Advertisement

Collagen pp 285-324 | Cite as

Collagen in Arterial Walls: Biomechanical Aspects

  • G.A. Holzapfel

Abstract

This chapter is written with an emphasis on the biomechanical role of collagen in normal and diseased arterial walls, its structural quantification and its consideration in material models including phenomena such as growth and remodeling. Collagen is the ubiquitous load-bearing and reinforcing element in arterial walls and thus forms an important structural basis. The structural arrangement of collagen leads to the characteristic anisotropic behavior of the arterial wall and its respective layers. The organization of collagen fibers, and the tension within, maintains the function, integrity and strength of arteries. This chapter starts by reviewing the structure of the arterial wall and the biomechanical properties of the individual wall layers. Subsequently, structural quantifications of the collagen fabric are discussed with focus on polarized light microscopy, small-angle X-ray scattering and computer vision analysis. A basic building block for soft collagenous tissues in which the material is reinforced by one family of collagen fibers is next presented. On this basis, a structural model for arteries with an ideal alignment of collagen fibers is reviewed, and subsequently extended to consider collagen crimping and the dispersion of collagen fiber orientations. In order to capture structural modifications such as collagen reorientation, phenomenologically based microstructural and continuum models are presented which consider stress-modulated collagen remodeling. Finally, a constitutive model in which continuous remodeling of collagen is responsible for the growth of saccular cerebral aneurysms is outlined. All of the provided models have been implemented in finite element codes, and have proven to be efficient in the computational analysis of clinically relevant problems. This chapter is by no means complete, but it might help to grasp the most important biomechanical aspects of collagen in arterial tissues, and may serve as the basis for a more intense study of this fascinating topic

Keywords

Arterial Wall Abdominal Aortic Aneurysm Polarize Light Microscopy Arterial Tissue Principal Stretch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alastrué, V., Calvo, B., Peña, E., and Doblaré, M. (2006). Biomechanical modeling of refractive corneal surgery. J. Biomech. Eng. 128:150–160.Google Scholar
  2. Amenitsch, H., Rappolt, M., Kriechbaum, M., Mio, H., Laggner, P., and Bernstorff, S. (1998). First performance assessment of the small-angle X-ray scattering beamline at ELETTRA. Synchro. Rad. 5:506–508.Google Scholar
  3. Austin, G., Fisher, S., Dickson, D., Anderson, D., and Richardson, S. (1993). The significance of the extracellular matrix in intracranial aneurysms. Ann. Clin. Lab. Sci. 23:97–105.Google Scholar
  4. Baek, S., Rajagopal, K. R., and Humphrey, J. D. (2006). A theoretical model of enlarging intracranial fusiform aneurysms. J. Biomech. Eng. 128:142–149.Google Scholar
  5. Bernstorff, S., Amenitsch, H., and Laggner, P. (1998). High-throughput asymmetric double-crystal monochromator of the SAXS beamline at ELETTRA. Synchro. Rad. 5:1215–1221.Google Scholar
  6. Bigi, A., Ripamonti, A., and Roveri, N. (1981). X-ray investigation of the orientation of collagen fibres in aortic media layer under distending pressure. Int. J. Biol. Macromol. 3:287–291.Google Scholar
  7. Billiar, K. L., and Sacks, M. S. (1997). A method to quantify the fiber kinematics of planar tissues under biaxial stretch. J. Biomech. 30:753–756.Google Scholar
