MHC-Associated Chemosignals and Individual Identity

  • Peter A. Brennan
Conference paper


The ability of animals to recognise and discriminate individual conspecifics is a vital feature of mammalian social systems. Genes of the major histocompatibility complex (MHC) have long been recognised to play an important role in influencing chemosensory cues of individual identity. In particular, the profile of urinary volatiles of mice has been related to MHC type, although a mechanism to explain this link has remained obscure. This article aims to review recent developments, which have revealed a new class of MHC-associated chemosignals. These are nine-amino acid peptide ligands bound by MHC class I molecules, which are presented at the cell surface for immune surveillance. In addition to this immune function, these peptides have been found to elicit highly sensitive and specific responses in sensory neurons of both the main olfactory and vomeronasal systems. They have also been shown to convey information about strain identity in biologically relevant contexts. Hence it now appears that there are multiple systems for signalling MHC identity, with distinct features that are likely to be adapted for use in different behavioural contexts.


Major Histocompatibility Complex Major Histocompatibility Complex Class Major Histocompatibility Complex Allele Vomeronasal Organ Anchor Residue 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bellringer, J.F., Pratt, H.P.M. and Keverne, E.B. (1980) Involvement of the vomeronasal organ and prolactin in pheromonal induction of delayed implantation in mice. J. Reprod. Fert. 59, 223–228.CrossRefGoogle Scholar
  2. Boehm, T. (2006) Co-evolution of a primordial peptide-presentation system and cellular immunity. Nature Rev. Immunol. 6, 79–84.CrossRefGoogle Scholar
  3. Boehm, T. and Zufall, F. (2006) MHC peptides and the sensory evaluation of genotype. Trends Neurosci. 29, 100–107.PubMedCrossRefGoogle Scholar
  4. Boyse, E.A., Beauchamp, G.K. and Yamazaki, K. (1987) The genetics of body scent. Trends Genet. 3, 97–102.CrossRefGoogle Scholar
  5. Brennan, P., Kaba, H. and Keverne, E.B. (1990) Olfactory Recognition: a simple memory system. Science 250, 1223–1226.PubMedCrossRefGoogle Scholar
  6. Brennan, P. and Zufall, F. (2006) Pheromonal communication in vertebrates. Nature, in press.Google Scholar
  7. Bruce, H. (1959) An exteroceptive block to pregnancy in the mouse. Nature 184, 105.PubMedCrossRefGoogle Scholar
  8. Carroll, L.S., Penn, D.J. and Potts, W.K. (2002) Discrimination of MHC-derived odors by untrained mice is consistent with divergence in peptide-binding region residues. Proc. Natl. Acad. Sci. USA 99, 2187–2192.PubMedCrossRefGoogle Scholar
  9. Hurst, J. and Beynon, R. (2004) Scent wars: the chemobiology of competitive signalling in mice. Bioessays 26, 1288–1298.PubMedCrossRefGoogle Scholar
  10. Ishii, T., Hirota, J. and Mombaerts, P. (2003) Combinational coexpression of neural and immune multigene families in mouse vomeronasal sensory systems. Curr. Biol. 13, 394–400.PubMedCrossRefGoogle Scholar
  11. Jacob, S., McClintock, M.K., Zelano, B. and Ober, C. (2002) Paternally inherited HLA alleles are associated with women’s choice of male odor. Nat. Genet. 30, 175–179.PubMedCrossRefGoogle Scholar
  12. Jordan, W.C. and Bruford, M.W. (1998) New perspectives on mate choice and the MHC. Heredity 81, 127–133.PubMedCrossRefGoogle Scholar
  13. Kelliher, K., Spehr, M., Li, X.-H., Zufall, F. and Leinders-Zufall, T. (2006) Pheromonal recognition memory induced by TRPC2-independent vomeronasal sensing. Eur. J. Neurosci. 23, 3385–3390.PubMedCrossRefGoogle Scholar
  14. Leinders-Zufall, T., Brennan, P., Widmayer, P., Chandramani, P.S., Maul-Pavicic, A., Jäger, M., Li, X.-H., Breer, H., Zufall, F. and Boehm, T. (2004) MHC class I peptides as chemosensory signals in the vomeronasal organ. Science 306, 1033–1037.PubMedCrossRefGoogle Scholar
  15. Lloyd-Thomas, A. and Keverne, E.B. (1982) Role of the brain and accessory olfactory system in the block to pregnancy in mice. Neuroscience 7, 907–913.PubMedCrossRefGoogle Scholar
  16. Loconto, J., Papes, F., Chang, E., Stowers, L., Jones, E.P., Takada, T., Kumanovics, A., Fischer-Lindahl, K. and Dulac, C. (2003) Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class 1b molecules. Cell 112, 607–618.PubMedCrossRefGoogle Scholar
  17. Luo, M.M., Fee, M.S. and Katz, L.C. (2003) Encoding pheromonal signals in the accessory olfactory bulb of behaving mice. Science 299, 1196–1201.PubMedCrossRefGoogle Scholar
  18. Ma, D., Allen, N.D., Van Bergen, Y.C.H., Jones, C.M.E., Baum, M.J., Keverne, E.B. and Brennan, P.A. (2002) Selective ablation of olfactory receptor neurons without functional impairment of vomeronasal receptor neurons in OMP-ntr transgenic mice. Eur. J. Neurosci. 16, 2317–2323.PubMedCrossRefGoogle Scholar
