Skip to main content

The Extracellular Matrix of Skeletal and Cardiac Muscle

  • Chapter
Book cover Collagen

Abstract

Well-organized and distinct extracellular matrix networks exist within both striated and cardiac muscles. Individual muscle cells are separated by a fine collagen fiber network embedded in a proteoglycan matrix (the endomysium). Larger groups or bundles of muscle cells are separated by a thicker connective tissue structure, the perimysium. The endomysium separating adjacent muscle cells joins together at the nodes between cells to form a continuous structure within the muscle fiber bundle, and perimysium similarly forms a continuous network throughout the entire organ.

In striated muscle, the networks of wavy (non-straight) collagen fibers in both endomysium and perimysium can easily reorientate and offer little tensile resistance to changing muscle length. However, forces can be transmitted efficiently by shear through the thickness of the endomysium. The endomysium fulfills the role of mechanically linking adjacent muscle fibers so as to coordinate their length changes and keep their sarcomere lengths uniform. Especially in series-fibered muscles, shear through the thickness of the endomysium is a key mechanism for transmission of forces generated by contraction of muscle fibers.

There is evidence that the perimysium of striated muscle can also play a role in muscle force transmission (myofascial force transmission), but there is also a clear role for the perimysial boundaries between adjacent muscle fiber bundles to accommodate shear deformations generated when muscles contract. Differences in shear strains generated in anatomically different muscles appear to be the main explanation of why the division of muscles into fiber bundles (fascicles) by perimysium varies so much from muscle to muscle.

The endomysium and perimysium in cardiac muscle shows strong similarities in structure and function to the same extracellular matrix structures in striated\break muscle.

The extracellular matrix in muscle is dynamically remodeled according to the loads imposed on it during muscle growth, exercise, and as a response to damage. This is especially relevant to the properties of cardiac muscle after ischemia. Matrix metalloproteinases responsible for remodeling extracellular matrix within muscle are secreted both by fibroblasts and by the muscle cells.

The atrioventricular valves in the heart are special connective tissue structures well adapted to their function. Collagen fiber orientation in the cusps of these valves is closely modulated to reinforce the valves against predominant haemodynamic stresses.

The connective tissue structures within striated and cardiac muscles are an integrated part of the muscle as a whole tissue or organ and play key roles in their in vivo mechanical functions and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson MJ, Klier FG, Tanguay KE (1984) Acetylcholine receptor aggregation parallels the deposition of a basal lamina proteoglycan during development of the neuromuscular junction. J. Cell Biol. 99: 1769–1784.

    Article  Google Scholar 

  • Anderson RH, Ho SY, Redmann K, Sanchez-Quintana D, Lunkenheimer PP (2005) The anatomical arrangement of the myocardial cells making up the ventricular mass. Eur. J. Cario-thoracic Surg. 28: 517–525.

    Article  Google Scholar 

  • Anderson RH, Ho SY, Sanchez-Quintana D, Redmann K, Lunkenheimer PP (2006) Heuristic problems in defining three-dimensional arrangement of the ventricular myocytes. Anat. Rec. 288A: 579–586.

    Article  Google Scholar 

  • Arts T, Costa KD, Covell JW, McCulloch AD (2001) Relating myocardial laminar architecture to shear strain and muscle fiber orientation. Am. J. Physiol. Heart Circ. Physiol. 280: H2222–H2229.

    Google Scholar 

  • Balcerzak D, Querengesser L, Dixon WT, Baracos VE (2001) Coordinate expresión of matrix-degrading proteinases and their activators and inhibitors in bovine skeletal muscle. J. Anim. Sci. 79: 94–107.

    Google Scholar 

  • Bendall JR (1967) The elastin content of various muscles of beef animals. J.Sci. Food Agric. 18: 553–558.

    Article  Google Scholar 

  • Bigi A, RipamontiI A, Roveri N, Compostella L, Roncon L, Schivazappa L (1982) Structure and orientation of collagen-fibers in human mitral-valve. Int. J. Biol. Macromol. 4: 387–392.

    Article  Google Scholar 

  • Bishop JE, Lindahl G (1999) Regulation of cardiovascular collagen synthesis by mechanical load. Cardiovasc. Res. 42: 27–44.

