Collagen pp 475-504 | Cite as

Biomimetic Collagen Tissues: Collagenous Tissue Engineering and Other Applications

  • E.A. Sander
  • V.H. Barocas


Collagen gels provide an in-vivo-like, 3D environment suitable for studying cell–matrix interactions during proto-tissue formation. Cell-seeded collagen gels, reconstituted under a variety of conditions, are remodeled by cell-driven compaction and consolidation. The remodeled gel, or tissue equivalent (TE), possesses properties dependent on the organization of collagen fibrils in the network, which, in turn, is controlled by several environmental factors, particularly mechanical constraints on the gel boundaries. Mechanical tests performed under a variety of conditions suggest that many different physical processes are involved in the gel’s mechanical response. Network restructuring under nonuniform loading conditions leads to mechanical anisotropy and nonlinearity at large strain. Although similar in behavior, collagen-based TEs do not yet possess sufficient mechanical properties to replace native tissues. Efforts are underway to improve TE properties by controlling ECM composition and organization.


Native Tissue Collagen Network Collagen Concentration Mechanical Constraint Cyclic Stretch 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agoram, B. and V. H. Barocas. Coupled macroscopic and microscopic scale modeling of fibrillar tissues and tissue equivalents. J. Biomech. Eng. 123:362–369, 2001.Google Scholar
  2. Ahlfors, J. E. and K. L. Billiar. Biomechanical and biochemical characteristics of a human fibroblast-produced and remodeled matrix. Biomaterials 28:2183–2191, 2007.Google Scholar
  3. Alini, M., W. Li, P. Markovic, M. Aebi, R.C. Spiro, and P.J. Roughley. The potential and limitation of a cell-seeded collagen/hyaluronan scaffold to engineer an intervertebral disc-like matrix. Spine 28:446–54, 2003.Google Scholar
  4. Awad, H. A., D. L. Butler, M. T. Harris, R. E. Ibrahim, Y. Wu, R. G. Young, S. Kadiyala, and G. P. Boivin. In vitro characterization of mesenchymal stem cell-seeded collagen scaffolds for tendon repair: effects of initial seeding density on contraction kinetics. J. Biomed. Mater. Res. 51:233–240, 2000.Google Scholar
  5. Barocas, V. H., T. S. Girton, and R. T. Tranquillo. Engineered alignment in media equivalents: magnetic prealignment and mandrel compaction. J. Biomech. Eng. 120: 660–666, 1998.Google Scholar
  6. Barocas, V. H., A. G. Moon, and R. T. Tranquillo. The fibroblast-populated collagen microsphere assay of cell traction force–Part 2: Measurement of the cell traction parameter. J. Biomech. Eng. 117:161–170, 1995.Google Scholar
  7. Barocas, V. H. and R. T. Tranquillo. An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance. J. Biomech. Eng. 119:137–145, 1997a.Google Scholar
  8. Barocas, V. H. and R. T. Tranquillo. A finite element solution for the anisotropic biphasic theory of tissue-equivalent mechanics: the effect of contact guidance on isometric cell traction measurement. J. Biomech. Eng. 119:261–268, 1997b.Google Scholar
  9. Bell, E., H. P. Ehrlich, D. J. Buttle, and T. Nakatsuji. Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 211:1052–1054, 1981a.Google Scholar
  10. Bell, E., H. P. Ehrlich, S. Sher, C. Merrill, R. Sarber, B. Hull, T. Nakatsuji, D. Church, and D. J. Buttle. Development and use of a living skin equivalent. Plast. Reconstr. Surg. 67:386–392, 1981b.Google Scholar
  11. Bell, E., B. Ivarsson, and C. Merrill. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci U S A 76:1274–8., 1979.Google Scholar
  12. Bellows, C. G., A. H. Melcher, and J. E. Aubin. Association between tension and orientation of periodontal ligament fibroblasts and exogenous collagen fibres in collagen gels in vitro. J. Cell. Sci. 58:125–138, 1982.Google Scholar
  13. Bellows, C. G., A. H. Melcher, and J. E. Aubin. Contraction and organization of collagen gels by cells cultured from periodontal ligament, gingiva and bone suggest functional differences between cell types. J. Cell. Sci. 50:299–314, 1981.Google Scholar
  14. Berglund, J. D., R. M. Nerem, and A. Sambanis. Viscoelastic testing methodologies for tissue engineered blood vessels. J. Biomech. Eng. 127:1176–1184, 2005.Google Scholar
