Dentin, composed mainly of dahllite and fibrillar collagen, has a complex irregular microstructure. It has several distinct features such as micron-sized tubules that traverse the entire thickness, a large hollow pulp cavity and an external stiff cap. Dentin forms the foundation of teeth and provides a mechanical backing for the enamel cap. Being vital and highly innervated, it is a sensitive tissue, capable of responding to both mechanical and chemical stimulations from the environment. High permeability to fluid-flow through the tubules as well as a directional design suggest that dentin has sensory functions related to pressure that may be exerted on the outer surfaces.

Average mechanical properties have been reported for dentin: E = modulus of about 20 GPa, compressive and shear strengths amounting to 250 MPa whereas tensile strength is only about 50 MPa. Fracture toughness measurements found a range of 1.5 to 3.5,MPa√m, and work of fracture estimates span from 250 to 550 J/m2. Some anisotropy exists, yet values of all properties seen to vary with both location and orientation.

Much of the mineral in crown dentin is found in peritubular dentin-encircling tubules, where no collagen is found. Between tubules, intertubular dentin is seen as a mesh of mineralized collagen fibrils. Fibril arrangements are more regular in the root, where they are set in incremental layers, orthogonal to the tubules. In the crown however, many fibrils are arranged at angles to and also along the orientation of the tubules.

Various types including of dentin are known mantle dentin – confined to a narrow region beneath the junction with enamel and slow-forming secondary dentin – appearing over the years in the pulp; Non-normal dentin types such as reactionary/reparative dentin, interglobular dentin and caries display significant variations in their structure, resulting in altered mechanical properties.


Dentinal Tubule Human Tooth Oral Biol Root Dentin Human Dentin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arola, D. D., & Reprogel, R. K. (2006). Tubule orientation and the fatigue strength of human dentin. Biomaterials 27(9): 2131–2140.CrossRefGoogle Scholar
  2. Ash, M. M., & Nelson, S. J. (2003). Wheeler’s Dental Anatomy, Physiology and Occlusion (8 ed.). St. Louis: Saunders.Google Scholar
  3. Avery, J. K., Cox, C. F., & Chiego, D. J. (1984). Structural and physiologic aspects of dentin innervation. In A. Linde (Ed.), Dentin and Dentinogenesis (Vol. 1, pp. 19–46). Boca Raton: CRC Press.Google Scholar
  4. Beust, T. B. (1931). Physiologic changes in the dentin. J. Dent. Res. 11 267–275.Google Scholar
  5. Bevelander, G. (1941). The development and structure of the fiber system of dentin. Anat. Rec. 81(1): 79–97.CrossRefGoogle Scholar
  6. Braden, M. (1976). Biophysics of the tooth. In Y. Kawamura (Ed.), Physiology of Oral Tissues (Vol. 2, pp. 1–37). Basel, New York: S. Karger.Google Scholar
  7. Brear, K., Currey, J. D., Kingsley, M. C. S., & Ramsay, M. (1993). The mechanical design of the tusk of the narwhal (Monodon-Monoceros, Cetacea). J. Zool. 230: 411–423.Google Scholar
  8. Carr, A., Tibbetts, I. R., Kemp, A., Truss, R., & Drennan, J. (2006). Inferring parrotfish (Teleostei: Scaridae) pharyngeal mill function from dental morphology, wear, and microstructure. J. Morph. 267(10): 1147–1156.CrossRefGoogle Scholar
