Collagen pp 175-247 | Cite as

Hierarchical Nanomechanics of Collagen Fibrils: Atomistic and Molecular Modeling

  • M.J. Buehler


This chapter describes hierarchical multi-scale modeling of collagenous tissues, with a particular focus on the mechanical properties. Studies focus on elastic behavior, plastic behavior and fracture. Starting at the atomistic scale, we review development and application of a hierarchical multi-scale model that is capable of describing the dynamical behavior of a large number of tropocollagen molecules, reaching length scales of several micrometers and time scales of tens of microseconds. Particular emphasis is on elucidating the deformation mechanisms that operate at various scales, the scale-dependent properties, the effect of specific hierarchical features and length scales (cross-link densities, intermolecular adhesion, etc.) as well as on the effect of addition of mineral platelets during formation of nascent bone. This chapter contains a review of numerical techniques associated with modeling of chemically complex and hierarchical biological tissue, including first principles-based reactive force fields, empirical force fields, large-scale parallelization and visualization methods. A set of scaling relationships are summarized that enable one to predict deformation mechanisms and properties based on atomistic, molecular and other hierarchical features. The results are presented in deformation maps that summarize deformation modes, strength, dissipative properties and elastic behavior for various conditions, providing structure–property relationships for collagenous tissue. This chapter is concluded with a discussion of how insight of nanomechanical behavior at the smallest scales relates with the physiological role of collagen. The significance of universal structural patterns such as the staggered collagen fibril architecture versus specific structures in different collagen tissues is reviewed in light of the question of universality versus diversity of structural components.


Collagen Fibril Mesoscale Model Fracture Process Zone Optical Tweezer Molecular Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackbarow, T. and M. J. Buehler (2007a). “Hierarchical coexistence of universality and diversity controls robustness and multi-functionality in protein materials” Nature Precedings Scholar
  2. Ackbarow, T. and M. J. Buehler (2007). “Superelasticity, energy dissipation and strain hardening of vimentin coiled-coil intermediate filaments: Atomistic and continuum studies”. Journal of Materials Science 42(21): 8771–8787. DOI 10.1007/s10853-007-1719-2.CrossRefGoogle Scholar
  3. Ackbarow, T., X. Chen, et al. (2007). “Hierarchies, multiple energy barriers and robustness govern the fracture mechanics of alpha-helical and beta-sheet protein domains”. Proceedings of the National Academy of Sciences of the USA 104: 16410–16415.CrossRefGoogle Scholar
  4. Aizenberg, J., J. C. Weaver, et al. (2005). “Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale”. Science 309(5732): 275–278.CrossRefGoogle Scholar
  5. Alberts, B., A. Johnson, et al. (2002). Molecular Biology of the Cell, Taylor & Francis, London.Google Scholar
  6. Allen, M. P. and D. J. Tildesley (1989). Computer Simulation of Liquids, Oxford University Press, Oxford.Google Scholar
  7. Alsberg, E., H. J. Kong, et al. (2003). “Regulating bone formation via controlled scaffold degradation”. Journal of Dental Research 82(11): 903–908.Google Scholar
  8. An, K. N., Y. L. Sun, et al. (2004). “Flexibility of type I collagen and mechanical property of connective tissue”. Biorheology 41(3–4): 239–246.Google Scholar
  9. Anderson, T. L. (1991). Fracture Mechanics: Fundamentals and Applications, CRC Press, Boca Raton.Google Scholar
  10. Anderson, D. (2005). Collagen Self-Assembly: A Complementary Experimental and Theoretical Perspective. Toronto, Canada, University of Toronto. PhD.Google Scholar