  8. Boyce, M. C., and Arruda, E. M. (2000). Constitutive models of rubber elasticity: A review. Rubber Chem. Technol. 73:504–523.Google Scholar
  9. Bustamante, C., Marko, J. F., Siggia, E. D., and Smith, S. B. (1994). Entropic elasticity of λ-phage DNA. Science 265:1599–1600.Google Scholar
  10. Canfield, T. R., and Dobrin, P. B. (1987). Static elastic properties of blood vessels. In Skalak, R., and Chien, S., eds., Handbook of Bioengineering. New York: McGraw-Hill.Google Scholar
  11. Canham, P. B., Finlay, H. M., Dixon, J. G., Boughner, D. R., and Chen, A. (1989). Measurements from light and polarised light microscopy of human coronary arteries fixed at distending pressure. Cardiovasc. Res. 23:973–982.Google Scholar
  12. Canham, P. B., Finlay, H. M., Dixon, J. G., and Ferguson, S. E. (1991). Layered collagen fabric of cerebral aneurysms quantitatively assessed by the universal stage and polarized light microscopy. Anat. Rec. 231:579–592.Google Scholar
  13. Canham, P. B., Finlay, H. M., Kiernan, J. A., and Ferguson, G. G. (1999). Layered structure of saccular aneurysms assessed by collagen birefringence. Neurol. Res. 21:618–626.Google Scholar
  14. Chuong, C. J., and Fung, Y. C. (1983). Three-dimensional stress distribution in arteries. J. Biomech. Eng. 105:268–274.Google Scholar
  15. Clark, J. M., and Glagov, S. (1979). Structural integration of the arterial wall. Lab. Invest. 40:587–602.Google Scholar
  16. Clark, J. M., and Glagov, S. (1985). Transmural organization of the arterial media: The lamellar unit revisited. Arteriosclerosis 5:19–34.Google Scholar
  17. Cowin, S. C. (2000). How is a tissue built? J. Biomech. Eng. 122:553–569.Google Scholar
  18. Cowin, S. C., and Humphrey, J. D., eds. (2001). Cardiovascular Soft Tissue Mechanics. Dordrecht: Kluwer Academic Publishers.Google Scholar
  19. Dahl, S. L. M., Vaughn, M. E., and Niklason, L. E. (2007). An ultrastructural analysis of collagen in tissue engineered arteries. Ann. Biomed. Eng. 35:1749–1755.Google Scholar
  20. David, G., Pedrigi, R. M., Heistand, M. R., and Humphrey, J. D. (2007). Regional multiaxial mechanical properties of the porcine anterior lens capsule. J. Biomech. Eng. 129:97–104.Google Scholar
  21. Delfino, A., Stergiopulos, N., Moore Jr., J. E., and Meister, J.-J. (1997). Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech. 30:777–786.Google Scholar
  22. Demiray, H. (1972). A note on the elasticity of soft biological tissues. J. Biomech. 5:309–311.Google Scholar
  23. Driessen, N. J. B., Peters, G. W. M., Huyghe, J. M., Bouten, C. V. C., and Baaijens, F. P. T. (2003). Remodelling of continuously distributed collagen fibres in soft connective tissue. J. Biomech. 36:1151–1158.Google Scholar
  24. Driessen, N. J. B., Wilson, W., Bouten, C. V. C., and Baaijens, F. P. T. (2004). A computational model for collagen fibre remodelling in the arterial wall. J. Theor. Biol. 226:53–64.Google Scholar
  25. Eberlein, R., Holzapfel, G. A., and Schulze-Bauer, C. A. J. (2001). An anisotropic model for annulus tissue and enhanced finite element analyses of intact lumbar disc bodies. Comput. Methods. Biomech. Biomed. Eng. 4:209–230.Google Scholar
  26. Elbischger, P. J., Bischof, H., Regitnig, P., and Holzapfel, G. A. (2004). Automatic analysis of collagen fibre orientation in the outermost layer of human arteries. Pattern Anal. Appl. 7:269–284.MathSciNetGoogle Scholar
  27. Elbischger, P. J., Bischof, H., Holzapfel, G. A., and Regitnig, P. (2005). Computer vision analysis of collagen fiber bundles in the adventitia of human blood vessels. In Suri, J. S., Yuan, C., Wilson, D. L., and Laxminarayan, S., eds., Plaque Imaging: Pixel to Molecular Level. Volume 113 Studies in Technology and Informatics. IOS Press. chapter 5, 97–129.Google Scholar