  9. Carvalho, R. M., Fernandes, C. A. O., Villanueva, R., Wang, L., & Pashley, D. H. (2001). Tensile strength of human dentin as a function of tubule orientation and density. J. Adhes. Dent. 3: 309–314.Google Scholar
  10. Craig, R., & Peyton, F. (1958). Elastic and mechanical properties of human dentin. J. Dent. Res. 37: 710–718.Google Scholar
  11. Crooks, P. V., Oreilly, C. B., & Owens, P. D. A. (1983). Microscopy of the dentin of enamel-free areas of rat molar teeth. Arch. Oral Biol. 28(2): 167–175.CrossRefGoogle Scholar
  12. Currey, J. D. (2002). Bones: Structure and Mechanics. Princeton: Princeton University Press.Google Scholar
  13. Currey, J. D., & Brear, K. (1990). Hardness, Young Modulus and Yield Stress in Mammalian Mineralized Tissues. J. Mater. Sci. Mater. Med. 1(1): 14–20.CrossRefGoogle Scholar
  14. Currey, J. D., Brear, K., & Zioupos, P. (1994). Dependence of mechanical properties on fiber angle in Narwhal tusk, a highly oriented biological composite. J. Biomech. 24: 57–61.Google Scholar
  15. Dean, M. C. (2006). Tooth microstructure tracks the pace of human life-history evolution. Proc. Royal Soc. B. 273(1603): 2799–2808.CrossRefGoogle Scholar
  16. Doerner, M. F., & Nix, W. D. (1986). A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1: 601–609.CrossRefGoogle Scholar
  17. Duncanson, M. G., & Korostoff, E. (1975). Compressive viscoelastic properties of human dentin.1. Stress-relaxation behavior. J. Dent. Res. 54(6): 1207–1212.Google Scholar
  18. El-Mowafy, O. M., & Watts, D. C. (1986). Fracture toughness of human dentin. J. Dent. Res. 65(5): 677–681.Google Scholar
  19. Eliades, G., Watts, D. C., & Eliades, T. (2005). Dental Hard Tissues and Bonding: Interfacial Phenomena and Related Properties. Berlin: Springer.Google Scholar
  20. Frank, R. M. (1965). Ultrastructure of human dentine. In H. Fleisch, H. J. J. Blackwood, M. Owen, M. P. Fleisch-Ronchetti (Eds.), Calcified Tissues: Proceedings of the Third European Symposium on Calcified Tissues Held at Davos (Switzerland), April 11th-16, 1965 1966 (PP. 259–272). Springer-Verlag Berlin, Heidelberg, New York.Google Scholar
  21. Garberoglio, R., & Brannstrom, M. (1976). Scanning electron-microscopic investigation of human dentinal tubules. Arch. Oral Biol. 21(6): 355–362.CrossRefGoogle Scholar
  22. Gebhardt, W. (1900). On the functional construction of some teeth. Arch. f. Entwcklngsged. Organ. 10(1): 135–243.CrossRefMathSciNetGoogle Scholar
  23. Gilmore, R. S., Pollack, R. P., & Katz, J. L. (1969). Elastic properties of bovine dentine and enamel. Arch. Oral Biol. 15(8): 787–796.CrossRefGoogle Scholar
  24. Goldberg, M., Septier, D., Lecolle, S., Chardin, H., Quintana, M. A., Acevedo, A. C., et al. (1995). Dental mineralization. Int. J. Dev. Biol. 39(1): 93–110.Google Scholar
  25. Goracci, G., Mori, G., & Baldi, M. (1999). Terminal end of human odontoblast process: a study using SEM and confocal microscopy. Clin. Oral. Invest. 3: 126–132.CrossRefGoogle Scholar
  26. Gotliv, B. A., Robach, J. S., & Veis, A. (2006). The composition and structure of bovine peritubular dentin: Mapping by time of flight secondary ion mass spectroscopy. J. Struct. Biol. 156(2): 320–333.CrossRefGoogle Scholar
  27. Haines, D. J. (1968). Physical properties of human tooth enamel and enamel sheath material under load. J. Biomech. 1(2): 117–125.CrossRefMathSciNetGoogle Scholar
  28. Ho, S. P., Balooch, M., Marshall, S. J., & Marshall, G. W. (2004). Local properties of a functionally graded interphase between cementum and dentin. J. Biomed. Mater. Res. A 70A(3): 480–489.Google Scholar
