Spin, MMR and neutrino plasma

Part of the Lecture Notes in Physics book series (LNP, volume 735)

The spin of an electron is not uniquely defined in Dirac’s theory, and one needs to identify a specific spin operator in order to discuss spin dependence. Suitable choices should commute with the Dirac Hamiltonian, and should have well-defined properties under a Lorentz transformation. Three such spin operators are discussed here: the helicity, and the magnetic-moment and electricmoment operators. Simultaneous eigenvalues each of these operators and of the Hamiltonian are constructed, and these are used to derive spin-dependent vertex functions. The response tensor for spinless particles (which are spin 0 bosons) is different from the response tensor for unpolarized electrons.


Spin Operator Vertex Function Langmuir Wave Pair Mode Electroweak Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.A. Sokolov, I.M. Ternov: Synchrotron radiation, (Pergamon Press, Oxford 1968) Google Scholar
  2. 2.
    A.A. Sokolov, I.M. Ternov: Radiation from relativistic electrons, (American Institute of Physics, Washington DC 1986) Google Scholar
  3. 3.
    K.C. Hines, N.E. Frankel: Phys. Lett. 69A, 301 (1978) MathSciNetGoogle Scholar
  4. 4.
    V. Kowalenko, N.E Frankel, K.C. Hines: Phys. Rep.126,109(1985)CrossRefADSGoogle Scholar
  5. 5.
    D.R.M. Williams, D.B. Melrose: Aust. J. Phys.42,59(1989)ADSGoogle Scholar
  6. 6.
    V.N. Tsystovich: Sov. Phys. JETP15,320(1962)Google Scholar
  7. 7.
    V.V. Klimov: Sov. J. Nucl. Phys. 33, 934 (1981) Google Scholar
  8. 8.
    H.A. Weldon: Phys. Rev. D 26,1394 (1982) CrossRefADSGoogle Scholar
  9. 9.
    E. Braaten: 1992Astrophys. J. 392, 70CrossRefADSGoogle Scholar
  10. 10.
    J.-P. Blaizot, J.Y. Ollitrault: Phys. Rev. D 48, 1390 (1993) CrossRefADSGoogle Scholar
  11. 11.
    O.K. Kalashnikov: Physica Scripta 60, 131 (1999) CrossRefADSGoogle Scholar
  12. 12.
    I. Mitra: Phys. Rev. D 62, 045023 (2000) CrossRefADSGoogle Scholar
  13. 13.
    L. Wolfenstein: Phys. Rev. D17,2369(1978)CrossRefADSGoogle Scholar
  14. 14. G.G. Raffelt: Stars as laboratories for fundamental physics,(Univesity of Chicago Press, 1996)Google Scholar
  15. 15.
    H.A. Bethe: Phys. Rev. Lett.56,1305(1986)CrossRefADSGoogle Scholar
  16. 16.
    R. Bingham, J.M. Dawson, J.J, Su, H.A. Bethe: Phys. Lett. A220,107(1994)CrossRefADSGoogle Scholar
  17. 17.
    Ioannisian, A.N., Raffelt, G.G. 1997 Phys. Rev. D 55, 7038CrossRefADSGoogle Scholar
  18. 18.
    J.F. Nieves, P.B. Pal: Phys. Rev. D 49, 1398 (1994)CrossRefADSGoogle Scholar
  19. 19.
    S.J. Hardy, D.B. Melrose: Phys. Rev. D54,6491(1996)CrossRefADSGoogle Scholar
  20. 20.
    S.J. Hardy, D.B. Melrose: Astrophys. J.480,705(1997)CrossRefADSGoogle Scholar
  21. 21.
    L.O. Silva, R. Bingham J. Cosmology Astroparticle Phys.05,001(2006)Google Scholar
  22. 22. D.B. Melrose: Instability in Space and Laboratory Plasmas §3.2, (Cambridge University Press 1986)Google Scholar

Copyright information

© Springer-Verlag New York 2008

Personalised recommendations