Collagen pp 49-80 | Cite as

Collagen Fibrillar Structure and Hierarchies

  • T.J. Wess


Collagen is most commonly found in animals as long, slender generally cylindrical fibrillar structures with tapered ends that are most easily recognized by a 65–67 nm axial periodicity. Collagen fibrils are substantial constituents of skin, tendon, bone, ligament, cornea, and cartilage, where the fundamental tensile properties of the fibril are finely tuned to serve bespoke biomechanical, and less well understood structural signaling roles.

Many of these properties derive from the structural organization within a fibril, where the axial and lateral organization and topology of the collagen molecules ensure strong intermolecular interactions and cross-linkage. The presence of different collagen types within a single fibril is a structural prerequisite in many tissues. However, the necessity for heterotypic fibrillar structures may point to fine tuning of the structural properties in a composite, such as fibril size regulation, dispersion of crystallinity, and interfibrillar communication. Furthermore the specific properties of an individual tissue also rely on the suprafibrillar architecture at the mesoscopic level.

The chapter will discuss current information about fibrillar structure from both homo- and heterotypic fibrils from a structural and biochemical viewpoint. Fibrils rich in collagen I, II and III will be considered as will the contribution of minor fibrillar and FACIT collagens. The molecular organization in both axial and lateral senses will be reviewed for both helicoidal and quasi crystalline fibrillar structures. Current models that account for the dynamic behavior of collagen segments within the fibril will be reviewed and the basis for order and disorder within the fibril discussed. The discrete size and polydispersity of fibrils will be discussed in terms of tissue properties and characteristics. The surface features of fibrils will be considered which conveniently leads to the possible features of interfibrillar interactions.

The overall properties and morphology of a fibril are as important as its internal organization. For example, the fibril surface is a complex area that contains collagen molecules and a variety of proteoglycans. These dictate the interaction between fibrils and specify the environment of partner macromolecules. They are also important in restricting fibril growth and permitting fusion to occur. The defined diameter (or distribution of fibril diameters) and overall slender tapering of collagen fibrils has significance in determining the macroscopic mechanical properties of the tissues. The variety of local suprafibrillar and resultant architectures such as bundles, felt work, lamellae and fibers that are evidenced in tissues will be discussed.


Collagen Type Triple Helix Molecular Packing Collagen Molecule Fibrillar Structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi, E. and Hayashi, T. (1986). In vitro formation of hybrid fibrils of type-V collagen and type-I collagen – Limited growth of type-I collagen into thick fibrils by type-V collagen. Connect. Tissue Res. 14, 257–266.CrossRefGoogle Scholar
  2. Bailey, A. J. (2001). Molecular mechanisms of ageing in connective tissues. Mech. Ageing Dev. 122, 735–755.CrossRefGoogle Scholar
  3. Baselt, D. R., Revel, J. P., and Baldeschwieler, J. D. (1993). Subfibrillar structure of type-I collagen observed by atomic-force microscopy. Biophys. J. 65, 2644–2655.Google Scholar
  4. Birk, D. E. (2001). Type V collagen: Heterotypic type I/V collagen interactions in the regulation of fibril assembly. Micron 32, 223–237.CrossRefGoogle Scholar
  5. Birk, D. E. and Trelstad, R. L. (1996). Extracellular compartments in tendon morphogenesis: collagen fibril, bundle, and macroaggregate formation. J. Cell Biol. 103, 231–240.CrossRefGoogle Scholar