  29. Hood, J. A. A. (1991). Biomechanics of the intact, prepared and restored tooth: some clinical implications. Int. Dent. J. 41: 25–32.Google Scholar
  30. Imbeni, V., Kruzic, J. J., Marshall, G. W., Marshall, S. J., & Ritchie, R. O. (2005). The dentin–enamel junction and the fracture of human teeth. Nat. Mater. 4(3): 229–232.CrossRefGoogle Scholar
  31. Imbeni, V., Nalla, R. K., Bosi, C., Kinney, J. H., & Ritchie, R. O. (2002). In vitro fracture toughness of human dentin. J. Biomed. Mater. Res. 66(A): 1–9.Google Scholar
  32. Johnson, N. W., & Poole, D. F. G. (1967). Orientation of collagen fibres in rat dentine. Nature 213(5077): 695–696.CrossRefGoogle Scholar
  33. Jones, S. J., & Boyde, A. (1984). Ultrastructure of dentin and dentinogenesis. In A. Linde (Ed.), Dentin and Dentinogenesis (Vol. 1, pp. 81–134). Boca Raton: CRC Press.Google Scholar
  34. Karjalainen, S. (1984). Secondary and reparative dentin formation. In A. Linde (Ed.), Dentin and Dentinogenesis (Vol. 2, pp. 107–120). Boca Raton: CRC Press.Google Scholar
  35. Katz, J. L. (1971). Hard tissue as a composite material – bounds on the elastic behavior. J. Biomech. 4: 455–473.CrossRefGoogle Scholar
  36. Katz, J. L., Kinney, J. H., Spencer, P., Wang, Y., Fricke, B., Walker, M. P., et al. (2005). Elastic anisotropy of bone and dentitional tissues. J. Mater. Sci. Mater. Med. 16(9): 803–806.CrossRefGoogle Scholar
  37. Kinney, J. H., Balooch, M., Marshall, G. W., & Marshall, S. J. (1999). A micromechanics model of the elastic properties of human dentin. Arch. Oral. Biol. 44: 813–822.CrossRefGoogle Scholar
  38. Kinney, J. H., Balooch, M., Marshall, S., Marshall, G., & Weihs, T. (1996). Young’s modulus of human peritubular and intertubular dentine. Arch. Oral Biol. 41(1): 9–13.CrossRefGoogle Scholar
  39. Kinney, J. H., Gladden, J. R., Marshall, G. W., Marshall, S. J., So, J. H., & Maynard, J. D. (2004). Resonant ultrasound spectroscopy measurements of the elastic constants of human dentin. J. Biomech. 37(4):437–441.CrossRefGoogle Scholar
  40. Kinney, J. H., Marshall, S., & Marshall, G. (2003). The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature. Crit. Rev. Oral Biol. Med. 14(1): 13–29.Google Scholar
  41. Kinney, J. H., Nalla, R. K., Pople, J. A., Breunig, T. M., & Ritchie, R. O. (2005). Age-related transparent root dentin: mineral concentration, crystallite size, and mechanical properties. Biomaterials 26(16): 3363–3376.CrossRefGoogle Scholar
  42. Kinney, J. H., Pople, J. A., Driessen, C. H., Breuning, T. M., Marshall, G. W., & Marshall, S. J. (2001). Intrafibrillar mineral may be absent in detinogenesis imperfecta type II (DI-II), J. Dent. Res. 80(6):1555–1559.Google Scholar
  43. Kishen, A., Ramamurty, U., & Asundi, A. (2000). Experimental studies on the nature of property gradients in the human dentine. J. Biomed.Mater. Res. 51: 650–659.CrossRefGoogle Scholar
  44. Kramer, I. R. H. (1951). The distribution of collagen fibrils in the dentine matrix. Brit. Dent. J. 91: 1–7.Google Scholar
  45. Lees, S., & Rollins, F. R. (1972). Anisotropy in hard dental tissues. J. Biomech. 15(6): 557–566.CrossRefGoogle Scholar
  46. Lin, C. P., & Douglas, W. H. (1994). Structure–property relations and crack resistance at the bovine dentin–enamel junction. J. Dent. Res. 73(5): 1072–1078.Google Scholar