  11. Arnoux, P. J., J. Bonnoit, et al. (2002). “Numerical damage models using a structural approach: Application in bones and ligaments”. European Physical Journal-Applied Physics 17(1):65–73.CrossRefGoogle Scholar
  12. Bailey, A. J. (2001). “Molecular mechanisms of ageing in connective tissues”. Mechanisms of Ageing and Development 122(7): 735–755.CrossRefGoogle Scholar
  13. Bailey, N. P. and J. P. Sethna (2003). “Macroscopic measure of the cohesive length scale: Fracture of notched single-crystal silicon”. Physical Review B 68(20).Google Scholar
  14. Bell, G. I. (1978). “Models for specific adhesion of cells to cells”. Science 200(4342): 618–627.CrossRefGoogle Scholar
  15. Bhattacharjee, A. and M. Bansal (2005). “Collagen structure: The Madras triple helix and the current scenario”. IUBMB Life 57(3): 161–172.CrossRefGoogle Scholar
  16. Bischoff, J. E., E. M. Arruda, et al. (2000). “Finite element modeling of human skin using an isotropic, nonlinear elastic constitutive model”. Journal of Biomechanics 33(6): 645–652.CrossRefGoogle Scholar
  17. Blanckenhagen, B. v., P. Gumbsch, et al. (2001). “Dislocation sources in discrete dislocation simulations of thin film plasticity and the Hall-Petch relation”. Modelling and Simulation in Materials Science and Engineering 9: 157–169.CrossRefGoogle Scholar
  18. Borel, J. P. and J. C. Monboisse (1993). “Collagens – Why such a complicated structure”. Comptes Rendus Des Seances De La Societe De Biologie Et De Ses Filiales 187(2): 124–142.Google Scholar
  19. Borsato, K. S. and N. Sasaki (1997). “Measurement of partition of stress between mineral and collagen phases in bone using X-ray diffraction techniques”. Journal of Biomechanics 30(9): 955–957.CrossRefGoogle Scholar
  20. Bozec, L. and M. Horton (2005). “Topography and mechanical properties of single molecules of type I collagen using atomic force microscopy”. Biophysical Journal 88(6): 4223–4231.CrossRefGoogle Scholar
  21. Bozec, L. et al. (2005). “Atomic force microscopy of collagen structure in bone and dentine revealed by osteoclastic resorption. Ultramicroscopy 105: 79–89.CrossRefGoogle Scholar
  22. Bozec, L. et al. (2005). “Atomic force microscopy of collagen structure in bone and dentine revealed by osteoclastic resorption”. Ultramicroscopy 105: 79–89.CrossRefGoogle Scholar
  23. Brenner, D. W., O. A. Shenderova, et al. (2002). “A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons”. Journal Of Physics-Condensed Matter 14(4): 783–802.CrossRefGoogle Scholar
  24. Broberg, K. B. (1990). Cracks and Fracture, Academic Press, New York.Google Scholar
  25. Buehler, M. J. (2006a). “Atomistic and continuum modeling of mechanical properties of collagen: Elasticity, fracture and self-assembly”. Journal of Materials Research 21(8):1947–1961.CrossRefGoogle Scholar
  26. Buehler, M. J. (2006b). “Nature designs tough collagen: Explaining the nanostructure of collagen fibrils”. Proceedings of the National Academy of Sciences of the USA 103(33): 12285–12290.CrossRefGoogle Scholar
  27. Buehler, M. J. (2007a). “Hierarchical chemo-nanomechanics of stretching protein molecules: Entropic elasticity, protein unfolding and molecular fracture”. Journal of Mechanics of Materials and Structures 2(6): 1019–1057.Google Scholar
  28. Buehler, M. J. (2007b). “Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization”. Nanotechnology 18: 295102.CrossRefGoogle Scholar
  29. Buehler, M. J. (2007). “Nano- and micromechanical properties of hierarchical biological materials and tissues” Journal of Materials Science 42(21): 8765–8770. DOI 10.1007/s10853-007-1952-8.CrossRefGoogle Scholar
  30. Buehler, M. J. (2008). “Nanomechanics of collagen fibrils under varying cross-link densities: Atomistic and continuum studies”. Journal of the Mechanical Behavior of Biomedical Materials 1(1): doi:10.1016/j.jmbbm.2007.04.001Google Scholar