  15. Berry, C. C., J. C. Shelton, D. L. Bader, and D. A. Lee. Influence of external uniaxial cyclic strain on oriented fibroblast-seeded collagen gels. Tissue Eng. 9:613–624, 2003.Google Scholar
  16. Billiar, K. L., A. M. Throm, and M. T. Frey. Biaxial failure properties of planar living tissue equivalents. J. Biomed. Mater. Res. A. 73:182–191, 2005.Google Scholar
  17. Breuls, R. G., B. G. Sengers, C. W. Oomens, C. V. Bouten, and F. P. Baaijens. Predicting local cell deformations in engineered tissue constructs: a multilevel finite element approach. J. Biomech. Eng. 124:198–207, 2002.Google Scholar
  18. Brown, R. A., R. Prajapati, D. A. McGrouther, I. V. Yannas, and M. Eastwood. Tensional homeostasis in dermal fibroblasts: mechanical responses to mechanical loading in three-dimensional substrates. J. Cell. Physiol. 175:323–332, 1998.Google Scholar
  19. Brown, T. D. Techniques for mechanical stimulation of cells in vitro: a review. J. Biomech. 33:3–14., 2000.Google Scholar
  20. Burgess, M. L., W. E. Carver, L. Terracio, S. P. Wilson, M. A. Wilson, and T. K. Borg. Integrin-mediated collagen gel contraction by cardiac fibroblasts. Effects of angiotensin II. Circ. Res. 74:291–298, 1994.Google Scholar
  21. Cacou, C., D. Palmer, D. A. Lee, D. L. Bader, and J. C. Shelton. A system for monitoring the response of uniaxial strain on cell seeded collagen gels. Med. Eng. Phys. 22: 327–333, 2000.Google Scholar
  22. Carver, W., I. Molano, T. A. Reaves, T. K. Borg, and L. Terracio. Role of the alpha 1 beta 1 integrin complex in collagen gel contraction in vitro by fibroblasts. J. Cell. Physiol. 165:425–437, 1995.Google Scholar
  23. Chandran, P. L. and V. H. Barocas. Deterministic material-based averaging theory model of collagen gel micromechanics. J. Biomech. Eng. 129:1–11, 2007.Google Scholar
  24. Chandran, P. L. and V. H. Barocas. Affine versus non-affine fibril kinematics in collagen networks: theoretical studies of network behavior. J. Biomech. Eng. 128:259–270, 2006.Google Scholar
  25. Chandran, P. L. and V. H. Barocas. Microstructural mechanics of collagen gels in confined compression: poroelasticity, viscoelasticity, and collapse. J. Biomech. Eng. 126: 152–166, 2004.Google Scholar
  26. Chen, G., T. Sato, T. Ushida, R. Hirochika, Y. Shirasaki, N. Ochiai, and T. Tateishi. The use of a novel PLGA fiber/collagen composite web as a scaffold for engineering of articular cartilage tissue with adjustable thickness. J Biomed Mater Res 67A:1170–80, 2003.Google Scholar
  27. Chiquet, M., A. S. Renedo, F. Huber, and M. Fluck. How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biol. 22:73–80, 2003.Google Scholar
  28. Christiansen, D. L., E. K. Huang, and F. H. Silver. Assembly of type I collagen: fusion of fibril subunits and the influence of fibril diameter on mechanical properties. Matrix Biol. 19: 409–420, 2000.Google Scholar
  29. Clark, R. A., L. D. Nielsen, M. P. Welch, and J. M. McPherson. Collagen matrices attenuate the collagen-synthetic response of cultured fibroblasts to TGF-beta. J. Cell. Sci. 108 (Pt 3): 1251–1261, 1995.Google Scholar
  30. Cooke, M. E., T. Sakai, and D. F. Mosher. Contraction of collagen matrices mediated by alpha2beta1A and alpha(v)beta3 integrins. J. Cell. Sci. 113 (Pt 13):2375–2383, 2000.Google Scholar
  31. Costa, K. D., E. J. Lee, and J. W. Holmes. Creating alignment and anisotropy in engineered heart tissue: role of boundary conditions in a model three-dimensional culture system. Tissue Eng. 9:567–577, 2003.Google Scholar
  32. Courtney, T., M. S. Sacks, J. Stankus, J. Guan, and W. R. Wagner. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials 27: 3631–3638, 2006.Google Scholar
  33. Cummings, C. L., D. Gawlitta, R. M. Nerem, and J. P. Stegemann. Properties of engineered vascular constructs made from collagen, fibrin, and collagen-fibrin mixtures. Biomaterials 25: 3699–3706, 2004.Google Scholar
  34. Delvoye, P., P. Wiliquet, J. L. Leveque, B. V. Nusgens, and C. M. Lapiere. Measurement of mechanical forces generated by skin fibroblasts embedded in a three-dimensional collagen gel. J. Invest. Dermatol. 97:898–902, 1991.Google Scholar
  35. Dickinson, R. B., S. Guido, and R. T. Tranquillo. Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels. Ann. Biomed. Eng. 22:342–356, 1994.Google Scholar