  6. Birk, D. E., Zychband, E. I., Woodruff, S., Winkelmann, D. A., and Trelstad, R. L. (1997). Collagen fibrillogenesis in situ: Fibril segments become long fibrils as the developing tendon matures. Dev. Dyn. 208, 291–298.CrossRefGoogle Scholar
  7. Bishop, P. N. (2000). Structural macromolecules and supramolecular organisation of the vitreous gel. Prog. Retin. Eye Res. 19, 323–344.MathSciNetCrossRefGoogle Scholar
  8. Blaschke, U. K., Eikenberry, E. F., Hulmes, D. J. S., Galla, H. J., and Bruckner, P. (2000). Collagen XI nucleates self-assembly and limits lateral growth of cartilage fibrils. J. Biol. Chem. 275, 10370–10378.CrossRefGoogle Scholar
  9. Bos, K. J., Holmes, D. F. Meadows, R. S., Kadler, K. E., McLeod, D., and Bishop, P. N. (2001). Collagen fibril organisation in mammalian vitreous by freeze etch/rotary shadowing electron microscopy. Micron 32, 301–306.CrossRefGoogle Scholar
  10. Bozec L, van der Heijden G, and Horton, M. (2007). Collagen fibrils: nanoscale ropes. Biophys J. 92, 70–75.CrossRefGoogle Scholar
  11. Brodsky, B., Eikenberry, E. F., and Cassidy, K. (1980). An unusual collagen periodicity in skins. Biochim. Biophys. Acta. 621, 162–166.Google Scholar
  12. Brown, E. M., King, G., and Chen, J. M. (1997). Model of the helical portion of a type I collagen microfibril. J. Am. Leather Chem. As. 92, 1–7.Google Scholar
  13. Buehler, M. K. (2006). Nature designs tough collagen: Explaining the nanostructure of collagen fibrils. PNAS 103, 12285–12290.CrossRefGoogle Scholar
  14. Burgeson, R. E. (1988). New collagens, new concepts. Ann. Rev. Cell Biol. 4, 551–577.Google Scholar
  15. Cameron, G. J., Alberts, I. L., Laing, J. H., and Wess, T. J. (2002). Structure of type I and type III heterotypic collagen fibrils: An X-ray diffraction study. J. Struct. Biol. 137, 15–22.CrossRefGoogle Scholar
  16. Cameron, G. J, Cairns, D. E, and Wess, T. J. (2007). The variability in type I collagen helical pitch is reflected in the D periodic fibrillar structure. J Mol Biol. 28;372(4),1097–1107.CrossRefGoogle Scholar
  17. Chakravarti, S., Magnuson, T., Lass, J. H., Jepsen, K. J., LaMantia, C., and Carroll, H. (1998). Lumican regulates collagen fibril assembly: Skin fragility and corneal opacity in the absence of lumican. J. Cell Biol. 141, 1277–1286.CrossRefGoogle Scholar
  18. Chanut-Delalande, H., Fichard, A., Bernocco, S., Garrone, R., Hulmes, D. J. S., and Ruggiero, F. (2001). Control of heterotypic fibril formation by collagen V is determined by chain stoichiometry. J. Biol. Chem. 276, 24352–24359.Google Scholar
  19. Chapman, J. A. (1989). The regulation of size and form in the assembly of collagen fibrils in vivo. Biopolymers 28, 1367–1382.CrossRefGoogle Scholar
  20. Christiansen, D. L., Huang, E. K., Silver, F. H., and Christiansen, U. (2000). Assembly of type I collagen: fusion of fibril subunits and the influence of fibril diameter on mechanical properties. Matrix Biol. 19, 409–420.CrossRefGoogle Scholar
  21. Craig, A. S., Birtles, M. J., Conway, J. F., and Parry, D. A. D. (1989). An estimate of the mean length of collagen fibrils in rat tail tendon as a function of age. Connect. Tissue Res.19, 51–62.CrossRefGoogle Scholar
  22. Danielson, K. G., Siracusa, L. D., Donovan, P. J., and Iozzo, R. V. (1999). Decorin, epiphycan, and lumican genes are closely linked on murine chromosome 10 and are deleted in lethal steel mutants. Mamm. Genome 10, 201–203.CrossRefGoogle Scholar
  23. Derwin, K. A., Soslowsky, L. J., Kimura, J. H., and Plaas, A. H. (2001). Proteoglycans and glycosaminoglycan fine structure in the mouse tail tendon fascicle. J. Orthop. Res. 19, 269–277.CrossRefGoogle Scholar
  24. Eikenberry, E. F., Childs, B., Sheren, S. B., Parry, D. A. D., Craig, A. S., and Brodsky, B. (1984). Crystalline fibril structure of type-II collagen in lamprey notochord sheath. J. Mol. Biol. 176, 261–277.CrossRefGoogle Scholar
  25. Eyre, D. R. (2002). Collagen of articular cartilage. Arthritis Res. 4, 30–35.CrossRefGoogle Scholar