  28. Espinosa, F., Weir, B., and Noseworthy, T. (1984). Rupture of an experimentally induced aneurysm in a primate. Can. J. Neurol. Sci. 11:64–68.Google Scholar
  29. Ferdman, A. G., and Yannas, I. V. (1993). Scattering of light from histologic sections: a new method for the analysis of connective tissue. J. Invest. Dermatol. 100:710–716.Google Scholar
  30. Finlay, H. M., McCullough, L., and Canham, P. B. (1995). Three-dimensional collagen organization of human brain arteries at different transmural pressures. J. Vasc. Res. 32:301–312.Google Scholar
  31. Finlay, H. M., Whittaker, P., and Canham, P. B. (1998). Collagen organization in the branching region of human brain arteries. Stroke 29:1595–1601.Google Scholar
  32. Fratzl, P., Misof, K., Zizak, I., Rapp, G., Amenitsch, H., and Bernstorff, S. (1998). Fibrillar structure and mechanical properties of collagen. J. Struct. Biol. 122:119–122.Google Scholar
  33. Fung, Y. C., Fronek, K., and Patitucci, P. (1979). Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. 237:H620–H631.Google Scholar
  34. Gasser, T. C., and Holzapfel, G. A. (2002). A rate-independent elastoplastic constitutive model for (biological) fiber-reinforced composites at finite strains: Continuum basis, algorithmic formulation and finite element implementation. Comput. Mech. 29:340–360.MATHGoogle Scholar
  35. Gasser, T. C., and Holzapfel, G. A. (2006). Modeling the propagation of arterial dissection. Eur. J. Mech. A/Solids 25:617–633.MathSciNetMATHGoogle Scholar
  36. Gasser, T. C., and Holzapfel, G. A. (2007). Modeling plaque fissuring and dissection during balloon angioplasty intervention. Ann. Biomed. Eng. 35:711–723.Google Scholar
  37. Gasser, T. C., Ogden, R. W., and Holzapfel, G. A. (2006). Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3:15–35.Google Scholar
  38. Glagov, S., Zarins, C. K., Masawa, N., Xu, C. P., Bassiouny, H., and Giddens, D. P. (1993). Mechanical functional role of non-atherosclerotic intimal thickening. Front. Med. Biol. Eng. 5:37–43.Google Scholar
  39. Gundiah, N., Ratcliffe, M. B., and Pruitt, L. A. (2007). Determination of strain energy function for arterial elastin: Experiments using histology and mechanical tests. J. Biomech. 40:586–594.Google Scholar
  40. Halloran, B. G., and Baxter, B. T. (1995). Pathogenesis of aneurysms. Semin. Vasc. Surg. 8:85–92.Google Scholar
  41. Hariton, I., deBotton, G., Gasser, T. C., and Holzapfel, G. A. (2007a). Stress-driven collagen fiber remodeling in arterial walls. Biomech. Model. Mechanobiol. 6:163–175.Google Scholar
  42. Hariton, I., deBotton, G., Gasser, T. C., and Holzapfel, G. A. (2007b). Stress-modulated collagen fiber remodeling in a human carotid bifurcation. J. Theor. Biol. 248:460–470.Google Scholar
  43. Hartman, J. D. (1977). Structural changes within the media of coronary arteries related to intimal thickening. Am. J. Pathology 89:13–34.Google Scholar
  44. Hilbert, S. L., Sword, L. C., Batchelder, K. F., Barrick, M. K., and Ferrans, V. J. (1996). Simultaneous assessment of bioprosthetic heart valve, biomechanical properties, and collagen crimp length. J. Biomed. Mater. Res. 31:503–509.Google Scholar
  45. Holzapfel, G. A. (2000). Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Chichester: John Wiley & Sons.MATHGoogle Scholar
  46. Holzapfel, G. A. (2006). Determination of material models for arterial walls from uniaxial extension tests and histological structure. J. Theor. Biol. 238:290–302.MathSciNetGoogle Scholar
  47. Holzapfel, G. A., and Gasser, T. C. (2001). A viscoelastic model for fiber-reinforced composites at finite strains: Continuum basis, computational aspects and applications. Comput. Methods. Appl. Mech. Eng. 190:4379–4403.Google Scholar
