Skip to main content

Isotropic quantum plasmas

  • Chapter
Quantum Plasmadynamics

Part of the book series: Lecture Notes in Physics ((LNP,volume 735))

  • 1022 Accesses

The case of an isotropic plasma, and more specifically a thermal plasma, is of particular interest for dispersion in a plasma. Dispersion in a relativistic quantum plasma differs from dispersion in a nonquantum plasma due to four effects: the quantum recoil, dispersion associated with pair creation, degeneracy, and the effects of the spin of the particles. In this chapter the general theory for dispersion in a relativistic quantum electron gas, presented in §8.3, is applied to an isotropic electron gas, and to the specific case of a FermiDirac (thermal) distribution. Both the degenerate and nondegenerate limits for a Fermi-Dirac distribution are treated in detail. The results are used to discuss the properties of longitudinal and transverse waves in such plasmas. The electrons are assumed unpolarized; spin-dependent effects are discussed separately in §10.2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.N. Tsystovich: Sov. Phys. JETP13,1249(1961)

    Google Scholar 

  2. 2. D.J. Lindhard: Mat. Fys. Medd. Dan. vid. Selsk.28, Nr.8 (1954)

    Google Scholar 

  3. B. Jancovici: Il Nuovo Cim.25,428(1962)

    Article  MATH  Google Scholar 

  4. L.M. Hayes, D.B. Melrose: Aust. J. Phys.37,615(1984)

    ADS  Google Scholar 

  5. D.B. Melrose, J.I. Weise, J. McOrist: J. Phys. A: Math. Gen. 39, 8727 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. V. Kowalenko, N.E. Frankel, K.C. Hines: Phys. Rep.126,109(1985)

    Article  ADS  Google Scholar 

  7. N.W. Ashcroft, N.D. Mermin: Solid State Physics,(Saunders College, Philadelphia 1976)

    Google Scholar 

  8. E.M. Lifshitz, L.P. Pitaevskii:§40, (Pergamon Press, Oxford 1981)

    Google Scholar 

  9. A.A. Rukhadze, V.P. Silin: Sov. Phys. JETP38,645(1960)

    Google Scholar 

  10. A.A. Vlasov: Sov. Phys. JETP8,391(1938)

    Google Scholar 

  11. V.S. Krivitskii, S.V. Vladimirov: Sov. Phys. JETP 73, 821 (1991)

    Google Scholar 

  12. G. Baudet, V. Petrosian, E.E. Salpeter: Astrophys. J. 150, 979 (1967)

    Article  ADS  Google Scholar 

  13. E. Braaten Phys. Rev. Lett., 66, 1655 (1991)

    Article  ADS  Google Scholar 

  14. N. Itoh, H. Mutoh, A. Hikita, Y. Kohyama: Astrophys. J. 395, 622 (1992)

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag New York

About this chapter

Cite this chapter

(2008). Isotropic quantum plasmas. In: Quantum Plasmadynamics. Lecture Notes in Physics, vol 735. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73903-8_9

Download citation

Publish with us

Policies and ethics