    Article  Google Scholar 

  • Bloch RJ, Capetanaki Y, O’Neill A, Reed P, Williams MW, Resneck WG, Porter NC, Ursitti JA (2002) Costameres: repeating structures at the sarcolemma of skeletal muscle. Clin. Orthoped. Rel. Res. 403S: S203–S210.

    Article  Google Scholar 

  • Borg TK, Caulfield JB (1980) Morphology of connective tissue in skeletal muscle. Tissue Cell 12: 197–207.

    Article  Google Scholar 

  • Borg TK, Caulfield JB (1981) The collagen matrix of the heart. Federation Proc. 40: 2037–2041.

    Google Scholar 

  • Bourne GH (1973) The structure and function of muscle Vol. II Structure part 2. Academic Press, NY.

    Google Scholar 

  • Bovendeerd PHM, Huyghe JM, Arts T, Van Campen DH, Reneman RS (1994) Influence of endocardial–epicardial crossover of muscle fibers on left ventricular wall mechanics. J. Biomech. 27: 941–951.

    Article  Google Scholar 

  • Bowman W (1840) On the minute structure and movements of voluntary muscle. Phil. Trans. Roy. Soc. Lond. 130: 457–501.

    Article  Google Scholar 

  • Brooks JC, Savell JW (2004) Perimysium thickness as an indicator of beef tenderness. Meat Sci. 67: 329–334.

    Article  Google Scholar 

  • Brower GL, Gardner, JD, Forman MF, Murray DB, Voloshenyuk T, Levick SP, Janicki JS (2006) The relationship between myocardial extracellular matrix remodelling and ventricular function. Eur. J. Cardio-thoracic Surg. 30: 604–610.

    Article  Google Scholar 

  • Carrino DA, Caplan AI (1982) Isolation and preliminary characterization of proteoglycans synthesized by skeletal muscle. J. Biol. Chem. 257: 14145–14154.

    Google Scholar 

  • Cheng A, Langer F, Rodriguez F, Criscione JC, Daughters GT, Miller DC, Ingels NB. (2005) Transmural sheet strains in the lateral wall of the ovine left ventricle. Am. J. Physiol. Heart Circ. Physiol. 289: H1234–H1241.

    Article  Google Scholar 

  • Costa KD, Takayama Y, McCulloch AD, Covell JW (1999). Laminar fiber architecture and three-dimensional systolic mechanics in canine ventricular myocardium. Am. J. Physiol. Heart Circ. Physiol. 276:H595–H607.

    Google Scholar 

  • Debessa CRG, Maifrino LBM, de Souza RR (2001) Age related changes in the collagen network of the human heart. Mech. Ageing Dev. 122: 1049–1058.

    Article  Google Scholar 

  • Deschamps AM, Spinale FG (2005) Matrix modulation and heart failure: new concepts question old beliefs. Curr. Opinion Cardiol. 20: 211–216.

    Article  Google Scholar 

  • de Souza RR (2002) Ageing of myocardial collagen. Biogerontology 3: 325–335.

    Article  Google Scholar 

  • Dokos S, Smaill BH, Young AA, LaGrice IJ (2002) Shear properties of passive ventricular myocardium. Am. J. Physiol. Heart Cierc. Physiol. 283: H2650–H2659.

    Google Scholar 

  • Dorri F, Niederer PF, Redmann K, Lunkenheimer PP, Cryer CW, Anderson RH (2007) An analysis of the spatial arrangement of the myocardial aggregates making up the wall of the left ventricle. Eur. J. Cardio-thoracic Surg. 31: 430–437.

    Article  Google Scholar 

  • Eggen KH, Malmstrom A, Kolse, SO (1994) Decorin and a large dermatan sulfate proteoglycan in bovine striated muscle. Biochim. Biophys. Acta 1204: 287–297.

    Google Scholar 

  • Feneis H (1935) Uber die Anordnung und die Bedentung des indegewebes fur die Mechanik der Skelettmuskulatur. Morph. Jb. 76: 161–202.

    Google Scholar 

  • Gans C, Gaunt AS (1991) Muscle architecture in relation to function. J. Biomech. 24: 53–65.

