Dispersion in relativistic plasmas

Part of the Lecture Notes in Physics book series (LNP, volume 735)

The linear response tensor completely describes the linear electromagnetic properties of a medium. In particular the linear response tensor determines the properties of the natural wave modes of the medium, including the dispersion relation, the polarization vector, the energetics and the damping (chapter 2). Most plasmas consist of thermal particles plus various nonthermal distributions that are important in exciting waves. However, the properties of the waves themselves are determined primarily by the thermal particles. Hence, the case of an isotroptic thermal distribution plays a central role in the theory of dispersion in plasmas.


Dispersion Curve Rest Frame Phase Speed Nonrelativistic Limit Langmuir Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Jüttner: Ann. der Phys.34,856 (1911)CrossRefGoogle Scholar
  2. 2.
    J.L Synge: The Relativistic Gas, (North-Holland, Amsterdam 1957)MATHGoogle Scholar
  3. 3. G.N. Watson: A Treatise on the Theory of Bessel Functions, (Cambridge University Press 1944)Google Scholar
  4. 4.
    I.S. Gradshteyn, I.M. Ryzhik: Tables of Integrals, Series and Products, (Academic Press, New York 1965)Google Scholar
  5. 5.
    M. Abramowitz, I.A. Stegun: Handbook of Mathematical Functions, (Dover, New York 1965)Google Scholar
  6. 6.
    V.P Silin: Sov. Phys. JETP 11,1136(1960)MathSciNetGoogle Scholar
  7. 7.
    B.A.Trubnikov: Magnetic emission of high temperature plasma, doctoral dissertation, Moscow Institute of Engineering and Physics (1958); English translation in AEC-tr-4073, US Atomic Energy Commission, Oak Ridge, Tennessee (1960)Google Scholar
  8. 8.
    B.B. Godfrey, B.S. Newberger, K.A. Taggart: IEEE Transactions on Plasma Science PS-3, 60 & 68 (1975) Google Scholar
  9. 9.
    V.P Silin: Sov. Phys. JETP13,430(1961)MATHMathSciNetGoogle Scholar
  10. 10.
    A.J.R. Prentice: Phys. Fluids11,1036(1968)MATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    B. Kursunoğlu: Nucl. Fus.1,213(1961)CrossRefGoogle Scholar
  12. 12.
    K. Imre: Phys. Fluids5,459(1962)MATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    B. Buti: Phys. Fluids5,1(1962)MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    R. Hakim, A. Mangeney: Phys. Fluids14,2751(1971)CrossRefADSGoogle Scholar
  15. 15.
    P. Misra: J. Plasma Phys.14,529(1975)CrossRefADSGoogle Scholar
  16. 16.
    A. Magneville: J. Plasma Phys.44,191(1990)CrossRefADSGoogle Scholar
  17. 17.
    L.D. Landau: J.. Phys. (USSR)10,25(1946)Google Scholar
  18. 18.
    H. Derfler, T.C. Simonen: Phys. Fluids 12, 269 (1969)MATHCrossRefADSGoogle Scholar
  19. 19.
    B.A. Trubnikov, V.B. Yakubov: Plasma Phys. (J. Nuclear Energy (C)5, 7 (1963)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag New York 2008

Personalised recommendations