  36. Eastwood, M., D. A. McGrouther, and R. A. Brown. A culture force monitor for measurement of contraction forces generated in human dermal fibroblast cultures: evidence for cell-matrix mechanical signalling. Biochim. Biophys. Acta 1201:186–192, 1994.Google Scholar
  37. Eastwood, M., R. Porter, U. Khan, G. McGrouther, and R. Brown. Quantitative analysis of collagen gel contractile forces generated by dermal fibroblasts and the relationship to cell morphology. J. Cell. Physiol. 166:33–42, 1996.Google Scholar
  38. Ehrlich, H. P. and T. Rittenberg. Differences in the mechanism for high- versus moderate-density fibroblast-populated collagen lattice contraction. J. Cell. Physiol. 185:432–439, 2000.Google Scholar
  39. Engelmayr, G. C. Jr, G. D. Papworth, S. C. Watkins, J. E. Mayer Jr, and M. S. Sacks. Guidance of engineered tissue collagen orientation by large-scale scaffold microstructures. J. Biomech. 39:1819–1831, 2006.Google Scholar
  40. Evans, M.C. Extension of the anisotropic biphasic theory to large strain and high cell concentrations. Doctoral Thesis. University of Minnesota, Minneapolis, MN 2007.Google Scholar
  41. Eschenhagen, T., C. Fink, U. Remmers, H. Scholz, J. Wattchow, J. Weil, W. Zimmermann, H. H. Dohmen, H. Schafer, N. Bishopric, T. Wakatsuki, and E. L. Elson. Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J. 11:683–694, 1997.Google Scholar
  42. Feng, Z., M. Yamato, T. Akutsu, T. Nakamura, T. Okano, and M. Umezu. Investigation on the mechanical properties of contracted collagen gels as a scaffold for tissue engineering. Artif. Organs 27:84–91, 2003.Google Scholar
  43. Ferrenq, I., L. Tranqui, B. Vailhe, P. Y. Gumery, and P. Tracqui. Modelling biological gel contraction by cells: mechanocellular formulation and cell traction force quantification. Acta Biotheor. 45:267–293, 1997.Google Scholar
  44. Findley, W., J. Lai, and K. Onaran. Creep and Relaxation of Nonlinear Viscoelastic Materials. Amsterdam: North Holland Publishing, 1976.MATHGoogle Scholar
  45. Fink, C., S. Ergun, D. Kralisch, U. Remmers, J. Weil, and T. Eschenhagen. Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J. 14:669–679, 2000.Google Scholar
  46. Fujiyama, C., Z. Masaki, and H. Sugihara. Reconstruction of the urinary bladder mucosa in three-dimensional collagen gel culture: fibroblast-extracellular matrix interactions on the differentiation of transitional epithelial cells. J. Urol. 153:2060–2067, 1995.Google Scholar
  47. Fung, Y. C. Biomechanics: Mechanical properties of living tissues. New York: Springer-Verlag, 1993, 568 pp.Google Scholar
  48. Galois, L., S. Hutasse, D. Cortial, C. F. Rousseau, L. Grossin, M. C. Ronziere, D. Herbage, and A. M. Freyria. Bovine chondrocyte behaviour in three-dimensional type I collagen gel in terms of gel contraction, proliferation and gene expression. Biomaterials 27:79–90, 2006.Google Scholar
  49. Garvin, J., J. Qi, M. Maloney, and A. J. Banes. Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng. 9:967–979, 2003.Google Scholar
  50. Gentleman, E., G. A. Livesay, K. C. Dee, and E. A. Nauman. Development of ligament-like structural organization and properties in cell-seeded collagen scaffolds in vitro. Ann. Biomed. Eng. 34:726–736, 2006a.Google Scholar
  51. Gentleman, E., E. A. Nauman, G. A. Livesay, and K. C. Dee. Collagen composite biomaterials resist contraction while allowing development of adipocytic soft tissue in vitro. Tissue Eng. 12:1639–1649, 2006b.Google Scholar
  52. Germain, L., F. A. Auger, E. Grandbois, R. Guignard, M. Giasson, H. Boisjoly, and S. L. Guerin. Reconstructed human cornea produced in vitro by tissue engineering. Pathobiology 67: 140–147, 1999.Google Scholar
  53. Girton, T. S., V. H. Barocas, and R. T. Tranquillo. Confined compression of a tissue-equivalent: collagen fibril and cell alignment in response to anisotropic strain. J. Biomech. Eng. 124: 568–575, 2002.Google Scholar
  54. Girton, T. S., T. R. Oegema, E. D. Grassl, B. C. Isenberg, and R. T. Tranquillo. Mechanisms of stiffening and strengthening in media-equivalents fabricated using glycation. J. Biomech. Eng. 122:216–223, 2000.Google Scholar
  55. Grassl, E. D., T. R. Oegema, and R. T. Tranquillo. A fibrin-based arterial media equivalent. J. Biomed. Mater. Res. A. 66:550–561, 2003.Google Scholar