  48. Holzapfel, G. A., and Gasser, C. T. (2007). Computational stress–deformation analysis of arterial walls including high-pressure response. Int. J. Cardiol. 116:78–85.Google Scholar
  49. Holzapfel, G. A., and Ogden, R. W., eds. (2003). Biomechanics of Soft Tissue in Cardiovascular Systems. Wien – New York: Springer-Verlag.MATHGoogle Scholar
  50. Holzapfel, G. A., and Ogden, R. W., eds. (2006). Mechanics of Biological Tissue. Heidelberg: Springer-Verlag.Google Scholar
  51. Holzapfel, G. A., and Weizsäcker, H. W. (1998). Biomechanical behavior of the arterial wall and its numerical characterization. Comput. Biol. Med. 28:377–392.Google Scholar
  52. Holzapfel, G. A., Gasser, T. C., and Ogden, R. W. (2000). A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48.MathSciNetMATHGoogle Scholar
  53. Holzapfel, G. A., Gasser, T. C., and Stadler, M. (2002). A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis. Eur. J. Mech. A/Solids 21:441–463.MATHGoogle Scholar
  54. Holzapfel, G. A., Gasser, T. C., and Ogden, R. W. (2004a). Comparison of a multi-layer structural model for arterial walls with a Fung-type model, and issues of material stability. J. Biomech. Eng. 126:264–275.Google Scholar
  55. Holzapfel, G. A., Sommer, G., and Regitnig, P. (2004b). Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J. Biomech. Eng. 126:657–665.Google Scholar
  56. Holzapfel, G. A., Sommer, G., Gasser, C. T., and Regitnig, P. (2005a). Determination of the layer-specific mechanical properties of human coronary arteries with non-atherosclerotic intimal thickening, and related constitutive modelling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–2058.Google Scholar
  57. Holzapfel, G. A., Stadler, M., and Gasser, T. C. (2005b). Changes in the mechanical environment of stenotic arteries during interaction with stents: Computational assessment of parametric stent design. J. Biomech. Eng. 127:166–180.Google Scholar
  58. Holzapfel, G. A., Sommer, G., Auer, M., Regitnig, P., and Ogden, R. W. (2007). Layer-specific 3D residual deformations of human aortas with non-atherosclerotic intimal thickening. Ann. Biomed. Eng. 35:530–545.Google Scholar
  59. Huang, D., Chang, T. R., Aggarwal, A., Lee, R. C., and Ehrlich, H. P. (1993). Mechanisms and dynamics of mechanical strengthening in ligament-equivalent fibroblast-populated collagen matrices. Ann. Biomed. Eng. 21:289–305.Google Scholar
  60. Humphrey, J. D. (1999). Remodeling of a collagenous tissue at fixed lengths. J. Biomech. Eng. 121:591–597.Google Scholar
  61. Humphrey, J. D. (2002). Cardiovascular Solid Mechanics. Cells, Tissues, and Organs. New York: Springer-Verlag.Google Scholar
  62. Humphrey, J. D. (2003). Continuum thermomechanics and the clinical treatment of disease and injury. Appl. Mech. Rev. 56:231–260.Google Scholar
  63. Humphrey, J. D., and Rajagopal, K. R. (2002). A constrained mixture model for growth and remodeling of soft tissues. Math. Model. Methods. Appl. Sci. 12:407–430.MathSciNetMATHGoogle Scholar
  64. Jouk, P. S., Mourad, A., Milisic, V., Michalowicz, G., Raoult, A., Caillerie, D., and Usson, Y. (2007). Analysis of the fiber architecture of the heart by quantitative polarized light microscopy. Accuracy, limitations and contribution to the study of the fiber architecture of the ventricles during fetal and neonatal life. Eur. J. Cardiothorac. Surg. 31:915–921.Google Scholar
  65. Kim, C., Cervos-Navarro, J., Kikuchi, H., Hashimoto, N., and Hazama, F. (1992). Alterations in cerebral vessels in experimental animals and their possible relationship to the development of aneurysms. Surg. Neurol. 38:331–337.Google Scholar
