Particle and wave subsystems

Part of the Lecture Notes in Physics book series (LNP, volume 735)

A plasma is a collection of individual particles coupled together through the electromagnetic field. These coupled particles constitute a collective medium. The reinterpretation of a collection of individual particles and the electromagnetic field as a collective medium requires a formal rearrangement of the ‘bare’ particles and electromagnetic field into a background system of ‘dressed’ particles, sometimes called quasiparticles, and a ‘self-consistent’ field that includes the collective response of the medium. The free oscillations of the selfconsistent field constitute wave subsystems. To identify wave subsystems as distinct subsystems one needs to identify the Lagrangian for the subsystem, and this is obtained from the Lagrangians for the free particles and free fields by an appropriate rearrangement. There are several different ways of carrying out the rearrangement and three are discussed here. All of them lead to explicit expressions for the response tensors of the collective medium. The three approaches are the forward-scattering approach, the Vlasov approach and the oscillating-center approach. A cold plasma approach is also discussed: it may be adapted to give the linear and nonlinear response tensors for an arbitrary (unmagnetized) plasma, and in this sense it is a fourth approach.


Lagrangian Density Cold Plasma Covariant Form Vlasov Equation Ponderomotive Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.P. Dougherty: J. Plasma Phys. 4 762 (1970) CrossRefADSGoogle Scholar
  2. 2.
    J.P. Dougherty: J. Plasma Phys. 11 331 (1974) CrossRefADSGoogle Scholar
  3. 3.
    R.L. Dewar: Aust. J. Phys.30,533(1977)MathSciNetADSGoogle Scholar
  4. 4.
    S.R. de Groot, W.A. van Leeuwen, C.G. van Weerl: Relativistic Kinetic Theory,(North Holland, Amsterdam 1980)Google Scholar
  5. 5.
    R.L. Dewar: Phys. Fluids 16,1102(1973)CrossRefADSGoogle Scholar
  6. 6.
    W.A. Manheimer: Phys. Fluids 28,1569(1985)CrossRefADSGoogle Scholar
  7. 7.
    Q. Luo, D.B. Melrose: Aust. J. Phys.46,503(1993)ADSGoogle Scholar
  8. 8.
    S.V. Vladimirov D.B. Melrose: Physica Scripta 57,298(1998)CrossRefADSGoogle Scholar
  9. 9.
    G.B. Whitham: J. Fluid Mech.22,273(1965)CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    G.B. Whitham: Linear and Nonlinear Waves, (Wiley-Interscience, New York 1974)MATHGoogle Scholar
  11. 11.
    R. Peierls: Proc. Roy. Soc. Lond. A 347,475(1976)CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    R. Peierls: Proc. Roy. Soc. Lond. A 355,141(1977)CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    A.N. Kaufman, H. Ye, Y. Hui: Phys. Lett. A 120, 327 (1987)CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    V. Buzzi, K.C, Hines: Phys. Rev. D 51,6692(1995)CrossRefADSGoogle Scholar
  15. 15.
    A.G. Muslimov, A.I. Tsygan: Mon. Not. R. Astron. Soc. 255, 61 (1992) MathSciNetADSGoogle Scholar
  16. 16.
    V.S. Beskin: Sov. Astron. Lett. 16, 286 (1990) ADSGoogle Scholar
  17. 17. L. Mestel: Stellar Magneteism (Oxford University Press 1999)Google Scholar
  18. 18.
    M. Gedalin, D.B. Melrose: Phys. Rev. Lett. 64, 027401 (2001) ADSGoogle Scholar

Copyright information

© Springer-Verlag New York 2008

Personalised recommendations