  56. Grassl, E. D., T. R. Oegema, and R. T. Tranquillo. Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent. J. Biomed. Mater. Res. 60:607–612, 2002.Google Scholar
  57. Grinnell, F. and C. H. Ho. Transforming growth factor beta stimulates fibroblast-collagen matrix contraction by different mechanisms in mechanically loaded and unloaded matrices. Exp. Cell Res. 273:248–255, 2002.Google Scholar
  58. Grinnell, F. and C. R. Lamke. Reorganization of hydrated collagen lattices by human skin fibroblasts. J. Cell. Sci. 66:51–63, 1984.Google Scholar
  59. Grinnell, F., M. Zhu, M. A. Carlson, and J. M. Abrams. Release of mechanical tension triggers apoptosis of human fibroblasts in a model of regressing granulation tissue. Exp. Cell Res. 248:608–619, 1999.Google Scholar
  60. Gruber, H. E., J. A. Ingram, K. Leslie, H. J. Norton, and E. N. Hanley Jr. Cell shape and gene expression in human intervertebral disc cells: in vitro tissue engineering studies. Biotech. Histochem. 78:109–117, 2003.Google Scholar
  61. Gruber, H. E., K. Leslie, J. Ingram, H. J. Norton, and E. N. Hanley. Cell-based tissue engineering for the intervertebral disc: in vitro studies of human disc cell gene expression and matrix production within selected cell carriers. Spine J. 4:44–55, 2004.Google Scholar
  62. Guido, S. and R. T. Tranquillo. A methodology for the systematic and quantitative study of cell contact guidance in oriented collagen gels. Correlation of fibroblast orientation and gel birefringence. J. Cell. Sci. 105 (Pt 2):317–331, 1993.Google Scholar
  63. Guidry, C. and F. Grinnell. Contraction of hydrated collagen gels by fibroblasts: evidence for two mechanisms by which collagen fibrils are stabilized. Coll. Relat. Res. 6:515–529, 1987a.Google Scholar
  64. Guidry, C. and F. Grinnell. Heparin modulates the organization of hydrated collagen gels and inhibits gel contraction by fibroblasts. J. Cell Biol. 104:1097–1103, 1987b.Google Scholar
  65. Guidry, C. and F. Grinnell. Studies on the mechanism of hydrated collagen gel reorganization by human skin fibroblasts. J. Cell. Sci. 79:67–81, 1985.Google Scholar
  66. Guilak, F., D. L. Butler, S. A. Goldstein, and D. J. Mooney. Functional Tissue Engineering. New York: Springer-Verlag, 2003, 426 pp.Google Scholar
  67. Gullberg, D., A. Tingstrom, A. C. Thuresson, L. Olsson, L. Terracio, T. K. Borg, and K. Rubin. Beta 1 integrin-mediated collagen gel contraction is stimulated by PDGF. Exp. Cell Res. 186: 264–272, 1990.Google Scholar
  68. Harris, A. K., D. Stopak, and P. Wild. Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290:249–251, 1981.Google Scholar
  69. Holmes, D.F., M.J. Capaldi, and J.A. Chapman. Reconstitution of collagen fibrils in vitro; the assembly process depends on the initiating procedure. Int. J. Biol. Macromol 8: 161–166, 1986.Google Scholar
  70. Hsu, S., A. M. Jamieson, and J. Blackwell. Viscoelastic studies of extracellular matrix interactions in a model native collagen gel system. Biorheology 31:21–36, 1994.Google Scholar
  71. Huang, D., T. R. Chang, A. Aggarwal, R. C. Lee, and H. P. Ehrlich. Mechanisms and dynamics of mechanical strengthening in ligament-equivalent fibroblast-populated collagen matrices. Ann. Biomed. Eng. 21:289–305, 1993.Google Scholar
  72. Isenberg, B. C. and R. T. Tranquillo. Long-term cyclic distention enhances the mechanical properties of collagen-based media-equivalents. Ann. Biomed. Eng. 31:937–949, 2003.Google Scholar
  73. Iwasa, J., M. Ochi, Y. Uchio, K. Katsube, N. Adachi, and K. Kawasaki. Effects of cell density on proliferation and matrix synthesis of chondrocytes embedded in atelocollagen gel. Artif. Organs 27:249–255, 2003.Google Scholar
  74. Jhun, C., M. C. Evans, V. H. Barocas, and R. T. Tranquillo. Fiber re-orientation in planar biaxial loading of bioartificial tissues possessing prescribed alignment. Ann. Biomed. Eng., submitted 2008.Google Scholar
  75. Juncosa-Melvin, N., G. P. Boivin, M. T. Galloway, C. Gooch, J. R. West, and D. L. Butler. Effects of cell-to-collagen ratio in stem cell-seeded constructs for Achilles tendon repair. Tissue Eng. 12:681–689, 2006.Google Scholar