  66. Kondo, S., Hashimoto, N., Kikuchi, H., Hazama, F., Nagata, I., Kataoka, H., and Rosenblum, W. I. (1998). Apoptosis of medial smooth muscle cells in the development of saccular cerebral aneurysms in rats. Stroke 29:181–189.Google Scholar
  67. Kroon, M., and Holzapfel, G. A. (2007). A model for saccular cerebral aneurysm growth by collagen fibre remodelling. J. Theor. Biol. 247:775–787.Google Scholar
  68. Kroon, M., and Holzapfel, G. A. (2008a). Modelling of saccular aneurysm growth in a human middle cerebral artery. J. Biomech. Eng. in press.Google Scholar
  69. Kuhl, E., and Holzapfel, G. A. (2008b). Continuum theory of remodeling in living structures. From collagen fibers to cardiovascular tissues. J. Mater. Sci. Mater. Med. in press.Google Scholar
  70. Landuyt, M. (2006). Structural quantification of collagen fibers in abdominal aortic aneurysms. Master’s thesis, KTH Solid Mechanics, Stockholm and Department of Civil Engineering, Gent.Google Scholar
  71. Lehoux, S., Castier, Y., and Tedgui, A. (2006). Molecular mechanisms of the vascular responses to haemodynamic forces. J. Intern. Med. 259:381–392.Google Scholar
  72. Leung, D. Y., Glagov, S., and Mathews, M. B. (1976). Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science 191:475–477.Google Scholar
  73. Leung, D. Y., Glagov, S., and Mathews, M. B. (1977). Elastic and collagen accumulation in rabbit ascending aorta and pulmonary trunk during postnatal growth. Correlation of cellular synthetic response with medial tension. Circ. Res. 41:316–323.Google Scholar
  74. Liao, J., Yang, L., Grashow, J., and Sacks, M. S. (2007). The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet. J. Biomech. 129:78–87.Google Scholar
  75. López, A. M., Lumbreras, F., Serrat, J., and Villanueva, J. J. (1999). Evaluation of methods for ridge and valley detection. IEEE Trans. Pattern Anal. Mach. Intell. 21:327–335.Google Scholar
  76. Lu, J., Zhou, X., and Raghavan, M. L. (2007). Inverse elastostatic stress analysis in pre-deformed biological structures: Demonstration using abdominal aortic aneurysms. J. Biomech. 40:693–696.Google Scholar
  77. Marko, J. F., and Siggia, E. D. (1995). Stretching DNA. Macromolecules 28:8759–8770.Google Scholar
  78. Massoumian, F., Juskaitis, R., Neil, M. A., and Wilson, T. (2003). Quantitative polarized light microscopy. J. Microsc. 209:13–22.MathSciNetGoogle Scholar
  79. Milani, A. S., Nemes, J. A., Abeyaratne, R. C., and Holzapfel, G. A. (2007). A method for the approximation of non-uniform fiber misalignment in textile composites using picture frame test. Composites Part A Appl. Sci. Manuf. 38:1493–1501.Google Scholar
  80. Miskolczi, L., Guterman, L. R., Flaherty, J. D., and Hopkins, L. N. (1998). Saccular aneurysm induction by elastase digestion of the arterial wall: a new animal model. Neurosurgery 43:595–601.Google Scholar
  81. Nam, T. H., and Thinh, T. I. (2006). Large deformation analysis of inflated air-spring shell made of rubber-textile cord composite. Struct. Eng. Mech. 24:31–50.Google Scholar
  82. Nerem, R. M., and Seliktar, D. (2001). Vascular tissue engineering. Annu. Rev. Biomed. Eng. 3:225–243.Google Scholar
  83. Nichols, W. W., and O’Rourke, M. F. (2005). McDonald’s Blood Flow in Arteries. Theoretical, Experimental and Clinical Principles. London: Arnold, 5th edition. chapter 4, 73–97.Google Scholar
  84. Pandolfi, A., and Manganiello, F. (2006). A model for the human cornea. Constitutive formulation and numerical analysis. Biomech. Model. Mechanobiol. 5:237–246.Google Scholar
  85. Patel, D. J., and Fry, D. L. (1969). The elastic symmetry of arterial segments in dogs. Circ. Res. 24:1–8.Google Scholar