  47. Lin, C. P., Douglas, W. H., & Erlandsen, S. L. (1993). Scanning electron microscopy of type I collagen at the dentino-enamel junction of human teeth. J. Histochem. Cytochem. 41: 381–388.Google Scholar
  48. Linde, A. (1984). Dentin and Dentinogenesis. Boca Raton: CRC Press.Google Scholar
  49. Lovschall, H., Fejerskov, O., & Josephsen, K. (2002). Age-related and site-specific changes in the pulpodentinal morphology of rat molars. Arch. Oral Biol. 47(5): 361–367.CrossRefGoogle Scholar
  50. Lucas, P. W. (2004). Dental Functional Morphology: How Teeth Work. Cambridge: Cambridge University. press.Google Scholar
  51. MacDougall, M., Dong, J., & Acevedo, A. C. (2006). Molecular basis of human dentin diseases. Am. J. Med. Genet. 140A(23): 2536–2546.CrossRefGoogle Scholar
  52. Magloire, H., Couble, M.-L., Romeas, A., & Bleicher, F. (2004). Odontoblast primary cilia: facts and hypotheses. Cell Biol. Int. 28: 93–99.CrossRefGoogle Scholar
  53. Marshall, G. W., Habelitz, S., Gallagher, R., Balooch, M., Balooch, G., & Marshall, S. J. (2001). Nanomechanical properties of hydrated carious human dentin. J. Dent. Res. 80(8): 1768–1771.Google Scholar
  54. Marshall, G. W., Marshall, S. J., Kinney, J. H., & Balooch, M. (1997). The dentin substrate: structure and properties related to bonding. J.m Dent. 25(6): 441–458.CrossRefGoogle Scholar
  55. Meredith, N., Sheriff, M., Setchell, D., & Sivanson, S. (1996). Measurements of the microhardness and Young’s modulus of human enamel and dentin using an indentation technique. Arch. Oral. Biol. 41(6): 539–545.CrossRefGoogle Scholar
  56. Moss, M. L. (1974). Studies on dentin I: mantle dentin. Acta. Anat. 87 481–507.Google Scholar
  57. Murray, P. E., Stanley, H. R., Matthews, J. B., Sloan, A. J., & Smith, A. J. (2002). Age-related odontometric changes of human teeth. Oral Surg. Oral Med. Oral Pathol Oral Radiol Endod. 93(4): 474–482.CrossRefGoogle Scholar
  58. Nanci, A. (2003). Ten Cate’s Oral Histology: Development, Structure and Function (6th ed.). St. Louis: Mosby.Google Scholar
  59. Oi, T., Saka, H., & Ide, Y. (2004). Three-dimensional observation of pulp cavities in the maxillary first premolar tooth using micro-CT. Int. Endod. J. 37(1): 46–51.CrossRefGoogle Scholar
  60. Oliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6): 1564–1583.CrossRefGoogle Scholar
  61. Orban, B. (1929). The development of the dentin. J. Am. Dent. Assoc. 16(9): 1547–1586.Google Scholar
  62. Osborn, J. W. (1969). Dentin hardness and incisor wear in the beaver (Castor fiber). Acta. Anat. 72: 123–132.Google Scholar
  63. Palamara, J. E. A., Wilson, P. R., Thomas, C. D. L., & Messer, H. H. (2000). A new imaging technique for measuring the surface strains applied to dentine. J. Dent. 28(2): 141–146.CrossRefGoogle Scholar
  64. Paphangkorakit, J., & Osborn, J. W. (1998). Discrimination of hardness by human teeth apparently not involving periodontal receptors. Arch. Oral Biol. 43(1): 1–7.CrossRefGoogle Scholar
  65. Pashley, D. H. (1989). Dentin: a dynamic substrate: a review. Scanning Microsc. 3(1): 161–174.Google Scholar
  66. Pashley, D. H. (1996). Dynamics of the pulpo-dentin complex. Crit. Rev. Oral Biol. Med. 7(2): 104–133.Google Scholar
  67. Porter, A. E., Nalla, R. K., Minor, A., Jinschek, J. R., Kisielowski, C., Radmilovic, V., et al. (2005). A transmission electron microscopy study of mineralization in age-induced transparent dentin. Biomaterials 26(36): 7650–7660.CrossRefGoogle Scholar
