Collagen pp 397-420 | Cite as

Collagen and the Mechanical Properties of Bone and Calcified Cartilage

  • J. Currey


In bone type I collagen is mineralized by very small crystals of carbonated hydroxyapatite. There is usually some water present. These three materials together produce a composite whose mechanical properties are unlike that of any of the constituents. The mechanical behavior of bone is not strange and will eventually be explained in terms of standard composite theory. However, that time is not yet, particularly because there is still considerable dispute about some fundamental features of bone, for instance the size and shape of the mineral crystals and their topographical relationship to the collagen. Calcified cartilage, made by the calcification of type II collagen, is the stiff structural element in the skeleton of many chondrichthyean fish. It shows interesting similarities to and differences from bone.


Cancellous Bone Osteogenesis Imperfecta Compact Bone Mineral Crystal Bony Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander RMcN (1981) Factors of safety in the structure of mammals. Sci Prog 67:109–130.Google Scholar
  2. Almer JD, Stock SR (2005) Internal strains and stresses measured in cortical bone via high-energy X-ray diffraction. J Struct Biol 152:14–27.CrossRefGoogle Scholar
  3. Almer JD, Stock SR (2007) Micromechanical responses of mineral and collagen phases in bone. J Struct Biol 157:365–370.CrossRefGoogle Scholar
  4. Bailey AJ, Sims TJ, Ebbesen EN, Mansell JP, Thomsen JS, Mosekilde Li (1999) Age-related changes in the biochemical properties of human cancellous bone collagen: relationship to bone strength. Calcif Tissue Int 65:203–210.Google Scholar
  5. Bailey AJ, Sims TJ, Knott L (2002) Phenotypic expression of osteoblast collagen in osteoarthritic bone: production of type I homotrimer. Int J Biochem Cell Biol 34:176–182.CrossRefGoogle Scholar
  6. Ballarini R, Kayacan R, Ulm F-J, Belytschko T, Heuer AH (2005) Biological structures mitigate catastrophic fracture through various strategies. Int J Fract 135:187–197.CrossRefGoogle Scholar
  7. Bini F, Marinozzi A, Marinozzi F, Patané F (2002) Microtensile measurements of single trabeculae stiffness in human femur. J Biomech 35:1515–1519.CrossRefGoogle Scholar
  8. Blob RW, Bewiener AA (1999) In vivo locomotor strain in the hindlimb bones of Alligator mississipiensis and Iguana iguana: implications for the evolution of limb bone safety factor and non-sprawling limb posture. J Exp Biol 202:1023–1246.Google Scholar
  9. Burr DB, Martin RB, Schaffler MB, Radin EL (1985) Bone remodeling in response to in vivo fatigue microdamage. J Biomech 18:189–200.CrossRefGoogle Scholar
  10. Caler WE, Carter DR (1989) Bone creep-fatigue damage accumulation. J Biomech 22:635–635.CrossRefGoogle Scholar
  11. Cezayirlioglu H, Bahniuk E, Davy DT, Heiple KG (1985) Anisotropic yield behavior of bone under combined axial force and torque. J Biomech 18:61–69.CrossRefGoogle Scholar
  12. Currey JD (1979) Mechanical properties of bone tissues with greatly differing functions. J Biomech 12:313–319.CrossRefGoogle Scholar
  13. Currey JD (1999) What determines the bending strength of compact bone? J Exp Biol 202: 2495–2503.Google Scholar
  14. Currey JD (2002) Bones: Structure and Mechanics. Princeton, Princeton University Press.Google Scholar
  15. Currey J (2004) Incompatible mechanical properties in compact bone. J Theor Biol 231:569–580.CrossRefGoogle Scholar
  16. Currey JD, Abeysekera RM (2003) The microhardness and fracture surface of the petrodentine of Lepidosiren (Dipnoi), and of other mineralised tissues. Arch Oral Biol 48:439–447.CrossRefGoogle Scholar