  86. Peña, E., Calvo, B., Martínez, M. A., and Doblaré, M. (2007a). An anisotropic visco-hyperelastic model for ligaments at finite strains. formulation and computational aspects. Int. J. Numer. Methods. Eng. 44:760–778.Google Scholar
  87. Peña, E., Pérez del Palomar, A., Calvo, B., Martínez, M. A., and Doblaré, M. (2007b). Computational modelling of diarthrodial joints. physiological, pathological and pos-surgery simulations. Arch. Comput. Methods. Eng. 14:47–91.Google Scholar
  88. Pentimalli, L., Modesti, A., Vignati, A., Marchese, E., Albanese, A., Di Rocco, F., Coletti, A., Di Nardo, P., Fantini, C., Tirpakova, B., and Maira, G. (2004). Role of apoptosis in intracranial aneurysm rupture. J. Neurosurg. 101:1018–1025.Google Scholar
  89. Prot, V., Skallerud, B., and Holzapfel, G. (2008). Transversely isotropic membrane shells with application to mitral valve mechanics – constitutive modeling and finite element implementation. Int. J. Numer. Methods. Eng. in press.Google Scholar
  90. Purslow, P. P., Wess, T. J., and Hukins, D. W. L. (1998). Collagen orientation and molecular spacing during creep and stress-relaxation in soft connective tissues. J. Exp. Biol. 201:135–142.Google Scholar
  91. Rhodin, J. A. G. (1980). Architecture of the vessel wall. In Bohr, D. F., Somlyo, A. D., and Sparks, H. V., eds., Handbook of Physiology, The Cardiovascular System, volume 2. Bethesda, Maryland: American Physiologial Society. 1–31.Google Scholar
  92. Roach, M. R., and Burton, A. C. (1957). The reason for the shape of the distensibility curve of arteries. Can. J. Biochem. Physiol. 35:681–690.Google Scholar
  93. Roach, M. R., and Song, S. H. (1994). Variations in strength of the porcine aorta as a function of location. Clin. Invest. Med. 17:308–318.Google Scholar
  94. Rodríguez, J. F., Ruiz, C., Doblaré, M., and Holzapfel, G. A. (2008). Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry and material anisotropy. J. Biomech. Eng. in press.Google Scholar
  95. Roveri, N., Ripamonti, A., Pulga, C., Jeronimidis, G., Purslow, P. P., Volpin, D., and Gotte, L. (1980). Mechanical behaviour of aortic tissue as a function of collagen orientation. Makromol. Chem. 181:1999–2007.Google Scholar
  96. Rowe, A. J., Finlay, H. M., and Canham, P. B. (2003). Collagen biomechanics in cerebral arteries and bifurcations assessed by polarizing microscopy. J. Vasc. Res. 40:406–415.Google Scholar
  97. Roy, C. S. (1880–82). The elastic properties of the arterial wall. J. Physiol. 3:125–159.Google Scholar
  98. Sacks, M. S., Smith, D. B., and Hiester, E. D. (1997). A small angle light scattering device for planar connective tissue microstructural analysis. Ann. Biomed. Eng. 25:678–689.Google Scholar
  99. Sage, H., and Gray, W. R. (1979). Studies on the evolution of elastin–I. Phylogenetic distribution. Comput. Biochem. Physiol. B. 64:313–327.Google Scholar
  100. Sasaki, N., and Odajima, S. (1996). Stress-strain curve and Young’s modulus of a collagen molecule as determined by the X-ray diffraction technique. J. Biomech. 29:655–658.Google Scholar
  101. Schmid, F., Sommer, G., Rappolt, M., Schulze-Bauer, C. A. J., Regitnig, P., Holzapfel, G. A., Laggner, P., and Amenitsch, H. (2005). In situ tensile testing of human aortas by time-resolved small angle X-ray scattering. J. Synchron. Rad. 12:727–733.Google Scholar
  102. Schulze-Bauer, C. A. J., Amenitsch, H., and Holzapfel, G. A. (2002a). SAXS investigation of layer-specific collagen structures in human aortas during tensile testing. In European Materials Research Society Spring Meeting, E-MRS 2002 SPRING MEETING - Synchrotron Radiation and Materials Science (Symposium I).Google Scholar