  68. Rasmussen, S. T. (1984). Fracture properties of human teeth in proximity to the dentinoenamel junction. J. Dent. Res. 63: 1279–1283.Google Scholar
  69. Rasmussen, S. T., Patchin, R. E., Scott, D. B., & Heuer, A. H. (1976). Fracture properties of human enamel and dentin. J. Dent. Res. 55: 154–164.Google Scholar
  70. Rensberger, J. M. (2000). Pathways to functional differentiation in mammalian teeth. In M. F. Teaford, M. M. Smith & M. W. J. Ferguson (Eds.), Development, Function and Evolution of Teeth (pp. 252–268). Cambridge: Cambridge University Press.Google Scholar
  71. Renson, C. E., & Braden, M. (1971). The experimental deformation of human dentine by indenters. Arch. Oral Biol. 16: 563–572.CrossRefGoogle Scholar
  72. Renson, C. E., & Braden, M. (1975). Experimental determination of rigidity modulus, poissons ratio and elastic limit in shear of human dentin. Arch. Oral Biol. 20(1): 43.CrossRefGoogle Scholar
  73. Sasagawa, I. (2002). Mineralization patterns in elasmobranch fish. Microsc. Res. Tech.. 59(5): 396–407.CrossRefGoogle Scholar
  74. Sato, H., Kagayama, M., Sasano, Y., & Mayanagi, H. (2000). Distribution of interglobular dentine in human tooth roots. Cells Tissues Organs 166(1): 40–47.CrossRefGoogle Scholar
  75. Schmidt, W. J., & Keil, A. (1971). Polarizing Microscopy of Dental Tissues. Oxford: Pergamon Press.Google Scholar
  76. Schroeder, L., & Frank, R. (1985). High resolution transmission electron microscopy of adult human peritubular dentine. Cell Tissue Res. 242 449–451.CrossRefGoogle Scholar
  77. Smith, M. M., & Sansom, I. J. (2000). Evolutionary origins of dentine in the fossile record of early vertebrates: diversity, development and function. In M. F. Teaford, M. M. Smith & M. W. J. Ferguson (Eds.), Development, Function and Evolution of Teeth (pp. 65–81). Cambridge: Cambridge University Press.Google Scholar
  78. Stanford, J. W., Weigel, K. V., Pafenberger, G. C., & Sweeney, W. T. (1960). Compressive properties of hard tooth tissues and some restorative materials. J. Am. Dent. Assoc. 60(746–756).Google Scholar
  79. Takuma, S., & Eda, S. (1966). Structure and development of peritubular matrix in dentin. J. Dent. Res. 45(3P1S): 683–692.Google Scholar
  80. Tesch, W., Eidelman, N., Roschger, P., Goldenberg, F., Klaushofer, K., & Fratzl, P. (2001). Graded microstructure and mechanical properties of human crown dentin. Calcif. Tissue Int. 69: 147–157.CrossRefGoogle Scholar
  81. Tjaderhane, L., Larjava, H., Sorsa, T., Uitto, V. J., Larmas, M., & Salo, T. (1998). The activation and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions. J. Dent. Res. 77(8): 1622–1629.Google Scholar
  82. Tonami, K., & Takahashi, H. (1997). Effects of aging on tensile fatigue strength of bovine dentin. Dent. Mater. J. 16(2):156–169.Google Scholar
  83. Tronstad, L. (1972). Optical and microradiographic appearance of intact and worn human coronal dentin. Arch. Oral Biol. 17(5): 847–858.CrossRefGoogle Scholar
  84. Tsuchiya, M., Sasano, Y., Kagayama, M., & Watanabe, M. (2001). Characterization of interglobular dentin and Tomes’ granular layer in dog dentin using electron probe microanalysis in comparison with predentin. Calc. Tissue Int. 68(3): 172–178.CrossRefGoogle Scholar
  85. Urabe, I., Nakajima, M., Sano, H., & Tagami, J. (2000). Physical properties if the dentino-enamel junction region. Am. J. Dent. 13: 129–135.Google Scholar
  86. vanHoute, J. (1994). Role of microorganisms in caries etiology. J. Dent. Res. 73(3): 672–681.Google Scholar
