Have Sexual Pheromones Their Own Reward System in the Brain of Female Mice?

  • Fernando Martínez-García
  • Carmen Agustín-Pavón
  • Jose Martínez-Hernández
  • Joana Martínez-Ricós
  • Jose Moncho-Bogani
  • Amparo Novejarque
  • Enrique Lanuza


Even in rodents, there is no clear evidence of the existence of sexual pheromones mediating instinctive intersexual attraction. In this review we discuss previous results of our group indicating that female mice reared in the absence of male-derived chemosignals are ‘attracted’ by some components of male-soiled bedding, presumably detected by the vomeronasal organ. In contrast, male odors (olfactory stimuli) only acquire attractiveness by means of their association with the innately ‘attractive’ vomeronasal-detected pheromones. These ‘attractive’ male pheromones are rewarding to adult females, since they induce conditioned preference for a place where they are repeatedly presented to the females. Pheromone reward seems independent of the dopaminergic neurotransmission in the tegmento-striatal pathway, and uses mechanisms and circuits apparently different to those of other natural reinforcers.


Ventral Tegmental Area Sexual Pheromone Conditioned Place Preference Olfactory Epithelium Basolateral Amygdala 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agustín-Pavón, C., Martínez-Ricós, J., Martínez-García, F. and Lanuza, E. (2007) The role of dopamine in the innate attraction towards male pheromones displayed by female mice. Behav Neurosci., in press.Google Scholar
  2. Baxter, M.G. and Murray, EA. (2002) The amygdala and reward. Nat. Rev. Neurosci. 3, 563–573.PubMedCrossRefGoogle Scholar
  3. Beauchamp, G.K., Martin, I.G., Wysocki, C.J. and Wellington, J.L. (1982) Chemoinvestigatory and sexual behavior of male guinea pigs following vomeronasal organ removal. Physiol. Behav. 29, 329–236.PubMedCrossRefGoogle Scholar
  4. Beauchamp, G.K., Wysocki, C.J. and Wellington JL. (1985) Extinction of response to urine odor as a consequence of vomeronasal organ removal in male guinea pigs. Behav. Neurosci. 99, 950–955.PubMedCrossRefGoogle Scholar
  5. Berridge, K.C. and Robinson, T.E. (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Rev. 28, 309–69.PubMedCrossRefGoogle Scholar
  6. Boschat, C., Pelofi, C., Randin, O., Roppolo, D., Luscher, C., Broillet, M.C. and Rodriguez, I. (2002) Pheromone detection mediated by a V1r vomeronasal receptor. Nat. Neurosci. 5, 1261–1262.PubMedCrossRefGoogle Scholar
  7. Coppola, D.M. and O’Connell, R.J. (1988) Are pheromones their own reward? Physiol. Behav. 44, 811–816.PubMedCrossRefGoogle Scholar
  8. Crowder, W.F. and Hutto, C.W.Jr. (1992) Operant place conditioning measures examined using morphine reinforcement. Pharmacol Biochem Behav. 41, 825–835.PubMedCrossRefGoogle Scholar
  9. Dielenberg, R.A. and McGregor, I.S. (2001) Defensive behavior in rats towards predatory odors: a review. Neurosci. Biobehav. Rev. 25, 597–609.PubMedCrossRefGoogle Scholar
  10. Dielenberg, R.A., Hunt, G.E. and McGregor, I.S. (2001) ‘‘When a rat smells a cat’’: the distribution of Fos immunoreactivity in rat brain following exposure to a predatory odor. Neuroscience. 104,1085–1097.PubMedCrossRefGoogle Scholar
  11. Doty, R.L. and Ferguson-Segall, M. (1989) Influence of adult castration on the olfactory sensitivity of the male rat: a signal detection analysis. Behav. Neurosci. 103, 691–694.PubMedCrossRefGoogle Scholar
  12. Geisler, S. and Zahm, D.S. (2005) Afferents of the ventral tegmental area in the rat-anatomical substratum for integrative functions. J Comp Neurol. 490, 270–294.PubMedCrossRefGoogle Scholar
  13. Gelez, H., Archer, E., Chesneau, D., Campan, R. and Fabre-Nys, C. (2004) Importance of learning in the response of ewes to male odor. Chem. Senses. 29, 555–563.PubMedCrossRefGoogle Scholar
  14. Halpern, M. (1988) Vomeronasal system functions: Role in mediating the reinforcing properties of chemical stimuli. In: W.K. Schwerdtfeger and W.J.A.J. Smeets (Eds.), The Forebrain of Reptiles. Current Concepts of Structure and Function. Karger, Basel, pp. 142–150.Google Scholar
  15. Karlson, P. and Luscher, M. (1959) Pheromones: a new term for a class of biologically active substances. Nature 183, 55–56.PubMedCrossRefGoogle Scholar