  17. Currey JD, Zioupos P, Davies P, Casinos A. (2001) Mechanical properties of nacre and highly mineralized bone. Proc R Soc Lond B 268:107–111.CrossRefGoogle Scholar
  18. Currey JD, Brear K, Zioupos P (2004) Notch sensitivity of mammalian mineralized tissues in impact. Proc R Soc Lond B Biol Sci 271:517–522.CrossRefGoogle Scholar
  19. Dean MN Summers AP (2006) Mineralized cartilage in the skeleton of chondrichthyean fishes. Zoology 109:164–168.CrossRefGoogle Scholar
  20. Dean MN, Huber DR, Nance HA (2006) Functional morphology of jaw trabeculation in the lesser electric ray Narcine brasiliensis, with comments on the evolution of structural support in the Batoidea. J Morph 267:1137–1146.CrossRefGoogle Scholar
  21. de Buffrénil V, Dabin W, Zylberberg L (2004) Histology and growth of the cetacean petro-tympanic bone complex. J Zool 262:371–381.CrossRefGoogle Scholar
  22. Donoghue PCJ, Sansom IJ, Downs JP (2006) Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development. J Exp Zool B Mol Dev Evol 306B:278–294.CrossRefGoogle Scholar
  23. Francillon-Vieillot H, de Buffrénil V, Castanet J, Géraudie J, Meunier FJ, Sire JY, Zylberberg L, de Riqlès A (1990) Microstructure and mineralization of vertebrate skeletal tissues. In Carter (1990), Vol. I, pp. 471–530.Google Scholar
  24. Fritsch A, Hellmich C (2007) ‘Universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. J Theor Biol 244:597–620.CrossRefGoogle Scholar
  25. Fujisaki K, Tadano S (2007) Relationship between bone tissue strain and lattice strain of HAp crystals in bovine cortical bone under tensile loading. J Biomech 40:1832–1838.CrossRefGoogle Scholar
  26. Gao H, Baohua JI, Jäger IL, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: Lessons from nature. PNAS 100:5597–5600.CrossRefGoogle Scholar
  27. Grabner B, Landis WJ, Roschger P, Rinnerthaler S, Peterlik H, Klaushofer K, Fratzl P (2001) Age- and genotype-dependence of bone material properties in the osteogenesis imperfecta murine model (oim). Bone 29:453–457.CrossRefGoogle Scholar
  28. Gupta HS, Seto J, Wagermaier W, Zaslansky P, Boeseke P, Fratzl P (2006) Cooperative deformation of mineral and collagen in bone at the nanoscale. PNAS 103:17741–17746.CrossRefGoogle Scholar
  29. Hellmich CH, Ulm FJ (2002) Are mineralized tissues open crystal foams reinforced by crosslinked collagen? some energy arguments. J Biomech 35:1199–1212.CrossRefGoogle Scholar
  30. Hodgskinson R, Currey JD (1992) Young’s modulus, density and material properties in cancellous bone over a large density range. J Mater Sci Mater Med 3:377–381.CrossRefGoogle Scholar
  31. Horton WA, Dwyer C, Goering R, Dean DC (1983) Immunohistochemistry of type I and type II collagen in undecalcified skeletal tissues. J Histochem Cytochem 31:417–425.Google Scholar
  32. Jäger I, Fratzl P (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J 79:1737–1746.Google Scholar
  33. Jepsen KJ, Goldstein SA, Kuhn JL, Schaffler MB, Bonadio J (1996) Type-I collagen mutation compromises the post-yield behavior of Mov13 long bone. J Orthop Res 14:493–499.CrossRefGoogle Scholar
  34. Katz JL (1971) Hard tissue as a composite material. I. Bounds on the elastic behavior. J Biomech 4:455–473.CrossRefGoogle Scholar
  35. Kawasaki K, Suzuki T, Weiss KM (2004) Genetic basis for the evolution of vertebrate mineralized tissue. PNAS 101:11356–11361.CrossRefGoogle Scholar
  36. Kim JH, Niinomi M, Akahori T, Toda H 2007 Fatigue properties of bovine compact bones that have different microstructures. Int J Fatigue 29:1039–1050CrossRefMATHGoogle Scholar