  19. Manning, C.J., Wakeland, E.K. and Potts, W.K. (1992) Communal nesting patterns in mice implicate MHC genes in kin recognition. Nature 360, 581–583.PubMedCrossRefGoogle Scholar
  20. Martini, S., Silvotti, L., Shirazi, A., Ryba, J.P. and Tirindelli, R. (2001) Co-expression of putative pheromone receptors in the sensory neurons of the vomeronasal organ. J. Neurosci. 21, 843–848.PubMedGoogle Scholar
  21. Milinski, M., Griffiths, S., Wegner, K., Reusch, T., Haas-Assenbaum, A. and Boehm, T. (2005) Mate choice decisions of stickleback females predictably modified by MHC peptide ligands. Proc. Natl. Acad. Sci. USA 102, 4414–4418.PubMedCrossRefGoogle Scholar
  22. Olson, R., Huey-Tubman, K., Dulac, C. and Bjorkman, P. (2005) Structure of a pheromone receptor-associated MHC molecule with an open and empty groove. PLOS 3, e257.CrossRefGoogle Scholar
  23. Paulsson, K. (2004) Evolutionary and functional perspectives of the major histocompatibility complex class I antigen-processing machinery. Cell. Mol. Life Sci. 61, 2446–2460.PubMedCrossRefGoogle Scholar
  24. Penn, D. and Potts, W.K. (1998a) MHC-disassortative mating preferences reversed by cross-fostering. Proc. R. Soc. Lond. B 265, 1299–1306.CrossRefGoogle Scholar
  25. Penn, D. and Potts, W.K. (1998b) Untrained mice discriminate MHC-determined odors. Physiol. Behav. 63, 235–243.CrossRefGoogle Scholar
  26. Penn, D. and Potts, W.K.. (1998c) How do major histocompatibility complex genes influence odor and mating preferences? Adv. Immunol. 69, 411–436.CrossRefGoogle Scholar
  27. Porter, R.H., Balogh, R.D., Cernoch, J.M. and Franchi, C. (1986) Recognition of kin through characteristic body odors. Chem. Sens. 11, 389–395.CrossRefGoogle Scholar
  28. Potts, W.K., Manning, C.J. and Wakeland, E.K. (1991) Mating patterns in seminatural populations of mice influenced by MHC genotype. Nature 352, 619–621.PubMedCrossRefGoogle Scholar
  29. Reusch, T., Häberli, M., Aeschlimann, P. and Milinski, M. (2001) Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature 414, 300–302.PubMedCrossRefGoogle Scholar
  30. Schaefer, M.L., Yamazaki, K., Osada, K., Restrepo, D. and Beauchamp, G.K. (2002) Olfactory fingerprints for major histocompatibility complex-determined body odors II: relationship among odor maps, genetics, odor composition, and behavior. J. Neurosci. 22, 9513–9521.PubMedGoogle Scholar
  31. Singer, A.G., Beauchamp, G.K. and Yamazaki, K. (1997) Volatile signals of the major histocompatibility complex in male mouse urine. Proc. Natl. Acad. Sci. USA 94, 2210–2214.PubMedCrossRefGoogle Scholar
  32. Singh, P.B. (2001) Chemosensation and genetic individuality. Reproduction 121, 529–539.PubMedCrossRefGoogle Scholar
  33. Singh, P.B., Brown, R.E. and Roser, B. (1987) MHC antigens in urine as olfactory recognition cues. Nature 327, 161–164.PubMedCrossRefGoogle Scholar
  34. Spehr, M., Kelliher, K., Li, X.-H., Boehm, T., Leinders-Zufall, T. and Zufall, F. (2006) Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands. J. Neurosci 26, 1961–1970.PubMedCrossRefGoogle Scholar
  35. Wedekind, C. and Furi, S. (1997) Body odour preferences in men and women: do they aim for specific MHC combinations or simply heterozygosity? Proc. R. Soc. Lond. B 264, 1471–1479.CrossRefGoogle Scholar
  36. Yamazaki, K., Beauchamp, G.K., Curran, M. and Boyse, E.A. (2000) Parent-progeny recognition as a function of MHC odotype identity. Proc. R. Soc. Lond. B 97, 10500–10502.Google Scholar
  37. Yamazaki, K., Beauchamp, G.K., Kupniewski, D., Bard, J., Thomas, L. and Boyse E.A. (1988) Familial imprinting determines H-2 selective mating preferences. Science 240, 1331–1332.PubMedCrossRefGoogle Scholar
  38. Yamazaki, K., Beauchamp, G.K., Imai, Y., Bard, J., Phelan, S.P., Thomas, L. and Boyse, E.A. (1990) Odortypes determined by the major histocompatibility complex in germfree mice. Proc. Natl. Acad. Sci. 87, 8413–8416.PubMedCrossRefGoogle Scholar
  39. Yamazaki, K., Beauchamp, G.K., Wysocki, C.J., Bard, J., Thomas, L. and Boyse, E.A. (1983) Recognition of H-2 Types in relation to the blocking of pregnancy in mice. Science 221, 186–188.PubMedCrossRefGoogle Scholar
  40. Yamazaki, K., Yamaguchi, M., Baranoski, L., Bard, J., Boyse, E.A. and Thomas, L. (1979) Recognition among mice: Evidence from the use of a Y maze differentially scented by congenic mice of different major histocompatibility types. J. Exp. Med. 150, 755–760.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media,LLC 2008

Authors and Affiliations

  • Peter A. Brennan
    • 1
  1. 1.Department of PhysiologyUniversity of BristolBristol

Personalised recommendations