Skip to main content

Collagen and the Mechanical Properties of Bone and Calcified Cartilage

  • Chapter
Collagen

Abstract

In bone type I collagen is mineralized by very small crystals of carbonated hydroxyapatite. There is usually some water present. These three materials together produce a composite whose mechanical properties are unlike that of any of the constituents. The mechanical behavior of bone is not strange and will eventually be explained in terms of standard composite theory. However, that time is not yet, particularly because there is still considerable dispute about some fundamental features of bone, for instance the size and shape of the mineral crystals and their topographical relationship to the collagen. Calcified cartilage, made by the calcification of type II collagen, is the stiff structural element in the skeleton of many chondrichthyean fish. It shows interesting similarities to and differences from bone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander RMcN (1981) Factors of safety in the structure of mammals. Sci Prog 67:109–130.

    Google Scholar 

  • Almer JD, Stock SR (2005) Internal strains and stresses measured in cortical bone via high-energy X-ray diffraction. J Struct Biol 152:14–27.

    Article  Google Scholar 

  • Almer JD, Stock SR (2007) Micromechanical responses of mineral and collagen phases in bone. J Struct Biol 157:365–370.

    Article  Google Scholar 

  • Bailey AJ, Sims TJ, Ebbesen EN, Mansell JP, Thomsen JS, Mosekilde Li (1999) Age-related changes in the biochemical properties of human cancellous bone collagen: relationship to bone strength. Calcif Tissue Int 65:203–210.

    Google Scholar 

  • Bailey AJ, Sims TJ, Knott L (2002) Phenotypic expression of osteoblast collagen in osteoarthritic bone: production of type I homotrimer. Int J Biochem Cell Biol 34:176–182.

    Article  Google Scholar 

  • Ballarini R, Kayacan R, Ulm F-J, Belytschko T, Heuer AH (2005) Biological structures mitigate catastrophic fracture through various strategies. Int J Fract 135:187–197.

    Article  Google Scholar 

  • Bini F, Marinozzi A, Marinozzi F, Patané F (2002) Microtensile measurements of single trabeculae stiffness in human femur. J Biomech 35:1515–1519.

    Article  Google Scholar 

  • Blob RW, Bewiener AA (1999) In vivo locomotor strain in the hindlimb bones of Alligator mississipiensis and Iguana iguana: implications for the evolution of limb bone safety factor and non-sprawling limb posture. J Exp Biol 202:1023–1246.

    Google Scholar 

  • Burr DB, Martin RB, Schaffler MB, Radin EL (1985) Bone remodeling in response to in vivo fatigue microdamage. J Biomech 18:189–200.

    Article  Google Scholar 

  • Caler WE, Carter DR (1989) Bone creep-fatigue damage accumulation. J Biomech 22:635–635.

    Article  Google Scholar 

  • Cezayirlioglu H, Bahniuk E, Davy DT, Heiple KG (1985) Anisotropic yield behavior of bone under combined axial force and torque. J Biomech 18:61–69.

    Article  Google Scholar 

  • Currey JD (1979) Mechanical properties of bone tissues with greatly differing functions. J Biomech 12:313–319.

    Article  Google Scholar 

  • Currey JD (1999) What determines the bending strength of compact bone? J Exp Biol 202: 2495–2503.

    Google Scholar 

  • Currey JD (2002) Bones: Structure and Mechanics. Princeton, Princeton University Press.

    Google Scholar 

  • Currey J (2004) Incompatible mechanical properties in compact bone. J Theor Biol 231:569–580.

    Article  Google Scholar 

  • Currey JD, Abeysekera RM (2003) The microhardness and fracture surface of the petrodentine of Lepidosiren (Dipnoi), and of other mineralised tissues. Arch Oral Biol 48:439–447.

    Article  Google Scholar 

  • Currey JD, Zioupos P, Davies P, Casinos A. (2001) Mechanical properties of nacre and highly mineralized bone. Proc R Soc Lond B 268:107–111.

    Article  Google Scholar 

  • Currey JD, Brear K, Zioupos P (2004) Notch sensitivity of mammalian mineralized tissues in impact. Proc R Soc Lond B Biol Sci 271:517–522.