  76. Juncosa-Melvin, N., K. S. Matlin, R. W. Holdcraft, V. S. Nirmalanandhan, and D. L. Butler. Mechanical stimulation increases collagen type I and collagen type III gene expression of stem cell-collagen sponge constructs for patellar tendon repair. Tissue Eng. 13:1219–1226, 2007.Google Scholar
  77. Kadler, K. E., D. F. Holmes, J. A. Trotter, and J. A. Chapman. Collagen fibril formation. Biochem. J. 316 (Pt 1):1–11, 1996.Google Scholar
  78. Kanda, K. and T. Matsuda. Mechanical stress-induced orientation and ultrastructural change of smooth muscle cells cultured in three-dimensional collagen lattices. Cell Transplant. 3:481–492, 1994.Google Scholar
  79. Knapp, D. M., V. H. Barocas, A. G. Moon, K. Yoo, L. R. Petzold, and R. T. Tranquillo. Rheology of reconstituted type I collagen gel in confined compression. J. Rheol. 41:971–993, 1997.Google Scholar
  80. Kolodney, M. S. and R. B. Wysolmerski. Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study. J. Cell Biol. 117:73–82, 1992.Google Scholar
  81. Krishnan, L., J. A. Weiss, M. D. Wessman, and J. B. Hoying. Design and application of a test system for viscoelastic characterization of collagen gels. Tissue Eng. 10:241–252, 2004.Google Scholar
  82. Kuntz, R. M. and W. M. Saltzman. Neutrophil motility in extracellular matrix gels: mesh size and adhesion affect speed of migration. Biophys. J. 72:1472–1480, 1997.Google Scholar
  83. Langelier, E., D. Rancourt, S. Bouchard, C. Lord, P. P. Stevens, L. Germain, and F. A. Auger. Cyclic traction machine for long-term culture of fibroblast-populated collagen gels. Ann. Biomed. Eng. 27:67–72, 1999.Google Scholar
  84. Lauer-Fields, J. L., D. Juska, and G. B. Fields. Matrix metalloproteinases and collagen catabolism. Biopolymers 66:19–32, 2002.Google Scholar
  85. Lee, C. H., A. Singla, and Y. Lee. Biomedical applications of collagen. Int. J. Pharm. 221:1–22, 2001.Google Scholar
  86. L’Heureux, N., L. Germain, R. Labbe, and F. A. Auger. In vitro construction of a human blood vessel from cultured vascular cells: a morphologic study. J. Vasc. Surg. 17:499–509, 1993.Google Scholar
  87. Lopez Valle, C. A., F. A. Auger, P. Rompre, V. Bouvard, and L. Germain. Peripheral anchorage of dermal equivalents. Br. J. Dermatol. 127:365–371, 1992.Google Scholar
  88. Marquez, J. P., G. M. Genin, G. I. Zahalak, and E. L. Elson. The relationship between cell and tissue strain in three-dimensional bio-artificial tissues. Biophys. J. 88:778–789, 2005.Google Scholar
  89. Mauch, C., B. Adelmann-Grill, A. Hatamochi, and T. Krieg. Collagenase gene expression in fibroblasts is regulated by a three-dimensional contact with collagen. FEBS Lett. 250: 301–305, 1989.Google Scholar
  90. Mauck, R. L., S. L. Seyhan, G. A. Ateshian, and C. T. Hung. Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann Biomed Eng 30:1046–1056., 2002.Google Scholar
  91. Minami, Y., H. Sugihara, and S. Oono. Reconstruction of cornea in three-dimensional collagen gel matrix culture. Invest. Ophthalmol. Vis. Sci. 34:2316–2324, 1993.Google Scholar
  92. Mochitate, K., P. Pawelek, and F. Grinnell. Stress relaxation of contracted collagen gels: disruption of actin filament bundles, release of cell surface fibronectin, and down-regulation of DNA and protein synthesis. Exp. Cell Res. 193:198–207, 1991.Google Scholar
  93. Moon, A. G. and R. T. Tranquillo. Fibroblast-populated collagen microsphere assay of cell traction force: part 1. continuum model. AIChE J. 39:163–177, 1993.Google Scholar
  94. Mow, V. C., S. C. Kuei, W. M. Lai, and C. G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments. J. Biomech. Eng. 102: 73–84., 1980.Google Scholar
  95. Nakagawa, S., P. Pawelek, and F. Grinnell. Long-term culture of fibroblasts in contracted collagen gels: effects on cell growth and biosynthetic activity. J. Invest. Dermatol. 93: 792–798, 1989.Google Scholar
  96. Neidert, M. R., E. S. Lee, T. R. Oegema, and R. T. Tranquillo. Enhanced fibrin remodeling in vitro with TGF-beta1, insulin and plasmin for improved tissue-equivalents. Biomaterials 23: 3717–3731, 2002.Google Scholar
  97. Neidert, M. R. and R. T. Tranquillo. Tissue-engineered valves with commissural alignment. Tissue. Eng. 12:891–903, 2006.Google Scholar
  98. Newman, S., M. Cloitre, C. Allain, G. Forgacs, and D. Beysens. Viscosity and elasticity during collagen assembly in vitro: relevance to matrix-driven translocation. Biopolymers 41: 337–347, 1997.Google Scholar