  26. Eyre, D. R., Pietka, T., Weis, M. A., and Wu, J. J. (2004). Covalent cross-linking of the NC1 domain of collagen type IX to collagen type II in cartilage. J. Biol. Chem. 279, 2568–2574.CrossRefGoogle Scholar
  27. Folkhard, W., Christmann, D., Geercken, W., Knorzer, E., Koch, M. H., Mosler, E., Nemetschek-Gansler, H., and Nemetschek, T. (1987a). Twisted fibrils are a structural principle in the assembly of interstitial collagens, chordae tendinae included. Z. Naturforsch. [C] 42, 1303–1306.Google Scholar
  28. Folkhard, W., Mosler, E., Geercken, E., Knorzer, H., Nemetschek-Gansler, H., and Nemetschek, T. (1987b). Quantitative analysis of the molecular sliding mechanism in native tendon collagen – Time resolved dynamic studies using synchrotron radiation. Int. J. Biol. Macromol.9, 169–175.Google Scholar
  29. Franc, S. (1993). Ultrastructural evidences of a distinct axial domain within native rat tail tendon collagen fibrils. J. Submicrosc. Cytol. Pathol. 25, 85–91.Google Scholar
  30. Fraser, R. D. B., MacRae, T. P., Miller, A., and Suzuki, E. (1983). Molecular conformation and packing in collagen fibrils. J. Mol. Biol. 167, 497–521.CrossRefGoogle Scholar
  31. Fraser, R. D. B., MacRae, T. P., and Miller, A. (1987). Molecular packing in type I collagen fibrils. J. Mol. Biol. 193, 115–125.CrossRefGoogle Scholar
  32. Fratzl, P. (2003). Cellulose and collagen: from fibres to tissues. Curr. Opin. Colloid Interface Sci. 8, 32–39.CrossRefGoogle Scholar
  33. Fratzl, P., Fratzl-Zelman, N., and Klaushofer, K. (1993). Collagen packing and mineralization. An X-ray scattering investigation of turkey leg tendon. Biophys. J. 64, 260–266.Google Scholar
  34. Fratzl, P., Gupta, H. S., Paschalisb, E. P., and Roschgerb, P. (2004). Structure and mechanical quality of the collagen–mineral nano-composite in bone. J. Mater. Chem. 14, 2115–2123.CrossRefGoogle Scholar
  35. Fratzl, P., Misof, K., Zizak, I., Rapp, G., Amenitsch, H., and Bernstorff, S. (1998). Fibrillar structure and mechanical properties of collagen. J. Struct. Biol. 122, 119–122.CrossRefGoogle Scholar
  36. Giraud-Guille, M.-M. (1996). Twisted liquid crystalline supramolecular arrangements in morphogenesis. Int. Rev. Cytol. 166, 59–101.Google Scholar
  37. Goh, K. L., Hiller, J., Haston, J. L., Holmes, D. F., Kadler, K. E., Murdoch, A., Meakin, J. R., and Wess, T. J. (2005). Analysis of collagen fibril diameter distribution in connective tissues using small-angle X-ray scattering. Biochim. Biophys. Acta. 1722, 183–188.Google Scholar
  38. Graham, H. K., Holmes, D. F., Watson, R. B., and Kadler, K. E. (2000), Identification of collagen fibril fusion during vertebrate tendon morphogenesis. The process relies on unipolar fibrils and is regulated by collagen-proteoglycan interaction. J. Mol. Biol. 295, 891–902.CrossRefGoogle Scholar
  39. Gutsmann, T., Fantner, G. E., Venturoni, M., Ekani-Nkodo, A., Thompson, J. B., Kindt, J. H., Morse, D. E., Fygenson, D. K., and Hansma, P. K. (2003). Evidence that collagen fibrils in tendons are inhomogeneously structured in a tubelike manner. Biophys. J. 84, 2593–2598.Google Scholar
  40. Hansen, U., and Bruckner, P. (2003). Macromolecular specificity of collagen fibrillogenesis. Fibrils of collagens I and XI contain a heterotypic alloyed core and a collagen I sheath. J. Biol. Chem. 278, 37352–37359.CrossRefGoogle Scholar
  41. Hedlund, H., Hedbom, E., Heinegard, D., Mengarelli-Widholm, S., Reinholt, F. P., and Svensson, O. (1999). Association of the aggrecan keratan sulfate-rich region with collagen in bovine articular cartilage. J. Biol. Chem. 274, 5777–5781.CrossRefGoogle Scholar
  42. Hedlund, H., Mengarelli-Widholm, S., Heinegard, D., Reinholt, F. P., and Svensson, O. (1994). Fibromodulin distribution and association with collagen. Matrix Biol. 14, 227–232.CrossRefGoogle Scholar
  43. Henkel, W. (1996). Cross-link analysis of the C-telopeptide domain from type III collagen. Biochem. J. 318, 497–503.Google Scholar
  44. Henkel, W., and Glanville, R. W. (1982). Covalent crosslinking between molecules of type I and type III collagen. The involvement of the N-terminal, nonhelical regions of the alpha 1 (I) and alpha 1 (III) chains in the formation of intermolecular crosslinks. Eur. J. Biochem. 122, 205–213.CrossRefGoogle Scholar
  45. Hodge, A. J., and Petruska, J. A. (1963). Recent studies with the electron microscope on ordered aggregates of the tropocollagen molecule. In “Aspects of Protein Chemistry” (G. N. Ramachandran, Ed.), pp. 289–300. Academic Press, London.Google Scholar
  46. Hofmann, H., Fietzek, P. P., and Kuhn, K. (1980). Comparative analysis of the sequences of the three collagen chains a1(I), a2 and a1(III); Function and genetic aspects. J. Mol. Biol. 141, 293–314.CrossRefGoogle Scholar
  47. Holmes, D. F., Gilpin, C. J., Baldock, C., Ziese, U., Koster, A. J., and Kadler, K. E. (2001). Corneal collagen fibril structure in three dimensions: Structural insights into fibril assembly, mechanical properties, and tissue organization. PNAS 98, 7307–7312.CrossRefGoogle Scholar
  48. Holmes, D. F. and Kadler, K. E. (2006). The 10+4 microfibril structure of thin cartilage fibrils. PNAS 103, 17249–17254.CrossRefGoogle Scholar
  49. Hoshi, K., Kemmotsu, S., Takeuchi, Y., Amizuka, N., and Ozawa, H. (1999). The primary calcification in bones follows removal of decorin and fusion of collagen fibrils. J. Bone Miner. Res. 14, 273–280.CrossRefGoogle Scholar
  50. Hulmes, D. J. S. (2002). Building collagen molecules, fibrils, and suprafibrillar structures. J. Struct. Biol. 137, 2–10.CrossRefGoogle Scholar
  51. Hulmes, D. J. S., Holmes, D. F., and Cummings, C. (1985). Crystalline regions in collagen fibrils. J. Mol. Biol. 184, 473–477.CrossRefGoogle Scholar
  52. Hulmes, D. J. S., Miller, A., Parry, D. A. D., Piez, K. A., and Woodhead-Galloway, J. (1973). Analysis of the primary structure of collagen for the origins of molecular packing. J. Mol. Biol. 79, 137–148.CrossRefGoogle Scholar
  53. Hulmes, D. J. S., Miller, A., White, S. W., and Brodsky-Doyle, B. (1977). Interpretation of the meridional diffraction pattern from collagen fibres in terms of the known amino acid sequence. J. Mol. Biol. 110, 643–666.CrossRefGoogle Scholar
  54. Hulmes, D. J. S., Miller, A., White, S. W., Timmins, P. A., and Berthet-Colominas, C. (1980). Interpretation of the low angle meridional neutron diffraction patterns from collagen fibres in terms of the amino acid sequence. Int. J. Biol. Macromol. 2, 338–345.CrossRefGoogle Scholar
  55. Hulmes, D. J. S., Wess, T. J., Prockop, D. J., and Fratzl, P. (1995). Radial packing, order and disorder in collagen fibrils. Biophys. J. 68, 1661–1670.CrossRefGoogle Scholar
  56. Hwang, W. S., Li, B., Jin, L. H., Ngo, K., Schachar, N. S., and Hughes, G. N. F. (1992). Collagen fibril structure of normal, aging, and osteoarthritic cartilage. J. Pathol. 167, 425–433.CrossRefGoogle Scholar
  57. Itoh, T., Kobayashi, M., and Hashimoto, M. (1998). The role of intermolecular electrostatic interaction on appearance of the periodic band structure in type I collagen fibril. Jpn. J. Appl. Phys. 37, L190–L192.Google Scholar
  58. Jeffery, A. K., Blunn, G. W., Archer, C. W. and Bentley, G. (1991). Three-dimensional collagen architecture in bovine articular cartilage. J. Bone Joint Surg. Br. 73-B, 795–801.Google Scholar
  59. Jesoir, J. C., Miller, A., and Berthet-Colominas, C. (1981). Crystalline three dimensional packing is a general feature of type I collagen fibrils. FEBS Lett. 13, 238–240.Google Scholar
  60. Jokinen, J., Dadu, E., Nykvist, P., Köpylö, J., White, D. J., Ivaska, J., Vehvilöinen, P., Reunanen, H., Larjava, H., Hökkinen, L., and Heino, J. (2004). Integrin-mediated cell adhesion to type I collagen fibrils. J. Biol. Chem. 279, 31956-31963.CrossRefGoogle Scholar
  61. Jones, E. Y., and Miller, A. (1991). Analysis of structural design features in collagen. J. Mol. Biol. 218, 209–219.CrossRefGoogle Scholar
  62. Kadler, K. (1994). Extracellular matrix. 1: fibril-forming collagens. Protein Profile 1, 519–638.Google Scholar
  63. Kannus, P. (2000). Structure of the tendon connective tissue. Scand. J. Med. Sci. Spor. 10, 312–320.CrossRefGoogle Scholar
  64. Kassner, A., Tiedemann, K., Notbohm, M., Ludwig, T., Morgelin, M., Reinhardt, D. P., Chu, M. L., Bruckner, P., and Grassel, S. (2004). Molecular structure and interaction of recombinant human type XVI collagen. J. Mol. Biol. 339, 835–853.CrossRefGoogle Scholar
  65. Kastelic, J., Galeski, A., and Baer, E. (1978). Multicomposite structure of tendon. Connect. Tissue Res. 6, 11–23.Google Scholar
  66. Knight, D. P., and Vollrath, F. (2002). Biological liquid crystal elastomers. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 357, 155–163.CrossRefGoogle Scholar
  67. Koch, M., Laub, F., Zhou, P., Hahn, R. A., Tanaka, S., Burgeson, R. E., Gerecke, D. R., Ramirez, F., and Gordon, M. K. (2003). Collagen XXIV, a vertebrate fibrillar collagen with structural features of invertebrate collagens selective expression in developing cornea and bone. J. Biol. Chem. 278(44), 43236–43244.CrossRefGoogle Scholar
  68. Landis, W. J., Hodgens, K. J., Song, M. J., Arena, J., Kiyonaga, S., Marko, M., Owen, C., and McEwen, B. F. (1996). Mineralization of collagen may occur on fibril surfaces: Evidence from conventional and high-voltage electron microscopy and three dimensional imaging. J. Struct. Biol. 117, 24–35.CrossRefGoogle Scholar
  69. Linsenmayer, T. F., Gibney, E., Igoe, F., Gordon, M. K., Fitch, J. M., Fessler, L. I., and Birk, D. E. (1993). Type-V collagen: Molecular-structure and fibrillar organization of the chicken alpha-1(V) NH2-terminal domain, a putative regulator of corneal fibrillogenesis. J. Cell Biol. 121, 1181–1189.CrossRefGoogle Scholar
  70. Liu, X. H., Otter, A., Scott, P. G., Cann, J. R., and Kotovych, G. (1993). Conformational analysis of the type-II and type-III collagen alpha-1 chain C-telopeptides by H- 1–nmr and circular-dichroism spectroscopy. J. Biomol. Struct. Dyn. 11, 541–555.Google Scholar
  71. Lucic, D., Mollenhauer, J., Kilpatrick, K. E., and Cole, A. A. (2003). N-telopeptide of type II collagen interacts with annexin V on human chondrocytes. Connect. Tissue Res.44, 225–239.CrossRefGoogle Scholar
  72. MacBeath, J. R., Shackleton, D. R., and Hulmes, D. J. S. (1993). Tyrosine-rich acidic matrix protein (TRAMP) accelerates collagen fibril formation in vitro. J. Biol. Chem. 268, 19826–19832.Google Scholar
  73. McBride, D. J., Choe, V., Shapiro, J. R., and Brodsky, B. (1997). Altered collagen structure in mouse tail tendon lacking the alpha 2(I) chain. J. Mol. Biol. 270, 275–284.CrossRefGoogle Scholar
  74. Malone, J. P., George, A., and Veis, A. (2004). Type I collagen N-telopeptides adopt an ordered structure when docked to their helix receptor during fibrillogenesis. Proteins 54, 206–215.CrossRefGoogle Scholar
  75. Marchant, J. K., Hahn, R. A., Linsenmayer, T. F., and Birk, D. E. (1996). Reduction of type V collagen using a dominant-negative strategy alters the regulation of fibrillogenesis and results in the loss of corneal-specific fibril morphology. J. Cell Biol. 135, 1415–1426.CrossRefGoogle Scholar
  76. Marchini, M., Morocutti, M., Ruggeri, A., Koch, M. H. J., Bigi, A., and Roveri, N. (1986). Differences in the fibril structure of corneal and tendon collagen. An electron microscopy and X-ray diffraction investigation. Connect. Tissue Res. 15, 269–281.CrossRefGoogle Scholar
  77. Martin, R., Farjanel, J., Eichenberger, D., Colige, A., Kessler, E., Hulmes, D. J. S., and Giraud-Guille, M. M. (2000). Liquid crystalline ordering of procollagen as a determinant of three-dimensional extracellular matrix architecture. J. Mol. Biol. 301, 11–17.CrossRefGoogle Scholar