  31. Buehler, M. J., F. F. Abraham, et al. (2003). “Hyperelasticity governs dynamic fracture at a critical length scale”. Nature 426: 141–146.CrossRefGoogle Scholar
  32. Buehler, M. J., F. F. Abraham, et al. (2004). “Stress and energy flow field near a rapidly propagating mode I crack”. Springer Lecture Notes in Computational Science and Engineering ISBN 3-540-21180-2: 143–156.Google Scholar
  33. Buehler, M. J. and T. Ackbarow (2007). “Fracture mechanics of protein materials”. Materials Today 10(9): 46–58.CrossRefGoogle Scholar
  34. Buehler, M. J., J. Dodson, et al. (2006). “The Computational Materials Design Facility (CMDF): A powerful framework for multiparadigm multi-scale simulations”. Materials Research Society Symposium Proceedings 894: LL3.8.Google Scholar
  35. Buehler, M. J., A. C. T. v. Duin, et al. (2006). “Multi-paradigm modeling of dynamical crack propagation in silicon using the ReaxFF reactive force field”. Physical Review Letters 96(9): 095505.CrossRefGoogle Scholar
  36. Buehler, M. J. and H. Gao (2006). “Dynamical fracture instabilities due to local hyperelasticity at crack tips” Nature 439: 307–310.CrossRefGoogle Scholar
  37. Buehler, M. J., H. Tang, et al. (2007). “Threshold crack speed controls dynamical fracture of silicon single crystals”. Physical Review Letters. 99: 165502.CrossRefGoogle Scholar
  38. Buehler, M. J. and S. Y. Wong (2007). “Entropic elasticity controls nanomechanics of single tropocollagen molecules”. Biophysical Journal 93(1): 37–43.CrossRefGoogle Scholar
  39. Buehler, M. J., H. Yao, et al. (2006). “Cracking and adhesion at small scales: atomistic and continuum studies of flaw tolerant nanostructures”. Modelling and Simulation in Materials Science and Engineering 14: 799–816.CrossRefGoogle Scholar
  40. Bustamante, C., J. F. Marko, et al. (1994). “Entropic elasticity of lambda-phage DNA”. Science 265(5178): 1599–1600.CrossRefGoogle Scholar
  41. Chenoweth, K., S. Cheung, et al. (2005). “Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field”. Journal of the American Chemical Society 127(19): 7192–7202.CrossRefGoogle Scholar
  42. Cheung, S., W. Q. Deng, et al. (2005). “ReaxFF(MgH) reactive force field for magnesium hydride systems”. Journal of Physical Chemistry A 109(5): 851–859.CrossRefGoogle Scholar
  43. Courtney, T. H. (1990). Mechanical Behavior of Materials. New York, NY, USA, McGraw-Hill.Google Scholar
  44. Cressey, B. A. and G. Cressey (2003). “A model for the composite nanostructure of bone suggested by high-resolution transmission electron microscopy”. Mineralogical Magazine 67(6):1171–1182.CrossRefGoogle Scholar
  45. Cui, X. Q., C. M. Li, et al. (2007). “Biocatalytic generation of ppy-enzyme-CNT nanocomposite: From network assembly to film growth”. Journal of Physical Chemistry C 111(5): 2025–2031.MathSciNetCrossRefGoogle Scholar
  46. Currey, J. D. (2002). Bones: Structure and Mechanics. Princeton, NJ, Princeton University Press.Google Scholar
  47. Currey, J. D. (2005). “Materials science – Hierarchies in biomineral structures”. Science 309(5732): 253–254.CrossRefGoogle Scholar
  48. Cusack, S. and A. Miller (1979). “Determination of the elastic-constants of collagen by Brillouin light-scattering”. Journal of Molecular Biology 135(1): 39–51.CrossRefGoogle Scholar
  49. Cuy, J. L., A. B. Mann, et al. (2002). “Nanoindentation mapping of the mechanical properties of human molar tooth enamel”. Archives of Oral Biology 47(4): 281–291.CrossRefGoogle Scholar
  50. Dao, M., C. T. Lim, et al. (2003). “Mechanics of the human red blood cell deformed by optical tweezers”. Journal of the Mechanics and Physics of Solids 51(11–12): 2259–2280.CrossRefGoogle Scholar