  99. Nirmalanandhan, V. S., M. S. Levy, A. J. Huth, and D. L. Butler. Effects of cell seeding density and collagen concentration on contraction kinetics of mesenchymal stem cell-seeded collagen constructs. Tissue Eng. 12:1865–1872, 2006.Google Scholar
  100. Noguchi, T., M. Oka, M. Fujino, M. Neo, and T. Yamamuro. Repair of osteochondral defects with grafts of cultured chondrocytes. Comparison of allografts and isografts. Clin. Orthop: 251–258, 1994.Google Scholar
  101. Nusgens, B., C. Merrill, C. Lapiere, and E. Bell. Collagen biosynthesis by cells in a tissue equivalent matrix in vitro. Coll. Relat. Res. 4:351–363, 1984.Google Scholar
  102. Ohsumi, T. K., J. E. Flaherty, M. C. Evans, and V. H. Barocas. Three-dimensional simulation of anisotropic cell-driven collagen gel compaction. Biomech. Model. Mechanobiol, 7: 53–62, 2007.Google Scholar
  103. Okano, T. and T. Matsuda. Hybrid muscular tissues: preparation of skeletal muscle cell-incorporated collagen gels. Cell Transplant. 6:109–118, 1997.Google Scholar
  104. Okano, T., S. Satoh, T. Oka, and T. Matsuda. Tissue engineering of skeletal muscle. Highly dense, highly oriented hybrid muscular tissues biomimicking native tissues. ASAIO J. 43: M749–M753, 1997.Google Scholar
  105. Orban, J. M., L. B. Wilson, J. A. Kofroth, M. S. El-Kurdi, T. M. Maul, and D. A. Vorp. Crosslinking of collagen gels by transglutaminase. J. Biomed. Mater. Res. A. 68:756–762, 2004.Google Scholar
  106. Osborne, C. S., J. C. Barbenel, D. Smith, M. Savakis, and M. H. Grant. Investigation into the tensile properties of collagen/chondroitin-6-sulphate gels: the effect of crosslinking agents and diamines. Med. Biol. Eng. Comput. 36:129–134, 1998.Google Scholar
  107. Ozerdem, B. and A. Tozeren. Physical response of collagen gels to tensile strain. J. Biomech. Eng. 117:397–401, 1995.Google Scholar
  108. Parekh, A. and D. Velegol. Collagen gel anisotropy measured by 2-D laser trap microrheometry. Ann. Biomed. Eng. 35:1231–1246, 2007.Google Scholar
  109. Parsons, J. W. and R. N. Coger. A new device for measuring the viscoelastic properties of hydrated matrix gels. J. Biomech. Eng. 124:145–154, 2002.Google Scholar
  110. Pedersen, J. A., F. Boschetti, and M. A. Swartz. Effects of extracellular fiber architecture on cell membrane shear stress in a 3D fibrous matrix. J. Biomech. 40:1484–1492, 2007.Google Scholar
  111. Pedersen, J. A. and M. A. Swartz. Mechanobiology in the third dimension. Ann. Biomed. Eng. 33:1469–1490, 2005.Google Scholar
  112. Pizzo, A. M., K. Kokini, L. C. Vaughn, B. Z. Waisner, and S. L. Voytik-Harbin. Extracellular matrix (ECM) microstructural composition regulates local cell-ECM biomechanics and fundamental fibroblast behavior: a multidimensional perspective. J. Appl. Physiol. 98: 1909–1921, 2005.Google Scholar
  113. Prajapati, R. T., B. Chavally-Mis, D. Herbage, M. Eastwood, and R. A. Brown. Mechanical loading regulates protease production by fibroblasts in three-dimensional collagen substrates. Wound Repair Regen. 8:226–237, 2000.Google Scholar
  114. Pryse, K. M., A. Nekouzadeh, G. M. Genin, E. L. Elson, and G. I. Zahalak. Incremental mechanics of collagen gels: new experiments and a new viscoelastic model. Ann. Biomed. Eng. 31:1287–1296, 2003.Google Scholar
  115. Raub, C. B., V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George. Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy. Biophys. J. 92:2212–2222, 2007.Google Scholar
  116. Redden, R. A. and E. J. Doolin. Collagen crosslinking and cell density have distinct effects on fibroblast-mediated contraction of collagen gels. Skin Res. Technol. 9:290–293, 2003.Google Scholar
  117. Roche, S., M. C. Ronziere, D. Herbage, and A. M. Freyria. Native and DPPA cross-linked collagen sponges seeded with fetal bovine epiphyseal chondrocytes used for cartilage tissue engineering. Biomaterials 22:9–18., 2001.Google Scholar
  118. Roeder, B. A., K. Kokini, J. P. Robinson, and S. L. Voytik-Harbin. Local, three-dimensional strain measurements within largely deformed extracellular matrix constructs. J. Biomech. Eng. 126:699–708, 2004.Google Scholar