    Article  Google Scholar 

  • Grounds MD, Sorokin L, White J (2005) Strength at the extracellular matrix – muscle interface. Scand. J. med. Sci. Sports 15: 381–391.

    Article  Google Scholar 

  • Hanley PJ, Young AA, leGrice IJ, Edgar SG, Loiselle DS (1999). 3-Dimensional configuration of perimysial collagen fibres in rat cardiac muscle at resting and extended sarcomere lengths. J. Physiol. 517: 831–837.

    Article  Google Scholar 

  • Harrington KB, Rodriguez F, Cheng A, Langer F, Ashikaga H, daughters GT, Criscione JC, Ingels, NB, Miller DC (2005) Direct measurement of transmural laminar architecture in the anterolateral wall of the ovine left ventricle: new implications for wall thickening mechanics. Am. J. Physiol. Heart Circ. Physiol. 258: H1324–H1330.

    Google Scholar 

  • He ZM, Ritchie J, Grashow JS, Sacks MS, Yoganathan AP (2005) In vitro dynamic strain behavior of the mitral valve posterior leaflet. J. Biomech. Eng. (Trans ASME) 127: 504–511.

    Article  Google Scholar 

  • Heeneman S, Cleutjens JP, Faber BC, Creemers EE, van Suylen R-J, Lutgens E, Cleutjens KB, Daemen MJ (2003) The dynamic extracellular matrix: intervention strategies during heart failure and atherosclerosis. J. Pathol. 200: 516–525.

    Article  Google Scholar 

  • Holmes JW, Borg TK, Covell JW (2005) Strucutre and mechanics of heraling myocardial infarcts. Ann. Rev. Biomed. Eng. 7: 223–253.

    Article  Google Scholar 

  • Huijing PA, Baan GC, Rebel G (1998) Non-myotendinousforce transmission in rat extensor digitorum longus muscle. J. Exp. Biol. 201, 682–691.

    Google Scholar 

  • Huijing PA, Baan, GC (2001) Extramuscular myofascial force transmission within the rat anterior tibial compartment; proximo-distal differences in muscle force. Acta Physiol. Scand. 173: 297–311.

    Article  Google Scholar 

  • Huijing, PA, Jaspers, RT (2005) Adaptation of muscle size and myofascial force transmission: a review and some new experimental results. Scand. J. Med. Sci. Sports 15: 349–380.

    Article  Google Scholar 

  • Icardo JM, Colvee E (1998) Collagenous skeleton of the human mitral papillary muscle. Anat. Rec. 252: 509–518.

    Article  Google Scholar 

  • Intrigila B, Melatti I, Tofani A, Macchiarelli G (2007) Computational models of myocardial endomysial collagen arrangement. Computer Methods and Programs in Biomedicine 86: 232–244.

    Article  Google Scholar 

  • Jaspers RT, Brunner R, Pel JMM, Huijing PA (1999) Acute effects of intramuscular aponeurotomy on rat gastrocnemius medialis: force transmission, muscle force and sarcomere length. J. Biomech. 32, 71–79.

    Article  Google Scholar 

  • Jolley PD, Purslow PP (1988) Reformed meat products – fundamental concepts and new developments. In: Mitchell J, Blanshard JMV (Eds.) Food Structure – Its Creationand Evaluation. Butterworths, London 231–264.

    Google Scholar 

  • Kieseier BC, Schneider C, Clements JM, Gearing AJH, Gold R, Tokya KV, Hartung H-P (2001) Expression of specific matrix metalloproteinases in inflammatory myopathies. Brain 124: 341–351.

    Article  Google Scholar 

  • Kjær, M (2004) Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol. Rev. 84: 649–698.

    Article  Google Scholar 

  • Kjær M, Magnusson P, Krogsgaard M, Moller JB, Olesen J, Heinemeier K, Hansen M, Haraldsson B, Koskinen S, Esmarck B, Langberg H (2006) Extracellular matrix adaptation of tendon and skeletal muscle to exercise. J. Anat. 208: 445–450.

    Article  Google Scholar 

  • Krenchel. H. (1964) Fibre Reinforcement. Akademisk Forlag, Copenhagen.

    Google Scholar 

  • Lawson MA, Purslow PP (2001) Development of components of the extracellular matrix, basal lamina and sarcomere in chick quadriceps and pectoralis muscles. Br. Poult. Sci. 42: 315–320.