    Article  Google Scholar 

  • Dean MN Summers AP (2006) Mineralized cartilage in the skeleton of chondrichthyean fishes. Zoology 109:164–168.

    Article  Google Scholar 

  • Dean MN, Huber DR, Nance HA (2006) Functional morphology of jaw trabeculation in the lesser electric ray Narcine brasiliensis, with comments on the evolution of structural support in the Batoidea. J Morph 267:1137–1146.

    Article  Google Scholar 

  • de Buffrénil V, Dabin W, Zylberberg L (2004) Histology and growth of the cetacean petro-tympanic bone complex. J Zool 262:371–381.

    Article  Google Scholar 

  • Donoghue PCJ, Sansom IJ, Downs JP (2006) Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development. J Exp Zool B Mol Dev Evol 306B:278–294.

    Article  Google Scholar 

  • Francillon-Vieillot H, de Buffrénil V, Castanet J, Géraudie J, Meunier FJ, Sire JY, Zylberberg L, de Riqlès A (1990) Microstructure and mineralization of vertebrate skeletal tissues. In Carter (1990), Vol. I, pp. 471–530.

    Google Scholar 

  • Fritsch A, Hellmich C (2007) ‘Universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. J Theor Biol 244:597–620.

    Article  Google Scholar 

  • Fujisaki K, Tadano S (2007) Relationship between bone tissue strain and lattice strain of HAp crystals in bovine cortical bone under tensile loading. J Biomech 40:1832–1838.

    Article  Google Scholar 

  • Gao H, Baohua JI, Jäger IL, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: Lessons from nature. PNAS 100:5597–5600.

    Article  Google Scholar 

  • Grabner B, Landis WJ, Roschger P, Rinnerthaler S, Peterlik H, Klaushofer K, Fratzl P (2001) Age- and genotype-dependence of bone material properties in the osteogenesis imperfecta murine model (oim). Bone 29:453–457.

    Article  Google Scholar 

  • Gupta HS, Seto J, Wagermaier W, Zaslansky P, Boeseke P, Fratzl P (2006) Cooperative deformation of mineral and collagen in bone at the nanoscale. PNAS 103:17741–17746.

    Article  Google Scholar 

  • Hellmich CH, Ulm FJ (2002) Are mineralized tissues open crystal foams reinforced by crosslinked collagen? some energy arguments. J Biomech 35:1199–1212.

    Article  Google Scholar 

  • Hodgskinson R, Currey JD (1992) Young’s modulus, density and material properties in cancellous bone over a large density range. J Mater Sci Mater Med 3:377–381.

    Article  Google Scholar 

  • Horton WA, Dwyer C, Goering R, Dean DC (1983) Immunohistochemistry of type I and type II collagen in undecalcified skeletal tissues. J Histochem Cytochem 31:417–425.

    Google Scholar 

  • Jäger I, Fratzl P (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J 79:1737–1746.

    Google Scholar 

  • Jepsen KJ, Goldstein SA, Kuhn JL, Schaffler MB, Bonadio J (1996) Type-I collagen mutation compromises the post-yield behavior of Mov13 long bone. J Orthop Res 14:493–499.

    Article  Google Scholar 

  • Katz JL (1971) Hard tissue as a composite material. I. Bounds on the elastic behavior. J Biomech 4:455–473.

    Article  Google Scholar 

  • Kawasaki K, Suzuki T, Weiss KM (2004) Genetic basis for the evolution of vertebrate mineralized tissue. PNAS 101:11356–11361.

    Article  Google Scholar 

  • Kim JH, Niinomi M, Akahori T, Toda H 2007 Fatigue properties of bovine compact bones that have different microstructures. Int J Fatigue 29:1039–1050

    Article  MATH  Google Scholar 

  • Knese K-H (1958) Knochensruktur als Verbundbau. In: Zwanaglose Abhandlungen aus dem Gebiet der normalen und pathologischen Anatomie. Editors W Bargmann, DW Stuttgart. Georg Thieme, pp. 1–56.