  51. Dao, M., C. T. Lim, et al. (2005). “Mechanics of the human red blood cell deformed by optical tweezers (vol 51, pg 2259, 2003)”. Journal of the Mechanics and Physics of Solids 53(2): 493–494.CrossRefGoogle Scholar
  52. Datta, D., A. C. T. v. Duin, et al. (2005). “Extending ReaxFF to biomacromolecules”. Unpublished.Google Scholar
  53. Duin, A. C. T. v., S. Dasgupta, et al. (2001). “ReaxFF: A reactive force field for hydrocarbons”. Journal of Physical Chemistry A 105: 9396–9409.CrossRefGoogle Scholar
  54. Duin, A. C. T. v., A. Strachan, et al. (2003). “ReaxFF SiO: Reactive force field for silicon and silicon oxide systems”. Journal of Physical Chemistry A 107: 3803–3811.CrossRefGoogle Scholar
  55. Engler, A. J., S. Sen, et al. (2006). “Matrix elasticity directs stem cell lineage specification”. Cell 126(4): 677–689.CrossRefGoogle Scholar
  56. Eppell, S. J., B. N. Smith, et al. (2006). “Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils”. Journal of the Royal Society Interface 3(6): 117–121.CrossRefGoogle Scholar
  57. Ercolessi, F. and J. B. Adams (1994). “Interatomic potentials from 1st principle-calculations – the force matching method”. Europhysics Letter 28(8): 583–588.CrossRefGoogle Scholar
  58. Fantner, G. E., T. Hassenkam, et al. (2005). “Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture”. Nature Materials 4(8): 612–616.CrossRefGoogle Scholar
  59. Fratzl, P., H. S. Gupta, et al. (2004). “Structure and mechanical quality of the collagen-mineral nano-composite in bone”. Journal of Materials Chemistry 14(14): 2115–2123.CrossRefGoogle Scholar
  60. Fratzl, P. and R. Weinkamer (2007). “Nature’s hierarchical materials”. Progress in Materials Science 52: 1263–1334.CrossRefGoogle Scholar
  61. Freeman, J. W. and F. H. Silver (2004). “Elastic energy storage in unmineralized and mineralized extracellular matrices (ECMs): A comparison between molecular modeling and experimental measurements”. Journal of Theoretical Biology 229(3): 371–381.CrossRefGoogle Scholar
  62. Freund, L. B. (1990). Dynamic Fracture Mechanics, Cambridge University Press, Cambridge, ISBN 0-521-30330-3.MATHGoogle Scholar
  63. Frost, H. J. and M. F. Ashby (1982). Deformation-mechanism Maps, Pergamon Press, Oxford.Google Scholar
  64. Gao, H. J. (2006). “Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials”. International Journal of Fracture 138(1–4): 101–137.CrossRefMATHGoogle Scholar
  65. Gao, H., B. Ji, et al. (2003). “Materials become insensitive to flaws at nanoscale: Lessons from nature”. Proceedings of the National Academy Sciences of the USA 100(10): 5597–5600.CrossRefGoogle Scholar
  66. Glorieux, F. H. (2005). “Caffey disease: An unlikely collagenopathy”. Journal of Clinical Investigation 115(5): 1142–1144.CrossRefGoogle Scholar
  67. Goddard, W. A. (2006). A Perspective of Materials Modeling Handbook of Materials Modeling. S. Yip, Springer.Google Scholar
  68. Grandbois, M., M. Beyer, et al. (1999). “How strong is a covalent bond?” Science 283(5408): 1727–1730.CrossRefGoogle Scholar
  69. Griffith, A. A. (1920). “The phenomenon of rupture and flows in solids”. Philosophical Transactions of the Royal Society of London, Series A 221: 163–198.Google Scholar
  70. Gropp, W., W. Lusk, et al. (1999). Using MPI, MIT Press, Cambridge.Google Scholar
  71. Gupta, H. S., P. Messmer, et al. (2004). “Synchrotron diffraction study of deformation mechanisms in mineralized tendon”. Physical Review Letters 93(15).Google Scholar
  72. Gupta, H. S., J. Seto, et al. (2006). “Cooperative deformation of mineral and collagen in bone at the nanoscale”. Proceedings of the National Academy Sciences of the USA 103: 17741–17746.CrossRefGoogle Scholar
  73. Gupta, H. S., W. Wagermaier, et al. (2005). “Nanoscale deformation mechanisms in bone”. Nano Letters 5(10): 2108–2111.CrossRefGoogle Scholar
  74. Han, S. S., A. C. T. van Duin, et al. (2005). “Optimization and application of lithium parameters for the reactive force field, ReaxFF”. Journal of Physical Chemistry A 109(20): 4575–4582.CrossRefGoogle Scholar