    Article  Google Scholar 

  • Lepetit J (1991) Theoretical strain ranges in raw meat. Meat Sci. 29: 271–283.

    Article  Google Scholar 

  • Lewis GJ, Purslow PP (1989) The strength and stiffness of perimysial connective-tissue isolated from cooked beef muscle. Meat Sci. 26: 255–269.

    Article  Google Scholar 

  • Lewis GJ, Purslow PP (1991) The effect of marination and cooking on the mechanical properties of intramuscular connective tissue. J. Muscle Foods 2: 177–195.

    Article  Google Scholar 

  • Lewis GJ, Purslow PP, Rice AE (1991) The effect of conditioning on the strength of perimysial connective-tissue dissected from cooked meat. Meat Sci. 30: 1–12

    Article  Google Scholar 

  • Liao J, Yang L, Grashow J, Sacks MS (2007) The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet J. Biomech. Eng. (Trans ASME) 129: 78–87.

    Article  Google Scholar 

  • Light ND (1987) The role of collagen in determining the texture of meat. In Pearson AM, Dutson TR, Bailet AJ (Eds.) Advances in Meat Research Vol. 4: Collagen as a Food. Van Nostrand Reinhold, NY 87–107.

    Google Scholar 

  • Light N, Champion AE, Voyle C, Bailey AJ (1985) The role of epimysial, perimysial and endomysial collagen in determining texture in six bovine muscles. Meat Sci. 13: 137–149.

    Article  Google Scholar 

  • Lis Y, Burleigh MC, Parker DJ, Child AH, Hogg J, Davies MJ (1987) Biochemical-characterization of individual normal, floppy and rheumatic human mitral-valves. Biochem. J. 244: 597–603.

    Google Scholar 

  • Listrat A, Picard B, Geay Y (1999) Age-related changes and location of type I, III, IV, V and VI collagens during development of four foetal skeletal muscles of double muscles and normal bovine muscles. Tissue Cell 31: 17–27.

    Article  Google Scholar 

  • Listrat A, Lethias C, Hocquette JF, Renand G, Menissier F, Geay Y, Picard B (2000). Age related changes and location of types I, III, XII and XIV collagen during development of skeletal muscles from genetically different animals. Histochem. J. 32: 349–356.

    Google Scholar 

  • Lunkenheimer PP, Redmann K, Westermann P, Rothaus K, Cryer CW, Niederer P, Anderson RH (2006) The myocardium and its fibrous matrix working in concert as a spatially netted mesh: a critical review of the purported tertiary structure of the ventricular mass. Eur. J. Cardio-thoracic Surg. 295: 541–549.

    Google Scholar 

  • Macchiarelli G, Ohtani O (2001). Endomysium in left ventricle. Heart 86: 416–416.

    Article  Google Scholar 

  • Macchiarelli G, Ohtani O, Nottola SA, Stallone T, Camboni A, Prado IM, Motta PM (2002) A micro-anatomical model of the distribution of myocardial endomysial collagen. Histol. Histopath. 17: 699–706.

    Google Scholar 

  • Magid A, Law DJ (1985) Myofibrils bear most of the resting tension in frog skeletal muscle. Science 230: 1280–1282.

    Article  Google Scholar 

  • Mayne R, Sanderson RD (1985) The extracellular matrix of skeletal muscle. Collagen Relat. Res. 5: 449–468.

    Google Scholar 

  • McCormick RJ (1994) The flexibility of the collagen compartment of muscle. Meat Sci. 36: 79–91.

    Article  Google Scholar 

  • Merryman WD, Engelmayr GC, Liao J, Sacks MS (2006) Defining biomechanical endpoints for tissue engineered heart valve leaflets from native leaflet properties. Progress Pediatric Cardiol. 21: 153–160.

    Article  Google Scholar 

  • Miner EC, Miller WL (2006) A look between the cardiomyocytes: the extracellular matrix in heart failure. Mayo Clin. Proc. 81: 71–76.

    Google Scholar 

  • Mutungi G, Purslow P, Warkup C (1995) Structural and mechanical changes in raw and cooked single porcine muscle-fibers extended to fracture. Meat Sci. 40: 217–234.