  78. Meek, K. M., Chapman, J. A., and Hardcastle, R. A. (1979). The staining pattern of collagen fibrils. Improved correlation with sequence data. J. Biol. Chem. 254, 10710–10714.Google Scholar
  79. Meek, K. M., and Fullwood, N. J. (2001). Corneal and scleral collagens – A microscopist’s perspective. Micron 32, 261–272.CrossRefGoogle Scholar
  80. Mendler, M., Eich-Bender, S. G., Vaughan, L., Winterhalter, K. H. and Bruckner, P. (1989). Cartilage contains mixed fibrils of collagen types II, IX, and XI. J. Cell Biol., 108, 191–197.CrossRefGoogle Scholar
  81. Michna, H. (1984). Morphometric analysis of loading-induced changes in collagen fibril populations in young tendons. Cell Tissue Res. 236, 465–470.CrossRefGoogle Scholar
  82. Miles, C. A, Sims, T. J, Camacho, N. P, and Bailey, A. J. (2002). The role of the alpha2 chain in the stabilization of the collagen type I heterotrimer: a study of the type I homotrimer in oim mouse tissues. J. Mol. Biol. 321, 797–805.CrossRefGoogle Scholar
  83. Miller, A., and Tochetti, D. (1981). Calculated X-ray diffraction pattern from a quasihexagonal model for the molecular arrangement in collagen. Int. J. Macromol. 3, 9–18.CrossRefGoogle Scholar
  84. Mizuno, K., Adachi, E., Imamura, Y., Katsumata, O., and Hayashi, T. (2001). The fibril structure of type V collagen triple-helical domain. Micron 32, 317–323.CrossRefGoogle Scholar
  85. Niyibizi, C. and Eyre, D. R. (1994). Structural characteristics of cross-linking sites in type V collagen of bone. Chain specificities and heterotypic links to type I collagen. Eur. J. Biochem. 224, 943–950.CrossRefGoogle Scholar
  86. North, A. C. T., Cowan, P. M., and Randall, J. T. (1954). Structural units in collagen fibrils. Nature 174, 1142–1143.CrossRefGoogle Scholar
  87. Olsen, B. R. (1997). Collagen IX. Int. J. Biochem. Cell Biol. 29, 555–558.CrossRefGoogle Scholar
  88. Orgel, J. P. R. O., Irving, T. C., Miller, A., and Wess, T. J. (2006). Microfibrillar structure of type I collagen in situ. PNAS 103, 9001–9005.CrossRefGoogle Scholar
  89. Orgel, J. P. R. O., Miller, A., Irving, T. C., Fischetti, R. F., Hammersley, A. P., and Wess, T. J. (2001). The in situ supermolecular structure of type I collagen. Structure 9, 1061–1069.CrossRefGoogle Scholar
  90. Orgel, J. P., Wess, T. J., and Miller, A. (2000). The in situ conformation and axial location of the intermolecular cross-linked non-helical telopeptides of type I collagen. Struct. Fold. Des. 8, 137–142.CrossRefGoogle Scholar
  91. Ortolani, F., Giordano, M., and Marchini, M. (2000). A model for type II collagen fibrils: Distinctive D-band patterns in native and reconstituted fibrils compared with sequence data for helix and telopeptide domains. Biopolymers 54, 448–463.CrossRefGoogle Scholar
  92. Ottani, V., Raspanti, M., and Ruggeri, A. (2001). Collagen structure and functional implications. Micron 32, 251–260.CrossRefGoogle Scholar
  93. Parry, D. A. (1988). The molecular and fibrillar structure of collagen and its relationship to the mechanical properties of connective tissue. Biophys. Chem. 29, 195–209.CrossRefGoogle Scholar
  94. Parry, D. A. D., Barnes, G. R. G., and Craig, A. S. (1978). A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relationship between fibril size distribution and mechanical properties. Proc. R. Soc. Lond. B. 203, 305–321.Google Scholar
  95. Parry, D. A. D., and Craig, A. S. (1979). Electron microscope evidence for an 80 Angstrom unit in collagen fibrils. Nature 282, 213–225.CrossRefGoogle Scholar
  96. Parry, D. A. D., and Craig, A. S. (1984). Growth and Development of Collagen Fibrils in Connective Tissues. In “Ultrastructure of the Connective Tissue Matrix” (A. Ruggeri and P. M. Motta, Eds.), pp. 34–64. Martinus Nijhoff, Netherlands.Google Scholar
  97. Paterlini, M. G., Nemethy, G., and Scheraga, H. A. (1995). The energy of formation of internal loops in triple-helical collagen polypeptides. Biopolymers 35, 607–619.CrossRefGoogle Scholar
