von Spurensubstanzen. Fresenius Z. Anal. Chem. 330, 320–321.CrossRefGoogle Scholar
  14. Ingram, J.C., Woolridge, M.W., Greenwood, R.J., and McGrath, L. (1999). Maternal predictors of early breast milk output. Acta Paediatr. 88, 493–499.PubMedCrossRefGoogle Scholar
  15. Macfarlane, A.J. (1975). Olfaction in the development of social preferences in the human neonate. Ciba Found. Symp., 33, 103–117.PubMedGoogle Scholar
  16. Makin, J.W., and Porter, R.H. (1989). Attractiveness of lactating female’s breast odors to neonates. Child Dev. 60, 803–810.PubMedCrossRefGoogle Scholar
  17. Marlier, L., and Schaal, B. (2005). Human newborns prefer human milk: conspecific milk odor is attractive without postnatal exposure. Child Dev. 76, 155–168.PubMedCrossRefGoogle Scholar
  18. Michel, M.P., Gremmo-Feger G., Oger, E., and Sizun, J. (2006). Etude des difficultés de mise en place de l’allaitement maternel en maternité chez des nouveau-nés à terme. Proceedings of 3rd Journée Nationale de l’Allaitement, CoFAM-Co-naître, Brest, pp. 26–30.Google Scholar
  19. Mitz, V., and Lalardie, J.P. (1977). A propos de la vascularisation et de l’innervation sensitive du sein. Senologia 2, 33–39.Google Scholar
  20. Mizuno, K., Mizuno, N., Shinohara, T., and Noda, M. (2004). Mother-infant skin-to-skin contact after delivery results in early recognition of own mother’s milk odour. Acta Paediatr. 93, 1640–1645.PubMedCrossRefGoogle Scholar
  21. Montagna, W., and MacPherson, E.E. (1974). Some neglected aspects of the anatomy of human breasts. J. Invest. Dermatol. 63, 10–16.Google Scholar
  22. Montagna, W., and Yun, J.S. (1972). The glands of Montgomery. Br. J. Dermatol. 86, 126–133.PubMedCrossRefGoogle Scholar
  23. Montgomery, W.F. (1937). An Exposition of the Signs and Symptoms of Pregnancy, the Period of Human Gestation, and Signs of Delivery. Sherwood, Gilber, and Piper, London.Google Scholar
  24. Morgagni, G.B. (1719). Adversaria Anatomica Omnia. PaduaGoogle Scholar
  25. Pellizari, E.D., Hartwell, T.D., Harris III, B.S.H., Waddell, R.D., Whitaker, D.A., and Erickson, M.D. (1982). Purgeable organic compounds in mother’s milk. Bull. Environm. Contam. Toxicol. 28, 322–328.CrossRefGoogle Scholar
  26. Perkins, O.M., and Miller, A.M. (1926). Sebaceous glands in the human nipple. Am. J. Obstet. 11, 789–794.Google Scholar
  27. Roederer, X. (1753). Elementa Artis Obstetriciae in Usum Praelectionum Academicarum. Göttingen.Google Scholar
  28. Russell, M.J. (1976). Human olfactory communication. Nature 260, 520–522.PubMedCrossRefGoogle Scholar
  29. Schaal, B. (1986). Presumed olfactory exchanges between mother and neonate in humans. In J. Le Camus and J. Cosnier (Eds.), Ethology and psychology. Privat, I.E.C, Toulouse, pp. 101–110.Google Scholar
  30. Schaal, B. (2005). From amnion to colostrum to milk: odor bridging in early developmental transitions. In B. Hopkins and S. P. Johnson (Eds.), Prenatal development of postnatal functions. Praeger, London, pp. 51–102.Google Scholar
  31. Schaal, B., Coureaud, G., Langlois, D., Giniès, C., Sémon, E., and Perrier, G. (2003). Chemical and behavioural characterization of the rabbit mammary pheromone. Nature 424, 68–72.PubMedCrossRefGoogle Scholar
  32. Schaal, B., Doucet, S., Sagot, P., Hertling, E., and Soussignan, R. (2006). Human breast areolae as scent organs: Morphological data and possible involvement in maternal-neonatal coadaptation. Dev. Psychobiol. 48, 100–110.PubMedCrossRefGoogle Scholar
  33. Schaal B., Montagner H., Hertling E., Bolzoni D., Moyse R., and Quichon R. (1980). [Olfactory stimulations in mother-infant relations]. Reprod. Nutr. Dev. 20, 843–858.PubMedGoogle Scholar
  34. Schaffer, J. (1937). Die Duftorgane des Menschen. Wiener Klin. Wochenschr. 20, 790–796.Google Scholar
  35. Schiefferdecker, P. (1922). Die Hautdrüsen des Menschen und der Säugetiere. Zoologica 27, 1–154.Google Scholar
  36. Shimoda, Y.T., Ishikawa H., Hayakawa I., and Osajima Y. (2000). Volatile compounds of human milk. J. Fac. Agr. Kyushu. Univ. 45, 199–206.Google Scholar
  37. Smith, D.M., Peters, T.G., and Donegan, W.L. (1982). Montgomery’s areolar tubercle. A light microscopic study. Arch. Pathol. Lab. Med. 106, 60–63.PubMedGoogle Scholar
  38. Soussignan, R., Schaal, B., Marlier, L., and Jiang, T. (1997). Facial and autonomic responses to biological and artificial olfactory stimuli in human neonates: re-examining early hedonic discrimination of odors. Physiol. Behav. 62, 745–758.PubMedCrossRefGoogle Scholar
  39. Stafford, M., Horning, M.G., and Zlatkis, A. (1976). Profiles of volatile metabolites in body fluids. J. Chromatogr. B 126, 495–502.CrossRefGoogle Scholar
  40. Sullivan, R.M., and Toubas, P. (1998). Clinical usefulness of maternal odor in newborns: soothing and feeding preparatory responses. Biol. Neonate 74, 402–408.PubMedCrossRefGoogle Scholar
  41. Varendi, H., and Porter, R.H. (2001). Breast odour as the only maternal stimulus elicits crawling towards the odour source. Acta Paediatr. 90, 372–375.PubMedCrossRefGoogle Scholar
  42. Vuorenkoski, V., Wasz-Hockert, O., Koivisto, E., and Lind, J. (1969). The effect of cry stimulus on the temperature of the lactating breast of primipara. Experientia 25, 1286–1287.PubMedCrossRefGoogle Scholar
  43. Winberg, J. (1995). Examining breast feeding performance: forgotten influencing factors. Acta Paediatr. 84, 465–467.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media,LLC 2008

Authors and Affiliations

  • Benoist Schaal
    • 1
  • Sébastien Doucet
  • Robert Soussignan
  • Matthias Rietdorf
  • Gunnar Weibchen
  • Wittko Francke
  1. 1.CNRS, Centre Européen des Sciences du Goût21000 DijonFrance

Personalised recommendations