    Article  Google Scholar 

  • Nakano T, Li X, Sunwoo HH, Sim JS (1997) Immunohistochemical localization of proteoglycans in bovine skeletal muscle and adipose connective tissues. Can. J. Anim. Sci. 77: 169–172.

    Article  Google Scholar 

  • Natori R. (1954) The role of myofibrils, sarcoplasma and sarcolemma in muscle contraction. Jikeikai Med. J. 1, 18–28.

    Google Scholar 

  • Nishimura T, Hattori A, Takahashi K (1996) Arrangement and identification of proteoglycans in basement membrane and intramuscular connective tissue of bovine semitendinousus muscle. Acta Anat. 155: 257–265.

    Article  Google Scholar 

  • Passerieux E, Rossignol R, Chopard A, Carnino A, Marini JF, Letellier T, Delage JP (2006) Structural organization of the perimysium in bovine skeletal muscle: Junctional plates and associated intracellular subsomains. J. Struct. Biol. 154: 206–216.

    Article  Google Scholar 

  • Passerieux E, Rossignol R, Letellier T, Delage JP (2007) Physical continuity of the perimysium from myofibers to tendons: Involvement in lateral force transmission in skeletal muscle. J. Struct. Biol. 159: 19–28.

    Article  Google Scholar 

  • Peterson JT (2006) The importance of estimating the therapeutic index in the development of matrix metalloproteinase inhibitors. Cardiovasc. Res. 69: 677–687.

    Article  Google Scholar 

  • Podolsky RJ (1964) The maximum sarcomere length for contraction of isolated myofibrils. J. Physiol. 170, 110–123.

    Google Scholar 

  • Purslow PP (1989) Strain-induced reorientation of an intramuscularconnective tissue network: Implications for passive muscle elasticity. J. Biomech. 22: 21–31.

    Article  Google Scholar 

  • Purslow PP (1999) The intramuscular connective tissue matrix and cell-matrix interactions in relation to meat toughness. Proceedings of the 45th International Congress Meat Science And Technology. Yokohama, Japan 210–219.

    Google Scholar 

  • Purslow PP (2002) The structure and functional significance of variations in the connective tissue within muscle. Comp. Biochem. Physiol. Part A 133: 947–966.

    Google Scholar 

  • Purslow PP (2005) Intramuscular connective tissue and its role in meat quality. Meat Sci. 70: 435–447.

    Article  Google Scholar 

  • Purslow PP, Duance VC (1990) The structure and function of intramuscular connective tissue. In Hukins DWL (Ed.) Connective Tissue Matrix Vol 2. MacMillan, London 127–166.

    Google Scholar 

  • Purslow PP, Trotter JA, (1994) The morphology and mechanical properties of endomysium in series-fibred muscles; variations with muscle length. J. Muscle Res. Cell Motil. 15: 299–304.

    Article  Google Scholar 

  • Purslow PP, Wess TJ, Hukins DWL (1998). Collagen orientation and molecular spacing during creep and stress–relaxation in soft connective tissues. J. Exp. Biol. 201: 135–142.

    Google Scholar 

  • Ramsay RW, Street SF (1940) The isometric length-tension diagram of isolated skeletal fibers of the frog. J. Cell Comp. Physiol. 15: 11–34.

    Article  Google Scholar 

  • Rhodes JM, Simons M (2007) The extracellular matrix and blood vessel formation: not just a scaffold. J. Cell. Molec. Med. 11: 176–205.

    Article  Google Scholar 

  • Robinson TF, Geraci MA, Sonnenblick EH, Factor SM (1988). Coiled perimysioal fibres of papillary muscle in rat heart: morphology, distribution and changes in configuration. Circ. Res. 63: 577–592.

    Google Scholar 

  • Rowe RWD (1981) Morphology of perimysial and endomysial connective tissue in skeletal muscle. Tissue Cell 13: 681–690.

    Article  Google Scholar 

  • Sacks MS, Smith DB, Hiester ED (1998) The aortic valve microstructure: Effects of transvalvular pressure. J. Biomed. Mats. Res. 41: 131–141.

    Article  Google Scholar 

  • Sanes JR (2003) The basement membrane/basal lamina of skeletal muscle. J. Biol. Chem. 278: 12601–12604.