  103. Schulze-Bauer, C. A. J., Regitnig, P., and Holzapfel, G. A. (2002b). Mechanics of the human femoral adventitia including high-pressure response. Am. J. Physiol. Heart Circ. Physiol. 282:H2427–H2440.Google Scholar
  104. Shekhonin, B. V., Domogatsky, S. P., Muzykantov, V. R., Idelson, G. L., and Rukosuev, V. S. (1985). Distribution of type I, III, IV and V collagen in normal and atherosclerotic human arterial wall: Immunomorphological characteristics. Coll. Relat. Res. 5:355–368.Google Scholar
  105. Sommer, G., Gasser, T. C., Regitnig, P., Auer, M., and Holzapfel, G. A. (2008). Dissection of the human aortic media: an experimental study. J. Biomech. Eng. in press.Google Scholar
  106. Sonka, M., Hlavac, V., and Boyle, R. (1999). Image Processing, Analysis and Machine Vision. Pacific Grove, CA: Brook/Cole Publishing Company, 2nd edition.Google Scholar
  107. Stary, H. C., Blankenhorn, D. H., Chandler, A. B., Glagov, S., Jr. Insull, W., Richardson, M., Rosenfeld, M. E., Schaffer, S. A., Schwartz, C. J., Wagner, W. D., and Wissler, R. W. (1992). A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the committee on vascular lesions of the council on arteriosclerosis, American Heart Association. Circulation 85:391–405.Google Scholar
  108. Stary, H. C. (2003). Atlas of Atherosclerosis: Progression and Regression. Boca Raton, London, New York, Washington, D.C.: The Parthenon Publishing Group, 2nd edition.Google Scholar
  109. Sun, Y. L., Luo, Z. P., Fertala, A., and An, K. A. (2002). Direct quantification of the flexibility of type I collagen monomer. Biochem. Biophys. Res. Commun. 295:382–386.Google Scholar
  110. Taber, L. A. (1995). Biomechanics of growth, remodelling, and morphognesis. Appl. Mech. Rev. 48:487–543.Google Scholar
  111. Taber, L. A., and Humphrey, J. D. (2001). Stress-modulated growth, residual stress, and vascular heterogeneity. J. Biomech. Eng. 123:528–535.Google Scholar
  112. Tam, A. S. M., Sapp, M. C., and Roach, M. R. (1998). The effect of tear depth on the propagation of aortic dissections in isolated porcine thoracic aorta. J. Biomech. 31:673–676.Google Scholar
  113. Tower, T. T., Neidert, M. R., and Tranquillo, R. T. (2002). Fiber alignment imaging during mechanical testing of soft tissues. Ann. Biomed. Eng. 30:1221–1233.Google Scholar
  114. Tronc, F., Wassef, M., Esposito, B., Henrion, D., Glagov, S., and Tedgui, A. (1996). Role of NO in flow-induced remodeling of the rabbit common carotid artery. Arterioscl. Thromb. and Vasc. Biol. 16:1256–1262.Google Scholar
  115. van Baardwijk, C., and Roach, M. R. (1987). Factors in the propagation of aortic dissection in canine thoracic aortas. J. Biomech. 20:67–73.Google Scholar
  116. Vande Geest, J. P., Sacks, M. S., and Vorp, D. A. (2006). The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39:1324–1334.Google Scholar
  117. von der Mark, K. (1981). Localization of collagen types in tissues. Int. Rev. Connect. Tissue. Res. 9:265–324.Google Scholar
  118. Whittaker, P., Schwab, M. E., and Canham, P. B. (1988). The molecular organization of collagen in saccular aneurysms assessed by polarized light microscopy. Connect. Tissue. Res. 17:43–54.Google Scholar
  119. Wright, N. T., and Humphrey, J. D. (2002). Denaturation of collagen via heating: an irreversible rate process. Annu. Rev. Biomed. Eng. 4:109–128.Google Scholar
  120. Zollikofer, C. L., Salomonowitz, E., Sibley, R., Chain, J., Bruehlmann, W. F., Castaneda-Zuniga, W. R., and Amplatz, K. (1984). Transluminal angioplasty evaluated by electron microscopy. Radiology 153:369–374.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • G.A. Holzapfel

There are no affiliations available

Personalised recommendations