  98. Patterson-Kane, J. C., Wilson, A. M., Firth, E. C., Parry, D. A. D., and Goodship, A. E. (1997). Comparison of collagen fibril populations in the superficial digital flexor tendons of exercised and non-exercised thoroughbreds. Equine Vet. J. 29, 121–125.CrossRefGoogle Scholar
  99. Pihlajamaa, T., Lankinen, H., Ylostalo, J., Valmu, L., Jaalinoja, J., Zaucke, F., Spitznagel, L., Gosling, S., Puustinen, A., Morgelin, M., Peranen, J., Maurer, P., Ala-Kokko, L., and Kilpelainen, I. (2004). Characterization of recombinant amino-terminal NC4 domain of human collagen IX: Interaction with glycosaminoglycans and cartilage oligomeric matrix protein. J. Biol. Chem. 279, 24265–24273.CrossRefGoogle Scholar
  100. Pope, F. M., Martin, G. R., Lichtenstein, J. R., Penttinen, R., Gerson, B., Rowe, D. W., and McKusick, V. A.. (1975). Patients with Ehlers-Danlos syndrome type IV lack type III collagen. PNAS 72, 1314–1316.CrossRefGoogle Scholar
  101. Prockop, D. J., and Fertala, A. (1998). The collagen fibril: the almost crystalline structure. J. Struct. Biol.122, 111–118.CrossRefGoogle Scholar
  102. Redaelli, A., Vesentini, S., Soncini, M., Vena, P., Mantero, S., and Montevecchi, F. M. (2003). Possible role of decorin glycosaminoglycans in fibril to fibril force transfer in relative mature tendons: A computational study from molecular to microstructural level. J. Biomech. 36,1555–1569.CrossRefGoogle Scholar
  103. Sanders, J. E., and Goldstein, B. S. (2001). Collagen fibril diameters increase and fibril densities decrease in skin subjected to repetitive compressive and shear stresses. J. Biomech. 34,1581–1587.CrossRefGoogle Scholar
  104. Sasaki, N., and Odajima, S. (1996). Elongation mechanism of collagen fibrils and forcestrain relations of tendon at each level of structural hierarchy. J. Biomech. 29, 1131–1136.CrossRefGoogle Scholar
  105. Sasaki, N., Shukunami, N., Matsushima, N., and Izumi, Y. (1999). Time resolved X-ray diffraction from tendon collagen during creep using synchrotron radiation. J. Biomech. 32, 285–292.CrossRefGoogle Scholar
  106. Scott, J. E., and Thomlinson, A. M. (1998). The structure of interfibrillar proteoglycan bridges (‘shape modules’) in extracellular matrix of fibrous connective tissues and their stability in various chemical environments. J. Anat. 192, 391–405.CrossRefGoogle Scholar
  107. Shaw, L. M., Olsen, B. R. (1991). FACIT collagens: diverse molecular bridges in extracellular matrices. Trends Biochem. Sci. 1, 191–194.CrossRefGoogle Scholar
  108. Silver, F. H., Christiansen, D. L., Snowhill, P. B., and Chen, Y. (2001). Transition from viscous to elastic-based dependency of mechanical properties of self-assembled type I collagen fibers. J. Appl. Polymer Sci. 79, 134–142.CrossRefGoogle Scholar
  109. Silver, F. H., Kato, Y. P., Ohno, M., Wasserman, A. J. (1992). Analysis of mammalian connective tissue: relationship between hierarchical structures and mechanical properties. J. Long Term Eff. Med. Implants. 2(2–3),165–98.Google Scholar
  110. Smith, J. W. (1968). Molecular pattern in native collagen. Nature 219, 157–158.CrossRefGoogle Scholar
  111. Svensson, L., Aszodi, A., Reinholt, F. P., Fassler, R., Heinegard, D., and Oldberg, A. (1999). Fibromodulin-null mice have abnormal collagen fibrils, tissue organization, and altered Lumican deposition in tendon. J. Biol. Chem. 274, 9636–9647.CrossRefGoogle Scholar
  112. Thomas, E. K., Nakamura, M., Wienke, D., Isacke, C. M., Pozzi, A., and Liang, P.. (2005). Endo180 binds to the C-terminal region of type I collagen. J. Biol. Chem. 280, 22596–22605.CrossRefGoogle Scholar
  113. Trus, B. L., and Piez, K. A. (1980). Compressed microfibril models of the nativecollagen fibril. Nature 286, 300–301.CrossRefGoogle Scholar
  114. van der Rest, M,, and Garrone, R. (1991). Collagen family of proteins. FASEB J 51, 2814-2823.Google Scholar