    Article  Google Scholar 

  • Sato K, Ohashi C, Muraki M, Itsuda H, Yokoyama Y, Kanamori M, Ohtsuki K, Kawabata M (1998) Isolation of intact type V collagen from fish intramuscular connective tissue. J. Food Biochem. 22: 213–225.

    Article  Google Scholar 

  • Schmalbruch H. (1985) Skeletal Muscle. Springer. Berlin.

    Google Scholar 

  • Schmid H, Nash MP, Young AA, Hunter PJ (2006) Myocardial material parameter estimation – a comparative study for simple shear. J. Biomech. Eng. (Trans. ASME) 128: 742–750.

    Article  Google Scholar 

  • Schwartz SM (Ed) (1995). The Vascular Smooth Muscle Cell: Molecular and Biological Responses to the Extracellular Matrix. Academic Press, NY. ISBN-10: 0126323100.

    Google Scholar 

  • Scott JE (1990) Proteoglycan: collagen interactions and subfibrillar structure in collagen fibrils. Implications in the development and ageing of connective tissues. J. Anat. 169: 23–35.

    Google Scholar 

  • Street SF (1983) Lateral transmission of tension in frog myofibers: A myofibrillar network and transverse cytoskeletal connections are possible transmitters. J. Cell. Physiol. 114: 346–364.

    Article  Google Scholar 

  • Stegemann JP, Hong H, Nerem RM (2005) Mechanical, biochemical, and extracellular matrix effects on vascular smooth muscle cell phenotype. J. Appl. Physiol. 98: 2321–2327.

    Article  Google Scholar 

  • Sun W, Sacks MS, Sellaro TL, Slaughter WS, Scott MJ (2003) Biaxial mechanical response of bioprosthetic heart valve biomaterials to high in-plane shear. J. Biomech. Eng. (Trans ASME) 125: 372–380.

    Article  Google Scholar 

  • Torrent-Guasp F, Ballester M, Buckberg GD, Carreras F, Flotats A, Carrio I, Ferreira A, Samuels LE, Narula J (2001) Spatial orientation of the ventricular muscle band: Physiologic contribution and surgical implications. J. Thorac. Cardiovasc. Surg 122: 389–392.

    Article  Google Scholar 

  • Torrent-Guasp F, Kocica MJ, Corno AF, Komeda M, Carreras-Costa F, Flotats A, Cosin-Aguillar J, Wen H (2005) Towards new understanding of the heart structure and function. Eur. J. Cardio-thoracic Surg. 27: 191–201.

    Article  Google Scholar 

  • Trotter JA (1993) Functional morphology of force transmission n skeletal muscle. Acta Anat. 146: 205–222.

    Article  Google Scholar 

  • Trotter JA, Purslow PP, (1992) Functional morphology of the endomysium in series fibered muscles. J. Morphol. 212: 109–122.

    Article  Google Scholar 

  • Trotter JA, Richmond FJR, Purslow PP (1995). Functional morphology and motor control of series fibred muscles. In: Holloszy, JO (Ed.), Exercise and Sports Sciences Reviews Vol 23. Williams and Watkins, Baltimore, 167–213. ISBN 0-683-00037-3.

    Google Scholar 

  • Velleman SG, Liu XS, Eggen KH, Nestor KE (1999) Developmental downregulation of proteoglycan synthesis and decorin expression during turkey embryonic skeletal muscle formation. Poult. Sci. 78, 1619–1626.

    Google Scholar 

  • Willems MET, Purslow PP (1997) Mechanical and structural characteristics of single muscle fibres and fibre groups from raw and cooked pork Longissimus muscle. Meat. Sci. 46: 285–301.

    Article  Google Scholar 

  • Young M, Paul A, Rodda J, Duxson M, Sheard P (2000) Examination of Intrafascicular Muscle fiber terminations: Implications for tension delivery in series-fibered muscles. J. Morphol. 245:130–145.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Purslow, P. (2008). The Extracellular Matrix of Skeletal and Cardiac Muscle. In: Fratzl, P. (eds) Collagen. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73906-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-73906-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-73905-2

  • Online ISBN: 978-0-387-73906-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics