Advertisement

Responses of a quantum plasma

Part of the Lecture Notes in Physics book series (LNP, volume 735)

In this chapter QED is used to calculated the response tensors of a plasma. The basic ideas used here for including the medium are twofold. First, the propagators in vacuo, identified as vacuum expectation values, are re-interpreted as expectation values for the medium. In the statistical averages, the electrons and positrons are described in terms of their occupation numbers, n ε s(p), and photons in a mode M by their occupation number N M (k). Second, the statistical averages are applied to diagrams with closed loops that represent radiative corrections in QED. In particular, the bubble diagram in QED leads to the vacuum polarization tensor after regularization, and its statistical average gives an additional contribution that corresponds to the linear response tensor for the medium.

Keywords

Wigner Function Occupation Number Vacuum Polarization Pair Creation Quantum Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.E. Cutkovsky: J. Math. Phys.1, 429(1960)CrossRefADSGoogle Scholar
  2. 2.
    R. Karplus, M. Neuman: Phys. Rev.80, 380(1950)MATHCrossRefMathSciNetADSGoogle Scholar
  3. 3.
    R. Karplus, M. Neuman: Phys. Rev.83, 776(1951)MATHCrossRefADSGoogle Scholar
  4. 4.
    D.B. Melrose: Il Nuovo Cim. 40, 182 (1965)MathSciNetADSGoogle Scholar
  5. 5.
    B. Petersson: J. Math. Phys. 6, 1955 (1965)CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    E. Wigner: Phys. Rev. 32, 749 (1932)CrossRefADSGoogle Scholar
  7. 7.
    R. Hakim, J. Heyvaerts: Phys. Rev. A 18 1250 (1978)CrossRefADSGoogle Scholar
  8. 8.
    H.D. Sivak: Ann. Phys. (N.Y.)159, 351(1985)CrossRefADSGoogle Scholar
  9. 9.
    D. Vasak, M. Gyulassy, H.T. Elze: Ann. Phys. 173, 462 (1987) CrossRefADSGoogle Scholar
  10. 10.
    I. Bialynicki-Birula, P. Górnicki, J. Rafelski: Phys. Rev. D 44, 1825 (1991) CrossRefADSGoogle Scholar
  11. 11.
    A.G. Sitenko: Electromagnetic fluctuations in plasma (Academic Press, New York 1967) Google Scholar
  12. 12.
    E.G. Harris: Adv. Plasma Phys.3,157(1969)ADSGoogle Scholar
  13. 13.
    A.E. Delsante, N.E. Frankel: Ann. Phys. 125 135 (1980)CrossRefADSGoogle Scholar
  14. 14.
    L.M. Hayes, D.B. Melrose: Aust. J. Phys.37, 615(1984)ADSGoogle Scholar
  15. 15.
    V. Kowalenko, N.E Frankel, K.C. Hines: Phys. Rep.126, 109(1985)CrossRefADSGoogle Scholar
  16. 16.
    M. Gedalin, D. Eichler: Astrophys. J. 406, 629 (1993) CrossRefADSGoogle Scholar
  17. 17.
    V.N. Tsytovich, L. Stenflo, H. Wilhelmsson: Physica Scripta. 11, 251 (1975) CrossRefADSGoogle Scholar
  18. 18.
    M. Nambu: Phys. Rev. A 23, 3272 (1981) CrossRefADSGoogle Scholar
  19. 19.
    M. Nambu: Astrophys. J. 303, 347 (1986) CrossRefADSGoogle Scholar
  20. 20.
    J. Kuijpers, D.B. Melrose: Astrophys. J. 294, 28 (1985) CrossRefADSGoogle Scholar
  21. 21.
    D.B. Melrose, J. Kuijpers: Astrophys. J.323,338(1987)CrossRefADSGoogle Scholar
  22. 22.
    V.S. Krivitsky, V.N. Tsytovich, S.V. Vladimirov: Phys. Rep.218,141(1992)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag New York 2008

Personalised recommendations