  87. vanMeerbeek, B., Willems, G., Celis, J. P., Roos, J. R., Braem, M., Lambrechts, P., et al. (1993). Assessment by nano-indentation of the hardness and elasticity of the resin-dentin bonding area. J. Dent. Res. 72(10): 1434–1442.Google Scholar
  88. vonEbner, V. (1909). Ueber scheinbare und wirkliche Radiarfassern des Zahnbeines. Anat. Anz. 34: 289–309.Google Scholar
  89. Wang, R. (2005). Anisotropic fracture in bovine root and coronla dentin. Dent. Mater. 21: 429–436.CrossRefGoogle Scholar
  90. Wang, R., & Weiner, S. (1998a). Human root dentin: structural anisotropy and Vickers microhardness isotropy. Conn. Tissue Res. 39: 269–279.CrossRefGoogle Scholar
  91. Wang, R., & Weiner, S. (1998b). Strain-structure relations in human teeth using Moire fringes. J. Biomech. 31(2): 135–141.Google Scholar
  92. Watanabe, L. G., Marshall, G. W., & Marshall, S. J. (1996). Dentin shear strength: Effects of tubule orientation and intratooth location. Dent. Mater. 12(2): 109–115.CrossRefGoogle Scholar
  93. Waters, N. (1980). Some mechanical and physical properties of teeth. In Symposia of the Society for Experimental Biology. Mechanical Properties of Biological Materials. (Vol. 34, pp. 99–135). London: Cambridge University Press.Google Scholar
  94. Weber, D. F. (1968). Distribution of peritubular matrix in human coronal dentin. J. Morph. 126(4): 435–446.CrossRefGoogle Scholar
  95. Weber, D. F. (1974). Human dentin sclerosis – microradiographic survey. Arch. Oral Biol. 19(2): 163–169.CrossRefGoogle Scholar
  96. Weidenreich, F. (1925). Ueber den Bau und die Entwicklung des Zahnbeines in der Reihe der Wirbeltiere. Ztschr. f. Anat. u. Entwcklngsges. 76: 218.CrossRefGoogle Scholar
  97. Weiner, S., Veis, A., Beniash, E., Arad, T., Dillon, J. W., Sabsay, B., et al. (1999). Peritubular dentin formation: crystal organization and the macromolecular constituents in human teeth. J. Struct. Biol. 126(1): 27–41.Google Scholar
  98. Weiner, S., & Wagner, H. D. (1998). The material bone: structure–mechanical function relations. Ann. Rev. Mat. Sci. 28: 271–298.Google Scholar
  99. White, S. N., Paine, M. L., Lou, W., Sarikaya, M., Fong, H., Yu, Z., et al. (2000). The Dentin–enamel junction is a broad transitional zone uniting dissimilar bioceramic composites. J. Am. Chem. Soc. 83(1): 238–240.Google Scholar
  100. Xu, H. H. H., Smith, D. T., Jahanmir, S., Romberg, E., Kelly, J. R., Thompson, V. P., et al. (1998). Indentation damage and mechanical properties of human enamel and dentin. J. Dent. Res. 77(3): 472–480.CrossRefGoogle Scholar
  101. Zaslansky, P., Friesem, A. A., & Weiner, S. (2006a). Structure and mechanical properties of the soft zone separating bulk dentin and enamel in crowns of human teeth: Insight into tooth function. J. Struct. Biol. 153(2): 188–199.Google Scholar
  102. Zaslansky, P., Shahar, R., Friesem, A. A., & Weiner, S. (2006b). Relations between shape, materials properties, and function in biological materials using laser speckle interferometry: In situ tooth deformation. Adv. Funct. Mat. 16(15): 1925–1936.CrossRefGoogle Scholar
  103. Zaslansky, P., & Weiner, S. (2007). Design strategies of human teeth: biomechanical adaptations. In M. Epple & E. Bauerlein (Eds.), Handbook of Biomineralization: Medical and Clinical Aspects (pp. 183–202). Weinheim: WILEY-VCH.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • P. Zaslansky

There are no affiliations available

Personalised recommendations