  115. Vaughan, L., Mendler, M., Huber, S., Bruckner, P., Winterhalter, K. H., Irwin, M. I., and Mayne, R. (1988). D-periodic Distribution of collagen type IX along cartilage fibrils. J. Cell Biol. 106, 991–997.CrossRefGoogle Scholar
  116. Vitagliano, L., Nemethy, G., Zagari, A., and Scheraga, H. A. (1995). Structure of the type-I collagen molecule based on conformational energy computations: The triple-stranded helix and the n-terminal telopeptide. J. Mol. Biol. 247, 69–80.CrossRefGoogle Scholar
  117. Watanabe, M., Kobayashi, M., Fujita, Y., Senga, K., Mizutani, H., Ueda, M., and Hoshino, T. (1997). Association of type VI collagen with D-periodic collagen fibrils in developing tail tendons of mice. Arch. Histol. Cytol. 60, 427–434.CrossRefGoogle Scholar
  118. Weiner, S., Traub, W., and Wagner, H. D. (1999). Lamellar bone: structure-function relations. J. Struct. Biol. 126, 241–255.CrossRefGoogle Scholar
  119. Wen, C. K., and Goh, M. C. (2004). AFM nanodissection reveals internal structural details of single collagen fibrils. Nano. Lett. 4, 129–132.CrossRefGoogle Scholar
  120. Wenstrup, R. J., Florer, J. B., Brunskill, E. W., Bell, S. B., Chervoneva, I., and Birk, D. E. (2004). Type V collagen controls the initiation of collagen fibril assembly. J. Biol. Chem. 279,53331–53337.CrossRefGoogle Scholar
  121. Wess, T. J., Hammersley, A., Wess, L., and Miller, A. (1995). Type I collagen packing conformation of the triclinic unit cell. J. Mol. Biol. 248, 487–493.Google Scholar
  122. Wess, T. J., Hammersley, A. P., Wess, L., and Miller, A. (1998). A consensus model for molecular packing of type I collagen. J. Struct. Biol. 122, 92–100.CrossRefGoogle Scholar
  123. White, J., Werkmeister, J. A., Ramshaw, J. A. M., and Birk, D. E. (1997). Organization of fibrillar collagen in the human and bovine cornea: Collagen types V and III. Connect. Tissue Res. 36, 165–174.CrossRefGoogle Scholar
  124. Wu JJ, Murray J, Eyre DR (1996). Evidence for copolymeric crosslinking between types II and III collagens in human articular cartilage. Trans. Orthop. Res. Soc. 21, 42.Google Scholar
  125. Yamamoto, T., Domon, T., Takahashi, S., Islam, N., and Suzuki, R. (2000b). Twisted plywood structure of an alternating lamellar pattern in cellular cementum of human teeth. Anat. Embryol. 202, 25–30.CrossRefGoogle Scholar
  126. Yamamoto, S., Hashizume, H., Hitomi, J., Shigeno, M., Sawaguchi, S., Abe, H., and Ushiki, T. (2000a). The subfibrillar arrangement of corneal and scleral collagen fibrils as revealed by scanning electron and atomic force microscopy. Arch. Histol. Cytol. 63, 127–135.CrossRefGoogle Scholar
  127. Yamamoto, T. and Wakita, M. (1992). Bundle formation of principal fibers in rat molars. J. Periodont. Res. 27, 20–27.CrossRefGoogle Scholar
  128. Yamamoto K, and Yamamoto, M. (1994). Cell adhesion receptors for native and denatured type I collagens and fibronectin in rabbit arterial smooth muscle cells in culture. Exp. Cell Res. 214, 258–263.CrossRefGoogle Scholar
  129. Yamazaki, M., Majeska, R. J., Yoshioka, T. H., Moriya, H., Thomas, A., and Einhorn, T. A. (2005). Spatial and temporal expression of fibril-forming minor collagen genes (types V and XI) during fracture healing. J. Orthop. Res. 15, 757–764.CrossRefGoogle Scholar
  130. Young, R. D., Lawrence, P. A., Duance, V. C., Aigner, T., and Monaghan, P. (2000a). Immunolocalization of collagen types II and III in single fibrils of human articular cartilage. J. Histochem. Cytochem. 48, 423–432.Google Scholar
  131. Zhang, G., Young, B. B., Ezura, Y., Favata, M., Soslowsky, L. J., Chakravarti, S., and Birk, D. E. (2005). Development of tendon structure and function: Regulation of collagen fibrillogenesis. J. Musculoskelet. Neuronal. Interact. 5, 5–21.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • T.J. Wess

There are no affiliations available

Personalised recommendations