  37. Knese K-H (1958) Knochensruktur als Verbundbau. In: Zwanaglose Abhandlungen aus dem Gebiet der normalen und pathologischen Anatomie. Editors W Bargmann, DW Stuttgart. Georg Thieme, pp. 1–56.Google Scholar
  38. Knott L, Bailey AJ (1998) Collagen cross-links in mineralizing tissues: a review of their chemistry, function and clinical relevance. Bone 22:181–187.CrossRefGoogle Scholar
  39. Landis WJ, Hodgens KJ, Arena J, Song MJ, McEwen BF (1996) Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc Res Tech 33:192–202.CrossRefGoogle Scholar
  40. Luchinetti E (2001) Composite models of bone properties. In: Bone Mechanics Handbook. Editor S.C. Cowin. CRC Press, Boca Raton, pp. 12–19.Google Scholar
  41. Misof K, Landis WJ, Klaushofer K, Fratzl P (1997) Collagen from the osteogenesis imperfecta mouse model (oim) shows reduced resistance against tensile stress. J Clin Invest 100: 40–45.CrossRefGoogle Scholar
  42. Nian-Zhong W, Donoghue PCJ, Smith MM, Sansom IJ (2005) Histology of the galeaspid dermoskeleton and endoskeleton, and the origin and early evolution of the vertebrate cranial endoskeleton. J Vert Paleont 25:745–756.CrossRefGoogle Scholar
  43. Nicolella DP, Moravits DE, Gale AM, Bonewald LF, Lankford J (2006) Osteocyte lacunae strain in cortical bone. J Biomech 39:1735–1743.CrossRefGoogle Scholar
  44. O’Brien FJ, Taylor D, Lee TC (2007) Bone as a composite material: the role of osteons as barriers to crack growth in compact bone. Int J Fatigue 29:1051–1056.CrossRefMATHGoogle Scholar
  45. Odetti P, Aragno I, Rolandi R, Garibaldi S, Valentini S, Cosso L, Traverso N, Cottalasso D, Pronzato MA, Marinari UM (2000) Scanning force microscopy reveals structural alterations in diabetic rat collagen fibrils: role of protein glycation. Diabetes Metab Res Rev 16:74–81.CrossRefGoogle Scholar
  46. Ou-Yang H, Paschalis EP, Boskey AL, Mendelsohn R (2002) Chemical structure-based three-dimensional reconstruction of human cortical bone from two-dimensional infrared images. Appl Spectrosc 56:419–422.CrossRefGoogle Scholar
  47. Paul RG, Bailey AJ (1996) Glycation of collagen: the basis of its central role in the late complications of ageing and diabetes. Int J Biochem Cell Biol 28:1297–1310.CrossRefGoogle Scholar
  48. Pidaparti RMV, Chandran A, Takano Y, Turner CH (1996) Bone mineral lies mainly outside collagen fibrils: predictions of a composite model for osteonal bone. J Biomech 29:909–916.CrossRefGoogle Scholar
  49. Porter ME, Beltrán JL, Koob TJ, Summers AP (2006) Material properties and biochemical composition of mineralized vertebral cartilage in seven elasmobranch species (Chondrichthyes). J Exp Biol 209:2920–2928.CrossRefGoogle Scholar
  50. Reif WE (2002) Evolution of the dermal skeleton of vertebrates: concepts and methods. Neues Jahrb Geol Palaontol Abh 223:53–78.Google Scholar
  51. Reilly DT, Burstein AH (1975) The elastic and ultimate properties of compact bone tissue. J Biomech 8:393–405.CrossRefGoogle Scholar
  52. Rho JY, Zioupos P, Currey JD, Pharr GM (1999) Variations in the individual thick lamellar properties within osteons by nanoindentation. Bone 25:295–300.CrossRefGoogle Scholar
  53. Rice JC, Cowin SC, Bowman JA (1988) On the dependence of elasticity and strength of cancellous bone on apparent density. J Biomech 21:155–168.CrossRefGoogle Scholar
  54. Rogers KD, Zioupos P (1999) The bone tissue of the rostrum of a Mesoplodon densirostris whale: a mammalian biomineral demonstrating extreme texture. J Mater Sci Lett 18:51–654.CrossRefGoogle Scholar