  75. Hansma, P. K., P. J. Turner, et al. (2007). “Optimized adhesives for strong, lightweight, damage-resistant, nanocomposite materials: New insights from natural materials”. Nanotechnology 18(4).Google Scholar
  76. Harley, R., D. James, et al. (1977). “Phonons and elastic-moduli of collagen and muscle”. Nature 267(5608): 285–287.CrossRefGoogle Scholar
  77. Hellan, K. (1984). Introduction to Fracture Mechanics, McGraw-Hill, Inc., New York.Google Scholar
  78. Hellmich, C. and F. J. Ulm (2002). “Are mineralized tissues open crystal foams reinforced by crosslinked collagen? – some energy arguments”. Journal of Biomechanics 35(9):1199–1212.CrossRefGoogle Scholar
  79. Hirth, J. P. and J. Lothe (1982). Theory of Dislocations, Wiley-Interscience, New York.Google Scholar
  80. Hofmann, H., T. Voss, et al. (1984). “Localization of flexible sites in thread-like molecules from electron-micrographs – comparison of interstitial, basement-membrane and intima collagens”. Journal of Molecular Biology 172(3): 325–343.CrossRefGoogle Scholar
  81. Holland, J. H. (1995). Hidden Order – How Adaptation Builds Complexity. Reading, MA, Helix Books. TOP 500 Supercomputer Sites.Google Scholar
  82. Hule, R., A., Pochan, D., J., (2007). “Polymer nanocomposites for biomedical application”. MRS Bulletin 32(4): 5.Google Scholar
  83. Hulmes, D. J. S., T. J. Wess, et al. (1995). “Radial packing, order, and disorder in collagen fibrils”. Biophysical Journal 68(5): 1661–1670.CrossRefGoogle Scholar
  84. Humphrey, W., A. Dalke, et al. (1996). “VMD: Visual molecular dynamics”. Journal of Molecular Graphics 14(1): 33.CrossRefGoogle Scholar
  85. Israelowitz, M., S. W. H. Rizvi, et al. (2005). “Computational modeling of type I collagen fibers to determine the extracellular matrix structure of connective tissues”. Protein Engineering Design & Selection 18(7): 329–335.CrossRefGoogle Scholar
  86. Jaeger, C., N. S. Groom, et al. (2005). “Investigation of the nature of the protein-mineral interface in bone by solid-state NMR”. Chemistry of Materials 17(12): 3059–3061.CrossRefGoogle Scholar
  87. Jager, I. and P. Fratzl (2000). “Mineralized collagen fibrils: A mechanical model with a staggered arrangement of mineral particles”. Biophysical Journal 79(4): 1737–1746.Google Scholar
  88. Kadau, K., T. C. Germann, et al. (2004). “Large-scale molecular-dynamics simulation of 19 billion particles”. International Journal of Modern Physics C 15: 193.CrossRefGoogle Scholar
  89. Kim, B. S., J. Nikolovski, et al. (1999). “Cyclic mechanical strain regulates the development of engineered smooth muscle tissue”. Nature Biotechnology 17(10): 979–983.CrossRefGoogle Scholar
  90. Kramer, R. Z., M. G. Venugopal, et al. (2000). “Staggered molecular packing in crystals of a collagen-like peptide with a single charged pair”. Journal of Molecular Biology 301(5):1191–1205.CrossRefGoogle Scholar
  91. Lakes, R. (1993). “Materials with structural hierarchy”. Nature 361(6412): 511–515.CrossRefGoogle Scholar
  92. Laudis, W., B. L. H. Kraus, et al. (2002). “Vascular-mineral spatial correlation in the calcifying turkey leg tendon”. Connective Tissue Research 43(4): 595–605.CrossRefGoogle Scholar
  93. Langer, R. and D. A. Tirrell (2004). “Designing materials for biology and medicine”. Nature 428(6982): 487–492.CrossRefGoogle Scholar
  94. Lantz, M. A., H. J. Hug, et al. (2001). “Quantitative measurement of short-range chemical bonding forces”. Science 291(5513): 2580–2583.CrossRefGoogle Scholar
  95. Layton, B. E., S. M. Sullivan, et al. (2005). “Nanomanipulation and aggregation limitations of self-assembling structural proteins”. Microelectronics Journal 36(7): 644–649.CrossRefGoogle Scholar
  96. Lees, S. (1987). “Possible effect between the molecular packing of collagen and the composition of bony tissues”. International Journal Of Biological Macromolecules 9(6): 321–326.CrossRefGoogle Scholar
  97. Lees, S. (2003). “Mineralization of type I collagen”. Biophysical Journal 85(1): 204–207.Google Scholar
  98. Lichtens Jr, G. R. Martin, et al. (1973). “Defect in conversion of procollagen to collagen in a form of Ehlers-Danlos syndrome”. Science 182(4109): 298–300.CrossRefGoogle Scholar
  99. Lim, C. T., E. H. Zhou, et al. (2006). “Experimental techniques for single cell and single molecule biomechanics”. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 26(8): 1278–1288.Google Scholar
  100. Lodish, H. B., Arnold; Zipursky, S. Lawrence; Matsudaira, Paul; Baltimore, David; Darnell, James E. (1999). Molecular Cell Biology. W H Freeman & Co, New York.Google Scholar
  101. Lorenzo, A. C. and E. R. Caffarena (2005). “Elastic properties, Young’s modulus determination and structural stability of the tropocollagen molecule: a computational study by steered molecular dynamics”. Journal of Biomechanics 38(7): 1527–1533.CrossRefGoogle Scholar
  102. Lotz, J. C., T. N. Gerhart, et al. (1990). “Mechanical-properties of trabecular bone from the proximal femur – a quantitative Ct study”. Journal of Computer Assisted Tomography 14(1):107–114.CrossRefGoogle Scholar
  103. Louis, O., F. Boulpaep, et al. (1995). “Cortical mineral-content of the radius assessed by peripheral qct predicts compressive strength on biomechanical testing”. Bone 16(3): 375–379.CrossRefGoogle Scholar
  104. Lu, H., B. Isralewitz, et al. (1998). “Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation”. Biophysical Journal 75(2): 662–671.Google Scholar
  105. MacKerell, A. D., D. Bashford, et al. (1998). “All-atom empirical potential for molecular modeling and dynamics studies of proteins”. Journal of Physical Chemistry B 102(18):3586–3616.CrossRefGoogle Scholar
  106. Mershin, A., B. Cook, et al. (2005). “A classic assembly of nanobiomaterials”. Nature Biotechnology 23(11): 1379–1380.CrossRefGoogle Scholar
  107. Miles, C. A. and A. J. Bailey (2001). “Thermally labile domains in the collagen molecule”. Micron 32(3): 325–332.CrossRefGoogle Scholar
  108. Mooney, S. D., C. C. Huang, et al. (2001). “Computed free energy differences between point mutations in a collagen-like peptide”. Biopolymers 58(3): 347–353.CrossRefGoogle Scholar
  109. Mooney, S. D. and T. E. Klein (2002). “Structural models of osteogenesis imperfecta-associated variants in the COL1A1 gene”. Molecular & Cellular Proteomics 1(11): 868–875.CrossRefGoogle Scholar
  110. Mooney, S. D., P. A. Kollman, et al. (2002). “Conformational preferences of substituted prolines in the collagen triple helix”. Biopolymers 64(2): 63–71.CrossRefGoogle Scholar
  111. Nalla, R. K., J. H. Kinney, et al. (2003a). “Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanisms”. Biomaterials 24(22): 3955–3968.CrossRefGoogle Scholar
  112. Nalla, R. K., J. H. Kinney, et al. (2003b). “Mechanistic fracture criteria for the failure of human cortical bone”. Nature Materials 2(3): 164–168.CrossRefGoogle Scholar
  113. Nalla, R. K., J. J. Kruzic, et al. (2005). “Mechanistic aspects of fracture and R-curve behavior in human cortical bone”. Biomaterials 26(2): 217–231.CrossRefGoogle Scholar
  114. Nalla, R. K., J. S. Stolken, et al. (2005). “Fracture in human cortical bone: local fracture criteria and toughening mechanisms”. Journal of Biomechanics 38(7): 1517–1525.CrossRefGoogle Scholar
  115. Nelson, M. T., W. Humphrey, et al. (1996). “NAMD: A parallel, object oriented molecular dynamics program”. International Journal Of Supercomputer Applications And High Performance Computing 10(4): 251–268.CrossRefGoogle Scholar
  116. Nieh, T. G. and J. Wadsworth (1991). “Hall-Petch relation in nanocrystalline solids”. Scripta Metallurgica 25(4).Google Scholar