  119. Roeder, B. A., K. Kokini, J. E. Sturgis, J. P. Robinson, and S. L. Voytik-Harbin. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J. Biomech. Eng. 124:214–222, 2002.Google Scholar
  120. Rosenfeldt, H. and F. Grinnell. Fibroblast quiescence and the disruption of ERK signaling in mechanically unloaded collagen matrices. J. Biol. Chem. 275:3088–3092, 2000.Google Scholar
  121. Rowe, S. L., S. Lee, and J. P. Stegemann. Influence of thrombin concentration on the mechanical and morphological properties of cell-seeded fibrin hydrogels. Acta Biomater. 3: 59–67, 2007.Google Scholar
  122. Roy, P., W. M. Petroll, H. D. Cavanagh, C. J. Chuong, and J. V. Jester. An in vitro force measurement assay to study the early mechanical interaction between corneal fibroblasts and collagen matrix. Exp. Cell Res. 232:106–117, 1997.Google Scholar
  123. Ruberti, J. and N. Hallab. Strain-controlled enzymatic cleavage of collagen in loaded matrix. Biochem. Biophys. Res. Commun. 336:483–489, 2005.Google Scholar
  124. Sawhney, R. K. and J. Howard. Slow local movements of collagen fibers by fibroblasts drive the rapid global self-organization of collagen gels. J. Cell Biol. 157:1083–1091, 2002.Google Scholar
  125. Seliktar, D., R. A. Black, R. P. Vito, and R. M. Nerem. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann. Biomed. Eng. 28:351–362, 2000.Google Scholar
  126. Seliktar, D., R. M. Nerem, and Z. S. Galis. Mechanical strain-stimulated remodeling of tissue-engineered blood vessel constructs. Tissue Eng. 9:657–666, 2003.Google Scholar
  127. Seliktar, D., R. M. Nerem, and Z. S. Galis. The role of matrix metalloproteinase-2 in the remodeling of cell-seeded vascular constructs subjected to cyclic strain. Ann. Biomed. Eng. 29:923–934, 2001.Google Scholar
  128. Sheu, M. T., J. C. Huang, G. C. Yeh, and H. O. Ho. Characterization of collagen gel solutions and collagen matrices for cell culture. Biomaterials 22:1713–1719, 2001.Google Scholar
  129. Shi, Y., R. Iyer, A. Soundararajan, D. Dobkin, and I. Vesely. Collagen-based tissue engineering as applied to heart valves. Conf. Proc. IEEE Eng. Med. Biol. Soc. 5:4912–4915, 2005.Google Scholar
  130. Shi, Y., L. Rittman, and I. Vesely. Novel geometries for tissue-engineered tendonous collagen constructs. Tissue Eng. 12:2601–2609, 2006.Google Scholar
  131. Shi, Y. and I. Vesely. Fabrication of mitral valve chordae by directed collagen gel shrinkage. Tissue Eng. 9:1233–1242, 2003.Google Scholar
  132. Shreiber, D. I., P. A. Enever, and R. T. Tranquillo. Effects of pdgf-bb on rat dermal fibroblast behavior in mechanically stressed and unstressed collagen and fibrin gels. Exp. Cell Res. 266:155–166, 2001.Google Scholar
  133. Silver, F. H., J. W. Freeman, and G. P. Seehra. Collagen self-assembly and the development of tendon mechanical properties. J. Biomech. 36:1529–1553, 2003.Google Scholar
  134. Soltz, M. A. and G. A. Ateshian. Interstitial fluid pressurization during confined compression cyclical loading of articular cartilage. Ann. Biomed. Eng. 28:150–159, 2000.Google Scholar
  135. Stegemann, J. P. and R. M. Nerem. Phenotype modulation in vascular tissue engineering using biochemical and mechanical stimulation. Ann. Biomed. Eng. 31:391–402, 2003.Google Scholar
  136. Stenzel, K. H., T. Miyata, and A. L. Rubin. Collagen as a biomaterial. Annu. Rev. Biophys. Bioeng. 3:231–253, 1974.Google Scholar
  137. Stopak, D. and A. K. Harris. Connective tissue morphogenesis by fibroblast traction. I. Tissue culture observations. Dev. Biol. 90:383–398, 1982.Google Scholar
  138. Stylianopoulos, T. and V. H. Barocas. Volume-averaging theory for the study of the mechanics of collagen networks. Comput. Methods Appl. Mech. Eng. 196:2981–2990, 2007.MATHMathSciNetGoogle Scholar
  139. Thie, M., W. Schlumberger, R. Semich, J. Rauterberg, and H. Robenek. Aortic smooth muscle cells in collagen lattice culture: effects on ultrastructure, proliferation and collagen synthesis. Eur. J. Cell Biol. 55:295–304, 1991.Google Scholar
  140. Tomasek, J. J., C. J. Haaksma, R. J. Eddy, and M. B. Vaughan. Fibroblast contraction occurs on release of tension in attached collagen lattices: dependency on an organized actin cytoskeleton and serum. Anat. Rec. 232:359–368, 1992.Google Scholar