  55. Sasagawa I, Ishiyama M, Akai J (2006) Cellular influence in the formation of enameloid during odontogenesis in bony fishes. Mat Sci Engng C Biomimet Supramolec Syst 26:630–634.Google Scholar
  56. Sasaki N, Ikawa T, Fukuda A (1991) Orientation of mineral in bovine bone and the anisotropic mechanical properties of plexiform bone. J Biomech 24:57–61.CrossRefGoogle Scholar
  57. Sasaki N, Tagami A, Goto T, Taniguchi M, Nakata M, Hikichi K (2002) Atomic force microscopic studies on the structure of bovine femoral cortical bone at the collagen fibril-mineral level. J Mater Sci Mater Med 13:333–337.CrossRefGoogle Scholar
  58. Summers AP (2000) Stiffening the stingray skeleton an investigation of durophagy in myliobatid stingrays (Chondrichthyes, Batoidea, Mylioatidae). J Morphol 243:113–126.CrossRefGoogle Scholar
  59. Tang SY, Zeenath U, Vashisth D (2007) Effects of non-enzymatic glycation on cancellous bone fragility. Bone 40:1144–1151.CrossRefGoogle Scholar
  60. Tzaphlidou M. (2005) The role of collagen in bone structure: an image processing approach. Micron 36:593–601.CrossRefGoogle Scholar
  61. Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fyrhie DP (2001) Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone 28:195–201.CrossRefGoogle Scholar
  62. Wagner HD, Weiner S (1992) On the relationship between the microstructure of bone and its mechanical stiffness. J Biomech 25:1311–1320.CrossRefGoogle Scholar
  63. Walsh WR, Guzelsu N (1994) Compressive properties of cortical bone – mineral organic interfacial bonding. Biomat 15:137–145.CrossRefGoogle Scholar
  64. Wang X, Shen X, Li X, Agrawal CM (2002) Age-related changes in the collagen network and toughness of bone. Bone 31:1–7.CrossRefGoogle Scholar
  65. Weiner S, Traub W, Wagner HD (1999) Lamellar bone: structure-function relations. J Struct Biol 126:241–255.CrossRefGoogle Scholar
  66. Wilson EE, Awonusi A, Morris MD, Kohn DH, Tecklenburg MMJ, Beck LW (2006) Three structural roles for water in bone observed by solid-state NMR. Biophys J 90:3722–3731.CrossRefGoogle Scholar
  67. Yeni YN, Norman TL (2000) Calculation of porosity and osteonal cement line effects on the effective fracture toughness of cortical bone in longitudinal crack growth. J Biomed Mater Res 51:504–509.CrossRefGoogle Scholar
  68. Zioupos P (2001) Accumulation of in-vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone. J Microsc-Oxford 201:270–278.CrossRefMathSciNetGoogle Scholar
  69. Zioupos P, Wang X-T, Currey JD (1996) Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler. J. Biomech 29:989–1002CrossRefGoogle Scholar
  70. Zioupos P, Currey JD, Casinos A, de Buffrénil V (1997) Mechanical properties of the rostrum of the whale Mesoplodon densirostris, a remarkably dense bony tissue. J Zool 241:725–737CrossRefGoogle Scholar
  71. Zioupos P, Currey JD, Hamer AJ (1999) The role of collagen in the declining mechanical properties of aging human cortical bone. J Biomed Mater Res 45:108–116.CrossRefGoogle Scholar
  72. Zioupos P, Currey JD, Casinos A (2001) Tensile fatigue in bone: are cycles-, or time to failure, or both, important? J Theor Biol 210:389–399.CrossRefGoogle Scholar
  73. Ziv V, Weiner S (1994) Bone crystal sizes: a comparison of transmission electron-microscopic and X-ray-diffraction line-width broadening techniques. Connect Tissue Res 30:165–175.CrossRefGoogle Scholar
  74. Zylberberg L, Traub W, de Buffrénil V, Allizard F, Arad T, Weiner S (1998) Rostrum of a toothed whale: Ultrastructural study of a very dense bone. Bone 23:241–247.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • J. Currey

There are no affiliations available

Personalised recommendations