  117. Nielson, K. D., A. C. T. v. Duin, et al. (2005). “Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes”. Journal of Physical Chemistry A 109: 49.CrossRefGoogle Scholar
  118. Orgel, J. P. R. O., T. C. Irving, et al. (1995). “Microfibrillar structure of type I collagen in situ”. Proceedings of the National Academy Sciences of the USA 103(24): 9001–9005.CrossRefGoogle Scholar
  119. Persikov, A. V., J. A. M. Ramshaw, et al. (2005). “Electrostatic interactions involving lysine make major contributions to collagen triple-helix stability”. Biochemistry 44(5):1414–1422.CrossRefGoogle Scholar
  120. Peterlik, H., P. Roschger, et al. (2006). “From brittle to ductile fracture of bone”. Nature Materials 5(1): 52–55.CrossRefGoogle Scholar
  121. Petka, W. A., J. L. Harden, et al. (1998). “Reversible hydrogels from self-assembling artificial proteins”. Science 281(5375): 389–392.CrossRefGoogle Scholar
  122. Phillips, J. C., R. Braun, et al. (2005). “Scalable molecular dynamics with NAMD”. Journal of Computational Chemistry 26(16): 1781–1802.CrossRefGoogle Scholar
  123. Plimpton, S. (1995). “Fast parallel algorithms for short-range molecular-dynamics”. Journal of Computational Physics 117: 1–19.CrossRefMATHGoogle Scholar
  124. Prater, C. B., H. J. Butt, et al. (1990). “Atomic force microscopy”. Nature 345(6278): 839–840.CrossRefGoogle Scholar
  125. Puxkandl, R., I. Zizak, et al. (2002). “Viscoelastic properties of collagen: Synchrotron radiation investigations and structural model”. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 357(1418): 191–197.CrossRefGoogle Scholar
  126. Ramachandran, G. N., Kartha, G. (1955). “Structure of collagen”. Nature 176: 593–595.CrossRefGoogle Scholar
  127. Rappé, A. K. and W. A. Goddard (1991). “Charge equilibration for molecular-dynamics simulations”. Journal of Physical Chemistry 95(8): 3358–3363.CrossRefGoogle Scholar
  128. Rief, M., M. Gautel, et al. (1997). “Reversible unfolding of individual titin immunoglobulin domains by AFM”. Science 276(5315): 1109–1112.CrossRefGoogle Scholar
  129. Ritchie, R. O., J. J. Kruzic, et al. (2004). “Characteristic dimensions and the micro-mechanisms of fracture and fatigue in ’nano’ and ’bio’ materials”. International Journal of Fracture 128(1–4): 1–15.CrossRefMATHGoogle Scholar
  130. Ritchie, R. O., R. K. Nalla, et al. (2006). “Fracture and ageing in bone: Toughness and structural characterization”. Strain 42(4): 225–232.CrossRefGoogle Scholar
  131. Robins, S. P. and A. J. Bailey (1973). “The chemistry of the collagen cross-links”. Biochemical Journal. 135: 657–665.Google Scholar
  132. Sasaki, N. and S. Odajima (1996). “Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy”. Journal of Biomechanics 29(9):1131–1136.CrossRefGoogle Scholar
  133. Screen, H. R. C., D. L. Bader, et al. (2004). “Local strain measurement within tendon”. Strain 40(4): 157–163.CrossRefGoogle Scholar
  134. Smeenk, J. M., M. B. J. Otten, et al. (2005). “Controlled assembly of macromolecular beta-sheet fibrils”. Angewandte Chemie-International Edition 44(13): 1968–1971.CrossRefGoogle Scholar
  135. Smith, B. L., T. E. Schaffer, et al. (1999). “Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites”. Nature 399(6738): 761–763.CrossRefGoogle Scholar
  136. Strachan, A., E. M. Kober, et al. (2005). “Thermal decomposition of RDX from reactive molecular dynamics”. Journal of Chemical Physics 122(5): 054502.CrossRefGoogle Scholar
  137. Strachan, A., A. C. T. van Duin, et al. (2003). “Shock waves in high-energy materials: The initial chemical events in nitramine RDX”. Physical Review Letters 91(9): 098301.CrossRefGoogle Scholar
  138. Stuart, S. J., A. B. Tutein, et al. (2000). “A reactive potential for hydrocarbons with intermolecular interactions”. Journal of Chemical Physics 112(14): 6472-6486.CrossRefGoogle Scholar