  16. Ledoux, J.E. (2000) Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–84.PubMedCrossRefGoogle Scholar
  17. Leinders-Zufall, T., Lane, A.P., Puche, A.C., Ma, W., Novotny, M.V.; Shipley, M.T.; Zufall, F. (2000) Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature. 405, 792–796.PubMedCrossRefGoogle Scholar
  18. Luo, A.H., Cannon, E.H., Wekesa, K.S., Lyman, R.F., Vandenbergh, J.G. and Anholt, R.R. (2002) Impaired olfactory behavior in mice deficient in the alpha subunit of G(o). Brain Res. 941, 62–71.PubMedCrossRefGoogle Scholar
  19. Luo, M., Fee, M.S. and Katz, L.C. (2003) Encoding pheromonal signals in the accessory olfactory bulb of behaving mice. Science. 299, 1196–1201.PubMedCrossRefGoogle Scholar
  20. Martínez-García, F., Novejarque, A. and Lanuza, E. (2007). Evolution of the amygala in vertebrates, In: J.H. Kaas (Ed.), Evolution of the Nervous Systems, Vol. 2. Academic Press, Oxford, pp. 255–334.Google Scholar
  21. Martínez-Hernández, J., Lanuza, E., and Martínez-García, F. (2006) Selective dopaminergic lesions of the ventral tegmental area impair preference for sucrose but not for male sexual pheromones in female mice. Eur. J. Neurosci. 24, 885–893.PubMedCrossRefGoogle Scholar
  22. Martínez-Ricós, J., Agustín-Pavón, C., Lanuza, E., and Martínez-García, F. (2007) Intraspecific comunication through chemical signals in female mice: Reinforcing properties of involatile male sexual pheromones. Chem. Senses. 32, 139–148.CrossRefGoogle Scholar
  23. Meredith, M., Marques, D.M., O’Connell, R.O. and Stern, F.L. (1980) Vomeronasal pump: significance for male hamster sexual behavior. Science. 207, 1224–1226.PubMedCrossRefGoogle Scholar
  24. Moncho-Bogani, J., Lanuza, E., Hernández, A., Novejarque, A. and Martínez-García, F. (2002) Attractive properties of sexual pheromones in mice. Innate or learned? Physiol. Behav. 77, 167–176.PubMedCrossRefGoogle Scholar
  25. Moncho-Bogani, J., Martínez-García, F., Novejarque, A. and Lanuza, E. (2005) Attraction to sexual pheromones and associated odorants in female mice involves activation of the reward system and basolateral amygdala. Eur. J. Neurosci. 21, 2186–2198.Google Scholar
  26. Olds, J. and Milner, P. (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comp. Physiol. Psychol. 47, 419–427.PubMedCrossRefGoogle Scholar
  27. Phillipson, O.T. (1979) Afferent projections to the ventral tegmental area of tsai and interfascicular nucleus: A horseradish peroxidase study in the rat. J. Comp. Neurol. 187, 117–144.PubMedCrossRefGoogle Scholar
  28. Schoenbaum, G., Chiba, A.A. and Gallagher, M. (1999) Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. J. Neurosci. 19, 1876–1884.PubMedGoogle Scholar
  29. Shipley, M.T., Ennis, M. and Puche, A. (2004) Olfactory system. In: G. Paxinos (Ed.), The Rat Nervous System. Academic Press, San Diego, pp. 923–964.Google Scholar
  30. Spanagel, R. and Weiss, F. (1999) The dopamine hypothesis of reward: past and current status. Trends Neurosci. 22, 521–527.PubMedCrossRefGoogle Scholar
  31. Tzschentke, T.M. (1998) Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog. Neurobiol. 56, 613–672.PubMedCrossRefGoogle Scholar
  32. Wise, R.A. (2004) Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494.PubMedCrossRefGoogle Scholar
  33. Wise, R.A. and Rompre, P.P. (1989) Brain dopamine and reward. Annu. Rev. Psychol. 40, 191–225.PubMedCrossRefGoogle Scholar
  34. Wright, C.I., Beijer, A.V.J. and Groenewegen, H.J. (1996) Basal amygdaloid complex afferents to the rat nucleus accumbens are compartmentally organized. J. Neurosci. 16, 1877–1893.PubMedGoogle Scholar
  35. Wysocki, C.J., Wellington, J.L. and Beauchamp, G.K. (1980) Access of urinary nonvolatiles to the mammalian vomeronasal organ. Science 207, 781–783.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media,LLC 2008

Authors and Affiliations

  • Fernando Martínez-García
    • 1
  • Carmen Agustín-Pavón
  • Jose Martínez-Hernández
  • Joana Martínez-Ricós
  • Jose Moncho-Bogani
  • Amparo Novejarque
  • Enrique Lanuza
  1. 1.Dept Biologia FuncionalUniv ValènciaC/Dr Moliner 50Spain

Personalised recommendations