  141. Tower, T. T., M. R. Neidert, and R. T. Tranquillo. Fiber alignment imaging during mechanical testing of soft tissues. Ann. Biomed. Eng. 30:1221–1233, 2002.Google Scholar
  142. Tranquillo, R. T. Self-organization of tissue-equivalents: the nature and role of contact guidance. Biochem. Soc. Symp. 65:27–42, 1999.Google Scholar
  143. Tranquillo, R. T., T. S. Girton, B. A. Bromberek, T. G. Triebes, and D. L. Mooradian. Magnetically orientated tissue-equivalent tubes: application to a circumferentially orientated media-equivalent. Biomaterials 17:349–357, 1996.Google Scholar
  144. Velegol, D. and F. Lanni. Cell traction forces on soft biomaterials. I. Microrheology of type I collagen gels. Biophys. J. 81:1786–1792, 2001.Google Scholar
  145. Voytik-Harbin, S. L., B. A. Roeder, J. E. Sturgis, K. Kokini, and J. P. Robinson. Simultaneous mechanical loading and confocal reflection microscopy for three-dimensional microbiomechanical analysis of biomaterials and tissue constructs. Microsc. Microanal. 9: 74–85,2003.Google Scholar
  146. Wagenseil, J. E., E. L. Elson, and R. J. Okamoto. Cell orientation influences the biaxial mechanical properties of fibroblast populated collagen vessels. Ann. Biomed. Eng. 32:720–731, 2004.Google Scholar
  147. Wagenseil, J. E., T. Wakatsuki, R. J. Okamoto, G. I. Zahalak, and E. L. Elson. One-dimensional viscoelastic behavior of fibroblast populated collagen matrices. J. Biomech. Eng. 125:719–725, 2003.Google Scholar
  148. Wakatsuki, T. and E. L. Elson. Reciprocal interactions between cells and extracellular matrix during remodeling of tissue constructs. Biophys. Chem. 100:593–605, 2003.Google Scholar
  149. Wakatsuki, T., M. S. Kolodney, G. I. Zahalak, and E. L. Elson. Cell mechanics studied by a reconstituted model tissue. Biophys. J. 79:2353–2368, 2000.Google Scholar
  150. Wakitani, S., T. Goto, R. G. Young, J. M. Mansour, V. M. Goldberg, and A. I. Caplan. Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue Eng. 4:429–444, 1998.Google Scholar
  151. Weinberg, C. B. and E. Bell. A blood vessel model constructed from collagen and cultured vascular cells. Science 231:397–400, 1986.Google Scholar
  152. Wille, J. J., E. L. Elson, and R. J. Okamoto. Cellular and matrix mechanics of bioartificial tissues during continuous cyclic stretch. Ann. Biomed. Eng. 34:1678–1690, 2006.Google Scholar
  153. Williams, C., S. L. Johnson, P. S. Robinson, and R. T. Tranquillo. Cell Sourcing and Culture Conditions for Fibrin-Based Valve Constructs. Tissue Eng. 12:1489–1502, 2006.Google Scholar
  154. Wood, G. C. and M. K. Keech. The formation of fibrils from collagen solutions. 1. The effect of experimental conditions: kinetic and electron-microscope studies. Biochem. J. 75:588–598, 1960.Google Scholar
  155. Wu, C. C., S. J. Ding, Y. H. Wang, M. J. Tang, and H. C. Chang. Mechanical properties of collagen gels derived from rats of different ages. J. Biomater. Sci. Polym. Ed. 16:1261–1275,2005.Google Scholar
  156. Yamamura, N., R. Sudo, M. Ikeda, and K. Tanishita. Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells. Tissue Eng. 13:1443–1453, 2007.Google Scholar
  157. Yannas, I. V., E. Lee, D. P. Orgill, E. M. Skrabut, and G. F. Murphy. Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci U S A 86:933–937., 1989.Google Scholar
  158. Zahalak, G. I., J. E. Wagenseil, T. Wakatsuki, and E. L. Elson. A cell-based constitutive relation for bio-artificial tissues. Biophys. J. 79:2369–2381, 2000.Google Scholar
  159. Zhu, Y. K., T. Umino, X. D. Liu, H. J. Wang, D. J. Romberger, J. R. Spurzem, and S. I. Rennard. Contraction of fibroblast-containing collagen gels: initial collagen concentration regulates the degree of contraction and cell survival. In Vitro Cell. Dev. Biol. Anim. 37:10–16, 2001.Google Scholar
  160. Ziegler, T., R. W. Alexander, and R. M. Nerem. An endothelial cell-smooth muscle cell co-culture model for use in the investigation of flow effects on vascular biology. Ann. Biomed. Eng. 23:216–225, 1995.Google Scholar
  161. Zimmermann, W. H., C. Fink, D. Kralisch, U. Remmers, J. Weil, and T. Eschenhagen. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng 68:106–114, 2000.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • E.A. Sander
  • V.H. Barocas

There are no affiliations available

Personalised recommendations