  139. Sun, Y. L., Z. P. Luo, et al. (2002). “Direct quantification of the flexibility of type I collagen monomer”. Biochemical and Biophysical Research Communications 295(2): 382–386.CrossRefGoogle Scholar
  140. Sun, Y. L., Z. P. Luo, et al. (2004). “Stretching type II collagen with optical tweezers”. Journal of Biomechanics 37(11): 1665–1669.CrossRefGoogle Scholar
  141. Tai, K., F. J. Ulm, et al. (2006). “Nanogranular origins of the strength of bone”. Nano Letters 11: 2520–2525CrossRefGoogle Scholar
  142. Taylor, G. I. (1934). “Mechanism of plastic deformation in crystals”. Proceedings of the Royal Society A 145: 362.CrossRefGoogle Scholar
  143. Taylor, D., J.G. Hazenberg, et al. (2007). “Living with cracks: Damage and repair in human bone”. Nature Materials 6(4): 263–266.CrossRefGoogle Scholar
  144. Thompson, J. B., J. H. Kindt, et al. (2001). “Bone indentation recovery time correlates with bond reforming time”. Nature 414(6865): 773–776.CrossRefGoogle Scholar
  145. Tsai, D. H. (1979). “Virial theorem and stress calculation in molecular-dynamics”. Journal of Chemical Physics 70(3): 1375–1382.CrossRefGoogle Scholar
  146. Turner, C. H. (2006). Bone strength: Current concepts. Skeletal Development and Remodeling in Health, Disease, and Aging. 1068: 429–446.Google Scholar
  147. van der Rijt, J. A. J., K. O. van der Werf, et al. (2006). “Micromechanical testing of individual collagen fibrils”. Macromolecular Bioscience 6(9): 697–702.CrossRefGoogle Scholar
  148. van Duin, A. C. T., K. Nielson, et al. (2004). “Application of ReaxFF reactive force fields to transition metal catalyzed nanotube formation”. Abstracts of Papers of the American Chemical Society 227: U1031–U1031.Google Scholar
  149. Vesentini, S., C. F. C. Fitie, et al. (2005). “Molecular assessment of the elastic properties of collagen-like homotrimer sequences”. Biomechanics and Modeling in Mechanobiology 3(4): 224–234.CrossRefGoogle Scholar
  150. Wachter, N. J., G. D. Krischak, et al. (2002). “Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro”. Bone 31(1): 90–95.CrossRefGoogle Scholar
  151. Waite, J. H., X. X. Qin, et al. (1998). “The peculiar collagens of mussel byssus”. Matrix Biology 17(2): 93–106.CrossRefGoogle Scholar
  152. Weiner, S. and H. D. Wagner (1998). “The material bone: Structure mechanical function relations”. Annual Review of Materials Science 28: 271–298.CrossRefGoogle Scholar
  153. Wilson, E. E., A. Awonusi, et al. (2006). “Three structural roles for water in bone observed by solid-state NMR”. Biophysical Journal 90(10): 3722–3731.CrossRefGoogle Scholar
  154. Winey, K. I., Vaia R.A., (2007). “Polymer nanocomposites”. MRS Bulletin 32(4): 5.Google Scholar
  155. Wolf, D., V. Yamakov, et al. (2003). “Deformation mechanism and inverse Hall-Petch behavior in nanocrystalline materials”. Zeitschrift Fur Metallkunde 94: 1052–1061.Google Scholar
  156. Yip, S. (1998). “The strongest size”. Nature 391: 532–533.CrossRefGoogle Scholar
  157. Zervakis, M., V. Gkoumplias, et al. (2005). “Analysis of fibrous proteins from electron microscopy images”. Medical Engineering & Physics 27(8): 655–667.CrossRefGoogle Scholar
  158. Zhao, X. J. and S. G. Zhang (2006). “Molecular designer self-assembling peptides”. Chemical Society Reviews 35(11): 1105–1110.MathSciNetCrossRefGoogle Scholar
  159. Zhao, X. J. and S. G. Zhang (2007). “Designer self-assembling peptide materials”. Macromolecular Bioscience 7(1): 13–22.CrossRefGoogle Scholar
  160. Zhu, W. H. and P. Wu (2004). “Surface energetics of hydroxyapatite: a DFT study”. Chemical Physics Letters 396(1–3): 38–42.CrossRefGoogle Scholar
  161. Zimmerman, J. A., E. B. Webb, et al. (2004). “Calculation of stress in atomistic simulation”. Modelling and Simulation in Materials Science and Engineering 12: S319–S332.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M.J. Buehler

There are no affiliations available

Personalised recommendations