    Google Scholar 

  • Knott L, Bailey AJ (1998) Collagen cross-links in mineralizing tissues: a review of their chemistry, function and clinical relevance. Bone 22:181–187.

    Article  Google Scholar 

  • Landis WJ, Hodgens KJ, Arena J, Song MJ, McEwen BF (1996) Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc Res Tech 33:192–202.

    Article  Google Scholar 

  • Luchinetti E (2001) Composite models of bone properties. In: Bone Mechanics Handbook. Editor S.C. Cowin. CRC Press, Boca Raton, pp. 12–19.

    Google Scholar 

  • Misof K, Landis WJ, Klaushofer K, Fratzl P (1997) Collagen from the osteogenesis imperfecta mouse model (oim) shows reduced resistance against tensile stress. J Clin Invest 100: 40–45.

    Article  Google Scholar 

  • Nian-Zhong W, Donoghue PCJ, Smith MM, Sansom IJ (2005) Histology of the galeaspid dermoskeleton and endoskeleton, and the origin and early evolution of the vertebrate cranial endoskeleton. J Vert Paleont 25:745–756.

    Article  Google Scholar 

  • Nicolella DP, Moravits DE, Gale AM, Bonewald LF, Lankford J (2006) Osteocyte lacunae strain in cortical bone. J Biomech 39:1735–1743.

    Article  Google Scholar 

  • O’Brien FJ, Taylor D, Lee TC (2007) Bone as a composite material: the role of osteons as barriers to crack growth in compact bone. Int J Fatigue 29:1051–1056.

    Article  MATH  Google Scholar 

  • Odetti P, Aragno I, Rolandi R, Garibaldi S, Valentini S, Cosso L, Traverso N, Cottalasso D, Pronzato MA, Marinari UM (2000) Scanning force microscopy reveals structural alterations in diabetic rat collagen fibrils: role of protein glycation. Diabetes Metab Res Rev 16:74–81.

    Article  Google Scholar 

  • Ou-Yang H, Paschalis EP, Boskey AL, Mendelsohn R (2002) Chemical structure-based three-dimensional reconstruction of human cortical bone from two-dimensional infrared images. Appl Spectrosc 56:419–422.

    Article  Google Scholar 

  • Paul RG, Bailey AJ (1996) Glycation of collagen: the basis of its central role in the late complications of ageing and diabetes. Int J Biochem Cell Biol 28:1297–1310.

    Article  Google Scholar 

  • Pidaparti RMV, Chandran A, Takano Y, Turner CH (1996) Bone mineral lies mainly outside collagen fibrils: predictions of a composite model for osteonal bone. J Biomech 29:909–916.

    Article  Google Scholar 

  • Porter ME, Beltrán JL, Koob TJ, Summers AP (2006) Material properties and biochemical composition of mineralized vertebral cartilage in seven elasmobranch species (Chondrichthyes). J Exp Biol 209:2920–2928.

    Article  Google Scholar 

  • Reif WE (2002) Evolution of the dermal skeleton of vertebrates: concepts and methods. Neues Jahrb Geol Palaontol Abh 223:53–78.

    Google Scholar 

  • Reilly DT, Burstein AH (1975) The elastic and ultimate properties of compact bone tissue. J Biomech 8:393–405.

    Article  Google Scholar 

  • Rho JY, Zioupos P, Currey JD, Pharr GM (1999) Variations in the individual thick lamellar properties within osteons by nanoindentation. Bone 25:295–300.

    Article  Google Scholar 

  • Rice JC, Cowin SC, Bowman JA (1988) On the dependence of elasticity and strength of cancellous bone on apparent density. J Biomech 21:155–168.

    Article  Google Scholar 

  • Rogers KD, Zioupos P (1999) The bone tissue of the rostrum of a Mesoplodon densirostris whale: a mammalian biomineral demonstrating extreme texture. J Mater Sci Lett 18:51–654.

    Article  Google Scholar 

  • Sasagawa I, Ishiyama M, Akai J (2006) Cellular influence in the formation of enameloid during odontogenesis in bony fishes. Mat Sci Engng C Biomimet Supramolec Syst 26:630–634.

    Google Scholar 

  • Sasaki N, Ikawa T, Fukuda A (1991) Orientation of mineral in bovine bone and the anisotropic mechanical properties of plexiform bone. J Biomech 24:57–61.

    Article  Google Scholar 

  • Sasaki N, Tagami A, Goto T, Taniguchi M, Nakata M, Hikichi K (2002) Atomic force microscopic studies on the structure of bovine femoral cortical bone at the collagen fibril-mineral level. J Mater Sci Mater Med 13:333–337.

    Article  Google Scholar 

  • Summers AP (2000) Stiffening the stingray skeleton an investigation of durophagy in myliobatid stingrays (Chondrichthyes, Batoidea, Mylioatidae). J Morphol 243:113–126.

    Article  Google Scholar 

  • Tang SY, Zeenath U, Vashisth D (2007) Effects of non-enzymatic glycation on cancellous bone fragility. Bone 40:1144–1151.

    Article  Google Scholar 

  • Tzaphlidou M. (2005) The role of collagen in bone structure: an image processing approach. Micron 36:593–601.

    Article  Google Scholar 

  • Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fyrhie DP (2001) Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone 28:195–201.

    Article  Google Scholar 

  • Wagner HD, Weiner S (1992) On the relationship between the microstructure of bone and its mechanical stiffness. J Biomech 25:1311–1320.

    Article  Google Scholar 

  • Walsh WR, Guzelsu N (1994) Compressive properties of cortical bone – mineral organic interfacial bonding. Biomat 15:137–145.

    Article  Google Scholar 

  • Wang X, Shen X, Li X, Agrawal CM (2002) Age-related changes in the collagen network and toughness of bone. Bone 31:1–7.

    Article  Google Scholar 

  • Weiner S, Traub W, Wagner HD (1999) Lamellar bone: structure-function relations. J Struct Biol 126:241–255.

    Article  Google Scholar 

  • Wilson EE, Awonusi A, Morris MD, Kohn DH, Tecklenburg MMJ, Beck LW (2006) Three structural roles for water in bone observed by solid-state NMR. Biophys J 90:3722–3731.

    Article  Google Scholar 

  • Yeni YN, Norman TL (2000) Calculation of porosity and osteonal cement line effects on the effective fracture toughness of cortical bone in longitudinal crack growth. J Biomed Mater Res 51:504–509.

    Article  Google Scholar 

  • Zioupos P (2001) Accumulation of in-vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone. J Microsc-Oxford 201:270–278.

    Article  MathSciNet  Google Scholar 

  • Zioupos P, Wang X-T, Currey JD (1996) Experimental and theoretical quantification of the development of damage in fatigue tests of bone and antler. J. Biomech 29:989–1002

    Article  Google Scholar 

  • Zioupos P, Currey JD, Casinos A, de Buffrénil V (1997) Mechanical properties of the rostrum of the whale Mesoplodon densirostris, a remarkably dense bony tissue. J Zool 241:725–737

    Article  Google Scholar 

  • Zioupos P, Currey JD, Hamer AJ (1999) The role of collagen in the declining mechanical properties of aging human cortical bone. J Biomed Mater Res 45:108–116.

    Article  Google Scholar 

  • Zioupos P, Currey JD, Casinos A (2001) Tensile fatigue in bone: are cycles-, or time to failure, or both, important? J Theor Biol 210:389–399.

    Article  Google Scholar 

  • Ziv V, Weiner S (1994) Bone crystal sizes: a comparison of transmission electron-microscopic and X-ray-diffraction line-width broadening techniques. Connect Tissue Res 30:165–175.

    Article  Google Scholar 

  • Zylberberg L, Traub W, de Buffrénil V, Allizard F, Arad T, Weiner S (1998) Rostrum of a toothed whale: Ultrastructural study of a very dense bone. Bone 23:241–247.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Currey, J. (2008). Collagen and the Mechanical Properties of Bone and Calcified Cartilage. In: Fratzl, P. (eds) Collagen. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73906-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-73906-9_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-73905-2

  • Online ISBN: 978-0-387-73906-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics