Anticancer Cell Therapy with TRAIL-Armed CD34+ Progenitor Cells

  • Carmelo Carlo-Stella
  • Cristiana Lavazza
  • Antonino Carbone
  • Alessandro M. Gianni
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 610)

Dysregulated apoptosis plays a key role in the pathogenesis and progression of neoplastic disorders, allowing tumor cells to survive beyond their normal life-span, and to eventually acquire chemo-radioresistance (Laconi, Pani and Farber, 2000; Pommier, Sordet, Antony, Hayward and Kohn 2004). Thus, apoptotic pathways represent attractive therapeutic targets for restoring apoptosis sensitivity of malignant cells, or activating agonists of apoptosis. To modulate apoptotic genes and proteins, several strategies can be envisaged which target either the mitochondria-dependent or the death receptor-dependent pathways of apoptosis (Waxman and Schwartz 2003). Due to the ability of death receptor ligands to induce death in susceptible cell types, there has been considerable interest in the therapeutic potential of these cytokines as anticancer agents. Death receptor ligands of the tumor necrosis factor α (TNFα) superfamily are type II transmembrane proteins that signal to target cells upon cell-cell contact, or after protease-mediated release to the extracellular space (Ashkenazi 2002). Four members of this family—including Fas ligand (FasL), TNFα, TL1A, and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)—stand out because of their ability to induce cell death (Wiley, Schooley, Smolak, Din, Huang, Nicholl, Sutherland, Smith, Rauch and Smith 1995; Wajant 2003).


Death Receptor PARP Cleavage Tumor Endothelial Cell Soluble Trail Death Receptor Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almasan, A., and Ashkenazi, A. (2003) Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev. 14, 337–348.PubMedCrossRefGoogle Scholar
  2. Armeanu, S., Lauer, U. M., Smirnow, I., Schenk, M., Weiss, T. S., Gregor, M., and Bitzer, M. (2003) Adenoviral gene transfer of tumor necrosis factor-related apoptosis-inducing ligand overcomes an impaired response of hepatoma cells, but causes severe apoptosis in primary human hepatocytes. Cancer Res. 63, 2369–2372.PubMedGoogle Scholar
  3. Ashkenazi, A. (2002) Targeting death and decoy receptors of the tumor-necrosis factor superfamily. Nat Rev Cancer. 2, 420–430.PubMedCrossRefGoogle Scholar
  4. Ashkenazi, A., Pai, R. C., Fong, S., Leung, S., Lawrence, D. A., Marsters, S. A., Blackie, C., Chang, L., Mcmurtrey, A. E., Hebert, A., Deforge, L., Koumenis, I. L., Lewis, D., Harris, L., Bussiere, J., Koeppen, H., Shahrokh, Z., and Schwall, R. H. (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Invest. 104, 155–162.PubMedCrossRefGoogle Scholar
  5. Bregni, M., Shammah, S., Malaffo, F., Di Nicola, M., Milanesi, M., Magni, M., Matteucci, P., Ravagnani, F., Jordan, C.T., Siena, S., and Gianni, A. M. (1998) Adenovirus vectors for gene transduction into mobilized blood CD34+ cells. Gene Ther. 5, 465–472.PubMedCrossRefGoogle Scholar
  6. Burger, J. A., and Kipps, T. J. (2006) CXCR4: a key receptor in the crosstalk between tumor cells and their micro-environment. Blood. 107, 1761–1767.PubMedCrossRefGoogle Scholar
  7. Carlo-Stella, C., Lavazza, C., Di Nicola, M., Cleris, L., Longoni, P., Milanesi, M., Magni, M., Morelli, D., Gloghini, A., Carbone, A., and Gianni, A. M. (2006) Antitumor Activity of Human CD34(+) Cells Expressing Membrane-Bound Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand. Hum Gene Ther. 17, 1225–1240.PubMedCrossRefGoogle Scholar
  8. Chinnaiyan, A. M., Prasad, U., Shankar, S., Hamstra, D. A., Shanaiah, M., Chenevert, T. L., Ross, B. D., and Rehemtulla, A. (2000) Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci U S A. 97, 1754–1759.PubMedCrossRefGoogle Scholar
  9. De Palma, M., Venneri, M. A., Roca, C., and Naldini, L. (2003) Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat Med. 9, 789–795.PubMedCrossRefGoogle Scholar
  10. Degli-Esposti, M. A., Dougall, W. C., Smolak, P. J., Waugh, J. Y., Smith, C. A., and Goodwin, R. G. (1997) The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity. 7, 813–820.PubMedCrossRefGoogle Scholar
  11. Ehtesham, M., Kabos, P., Gutierrez, M. A. R., Chung, N. H. C., Griffith, T. S., Black, K. L., and Yu, J. S. (2002) Induction of Glioblastoma Apoptosis Using Neural Stem Cell-mediated Delivery of Tumor Necrosis Factor-related Apoptosis-inducing Ligand. Cancer Res. 62, 7170–7174.PubMedGoogle Scholar
  12. Ehtesham, M., Kabos, P., Kabosova, A., Neuman, T., Black, K. L., and Yu, J. S. (2002) The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res. 62, 5657–5663.PubMedGoogle Scholar
  13. Emery, J. G., Mcdonnell, P., Burke, M. B., Deen, K. C., Lyn, S., Silverman, C., Dul, E., Appelbaum, E. R., Eichman, C., Diprinzio, R., Dodds, R. A., James, I. E., Rosenberg, M., Lee, J. C., and Young, P. R. (1998) Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem. 273, 14363–14367.PubMedCrossRefGoogle Scholar
  14. Fulda, S., Wick, W., Weller, M., and Debatin, K. -M. (2002) Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nature Medicine. 8, 808–815.PubMedGoogle Scholar
  15. Griffith, T. S., Anderson, R. D., Davidson, B. L., Williams, R. D., and Ratliff, T. L. (2000) Adenoviral-mediated transfer of the TNF-related apoptosis-inducing ligand/Apo-2 ligand gene induces tumor cell apoptosis. J Immunol. 165, 2886–2894.PubMedGoogle Scholar
  16. Griffith, T. S., and Broghammer, E. L. (2001) Suppression of tumor growth following intralesional therapy with TRAIL recombinant adenovirus. Mol Ther. 4, 257–266.PubMedCrossRefGoogle Scholar
  17. Hao, C., Song, J. H., Hsi, B., Lewis, J., Song, D. K., Petruk, K. C., Tyrrell, D. L., and Kneteman, N. M. (2004) TRAIL inhibits tumor growth but is nontoxic to human hepatocytes in chimeric mice. Cancer Res. 64, 8502–8506.PubMedCrossRefGoogle Scholar
  18. Harrington, K., Alvarez-Vallina, L., Crittenden, M., Gough, M., Chong, H., Diaz, R. M., Vassaux, G., Lemoine, N., and Vile, R. (2002) Cells as vehicles for cancer gene therapy: the missing link between targeted vectors and systemic delivery? Hum Gene Ther. 13, 1263–1280.PubMedCrossRefGoogle Scholar
  19. Hasegawa, H., Yamada, Y., Harasawa, H., Tsuji, T., Murata, K., Sugahara, K., Tsuruda, K., Ikeda, S., Imaizumi, Y., Tomonaga, M., Masuda, M., Takasu, N., and Kamihira, S. (2005) Sensitivity of adult T cell leukaemia lymphoma cells to tumor necrosis factor-related apoptosis-inducing ligand. Br J Haematol. 128, 253–265.PubMedCrossRefGoogle Scholar
  20. Jin, H., Aiyer, A., Su, J., Borgstrom, P., Stupack, D., Friedlander, M., and Varner, J. (2006) A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. J Clin Invest. 116, 652–662.PubMedCrossRefGoogle Scholar
  21. Johnson, T. R., Stone, K., Nikrad, M., Yeh, T., Zong, W. X., Thompson, C. B., Nesterov, A., and Kraft, A. S. (2003) The proteasome inhibitor PS-341 overcomes TRAIL resistance in Bax and caspase 9-negative or Bcl-xL over-expressing cells. Oncogene. 22, 4953–4963.PubMedCrossRefGoogle Scholar
  22. Johnston, J. B., Kabore, A. F., Strutinsky, J., Hu, X., Paul, J. T., Kropp, D. M., Kuschak, B., Begleiter, A., and Gibson, S. B. (2003) Role of the TRAIL/APO2-L death receptors in chlorambucil- and fludarabine-induced apoptosis in chronic lymphocytic leukemia. Oncogene. 22, 8356–8369.PubMedCrossRefGoogle Scholar
  23. Kagawa, S., He, C., Gu, J., Koch, P., Rha, S. -J., Roth, J. A., Curley, S. A., Stephens, L. C., and Fang, B. (2001) Antitumor activity and bystander effects of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene. Cancer Res. 61, 3330–3338.PubMedGoogle Scholar
  24. Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., Macdonald, D. D., Jin, D. K., Shido, K., Kerns, S. A., Zhu, Z., Hicklin, D., Wu, Y., Port, J. L., Altorki, N., Port, E. R., Ruggero, D., Shmelkov, S. V., Jensen, K. K., Rafii, S., and Lyden, D. (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 438, 820–827.PubMedCrossRefGoogle Scholar
  25. Laconi, E., Pani, P., and Farber, E. (2000) The resistance phenotype in the development and treatment of cancer. Lancet Oncol. 1, 235–241.PubMedCrossRefGoogle Scholar
  26. Lapidot, T., Dar, A., and Kollet, O. (2005) How do stem cells find their way home? Blood. 106, 1901–1910.PubMedCrossRefGoogle Scholar
  27. Lawrence, D., Shahrokh, Z., Marsters, S., Achilles, K., Shih, D., Mounho, B., Hillan, K., Totpal, K., Deforge, L., Schow, P., Hooley, J., Sherwood, S., Pai, R., Leung, S., Khan, L., Gliniak, B., Bussiere, J., Smith, C. A., Strom, S. S., Kelley, S., Fox, J. A., Thomas, D., and Ashkenazi, A. (2001) Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med. 7, 383–385.PubMedCrossRefGoogle Scholar
  28. Leblanc, H., Lawrence, D., Varfolomeev, E., Totpal, K., Morlan, J., Schow, P., Fong, S., Schwall, R., Sinicropi, D., and Ashkenazi, A. (2002) Tumor-cell resistance to death receptor–induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med. 8, 274–281.PubMedCrossRefGoogle Scholar
  29. Leblanc, H. N., and Ashkenazi, A. (2003) Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ. 10, 66–75.PubMedCrossRefGoogle Scholar
  30. Lee, J., Elkahloun, A. G., Messina, S. A., Ferrari, N., Xi, D., Smith, C. L., Cooper, R., Jr., Albert, P. S., and Fine, H. A. (2003) Cellular and genetic characterization of human adult bone marrow-derived neural stem-like cells: a potential antiglioma cellular vector. Cancer Res. 63, 8877–8889.PubMedGoogle Scholar
  31. Lee, J., Hampl, M., Albert, P., and Fine, H. A. (2002) Antitumor activity and prolonged expression from a TRAIL-expressing adenoviral vector. Neoplasia (New York, N.Y.). 4, 312–323.Google Scholar
  32. Lieber, A., He, C. Y., Meuse, L., Schowalter, D., Kirillova, I., Winther, B., and Kay, M. A. (1997) The role of Kupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors. J Virol. 71, 8798–8807.PubMedGoogle Scholar
  33. Mariani, S. M., Matiba, B., Armandola, E. A., and Krammer, P. H. (1997) Interleukin 1 beta-converting enzyme related proteases/caspases are involved in TRAIL-induced apoptosis of myeloma and leukemia cells. J Cell Biol. 137, 221–229.PubMedCrossRefGoogle Scholar
  34. Mathas, S., Lietz, A., Anagnostopoulos, I., Hummel, F., Wiesner, B., Janz, M., Jundt, F., Hirsch, B., Johrens-Leder, K., Vornlocher, H. P., Bommert, K., Stein, H., and Dorken, B. (2004) c-FLIP mediates resistance of Hodgkin/Reed-Sternberg cells to death receptor-induced apoptosis. J Exp Med. 199, 1041–1052.PubMedCrossRefGoogle Scholar
  35. Mitsiades, C. S., Treon, S. P., Mitsiades, N., Shima, Y., Richardson, P., Schlossman, R., Hideshima, T., and Anderson, K. C. (2001) TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood. 98, 795–804.PubMedCrossRefGoogle Scholar
  36. Mouzakiti, A., and Packham, G. (2003) Regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in Burkitt’s lymphoma cell lines. Br J Haematol. 122, 61–69.PubMedCrossRefGoogle Scholar
  37. Muhlenbeck, F., Schneider, P., Bodmer, J. L., Schwenzer, R., Hauser, A., Schubert, G., Scheurich, P., Moosmayer, D., Tschopp, J., and Wajant, H. (2000) The tumor necrosis factor-related apoptosis-inducing ligand receptors TRAIL-R1 and TRAIL-R2 have distinct cross-linking requirements for initiation of apoptosis and are non-redundant in JNK activation. J Biol Chem. 275, 32208–32213.PubMedCrossRefGoogle Scholar
  38. Nakamizo, A., Marini, F., Amano, T., Khan, A., Studeny, M., Gumin, J., Chen, J., Hentschel, S., Vecil, G., Dembinski, J., Andreeff, M., and Lang, F. F. (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res. 65, 3307–3318.PubMedGoogle Scholar
  39. Nakata, S., Yoshida, T., Horinaka, M., Shiraishi, T., Wakada, M., and Sakai, T. (2004) Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Oncogene. 23, 6261–6271.PubMedCrossRefGoogle Scholar
  40. Pan, G., Ni, J., Wei, Y. F., Yu, G., Gentz, R., and Dixit, V. M. (1997) An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science. 277, 815–818.PubMedCrossRefGoogle Scholar
  41. Pan, G., O’Rourke, K., Chinnaiyan, A. M., Gentz, R., Ebner, R., Ni, J., and Dixit, V. M. (1997) The receptor for the cytotoxic ligand TRAIL. Science. 276, 111–113.PubMedCrossRefGoogle Scholar
  42. Pitti, R. M., Marsters, S. A., Ruppert, S., Donahue, C. J., Moore, A., and Ashkenazi, A. (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem. 271, 12687–12690.PubMedCrossRefGoogle Scholar
  43. Pollack, I. F., Erff, M., and Ashkenazi, A. (2001) Direct stimulation of apoptotic signalling by soluble Apo2L/tumor necrosis factor-related apoptosis-inducing ligand leads to selective killing of glioma cells. Clinical Cancer Research. 7, 1362–1369.PubMedGoogle Scholar
  44. Pommier, Y., Sordet, O., Antony, S., Hayward, R. L., and Kohn, K. W. (2004) Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene. 23, 2934–2949.PubMedCrossRefGoogle Scholar
  45. Quesenberry, P. J., Colvin, G., and Abedi, M. (2005) Perspective: fundamental and clinical concepts on stem cell homing and engraftment: a journey to niches and beyond. Exp Hematol. 33, 9–19.PubMedCrossRefGoogle Scholar
  46. Sheridan, J. P., Marsters, S. A., Pitti, R. M., Gurney, A., Skubatch, M., Baldwin, D., Ramakrishnan, L., Gray, C. L., Baker, K., Wood, W. I., Goddard, A. D., Godowski, P., and Ashkenazi, A. (1997) Control of TRAIL-induced apoptosis by a family of signalling and decoy receptors. Science. 277, 818–821.PubMedCrossRefGoogle Scholar
  47. Studeny, M., Marini, F. C., Champlin, R. E., Zompetta, C., Fidler, I. J., and Andreeff, M. (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 62, 3603–3608.PubMedGoogle Scholar
  48. Studeny, M., Marini, F. C., Dembinski, J. L., Zompetta, C., Cabreira-Hansen, M., Bekele, B. N., Champlin, R. E., and Andreeff, M. (2004) Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst. 96, 1593–1603.PubMedCrossRefGoogle Scholar
  49. Verfaillie, C. M. (1998) Adhesion receptors as regulators of the hematopoietic process. Blood. 92, 2609–2612.PubMedGoogle Scholar
  50. Wajant, H. (2003) Death receptors. Essays Biochem. 39, 53–71.PubMedGoogle Scholar
  51. Wajant, H., Moosmayer, D., Wuest, T., Bartke, T., Gerlach, E., Schonherr, U., Peters, N., Scheurich, P., and Pfizenmaier, K. (2001) Differential activation of TRAIL-R1 and -2 by soluble and membrane TRAIL allows selective surface antigen-directed activation of TRAIL-R2 by a soluble TRAIL derivative. Oncogene. 20, 4101–4106.PubMedCrossRefGoogle Scholar
  52. Walczak, H., Degli-Esposti, M. A., Johnson, R. S., Smolak, P. J., Waugh, J. Y., Boiani, N., Timour, M. S., Gerhart, M. J., Schooley, K. A., Smith, C. A., Goodwin, R. G., and Rauch, C. T. (1997) TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. Embo J. 16, 5386–5397.PubMedCrossRefGoogle Scholar
  53. Walczak, H., Miller, R. E., Ariail, K., Gliniak, B., Griffith, T. S., Kubin, M., Chin, W., Jones, J., Woodward, A., Le, T., Smith, C., Smolak, P., Goodwin, R. G., Rauch, C. T., Schuh, J. C., and Lynch, D. H. (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med. 5, 157–163.PubMedCrossRefGoogle Scholar
  54. Wang, S., and El-Deiry, W. S. (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene. 22, 8628–8633.PubMedCrossRefGoogle Scholar
  55. Waxman, D. J., and Schwartz, P. S. (2003) Harnessing apoptosis for improved anticancer gene therapy. Cancer Res. 63, 8563–8572.PubMedGoogle Scholar
  56. Wen, J., Ramadevi, N., Nguyen, D., Perkins, C., Worthington, E., and Bhalla, K. (2000) Antileukemic drugs increase death receptor 5 levels and enhance Apo-2L-induced apoptosis of human acute leukemia cells. Blood. 96, 3900–3906.PubMedGoogle Scholar
  57. Wiley, S. R., Schooley, K., Smolak, P. J., Din, W. S., Huang, C. P., Nicholl, J. K., Sutherland, G. R., Smith, T. D., Rauch, C., and Smith, C. A. (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity. 3, 673–682.PubMedCrossRefGoogle Scholar
  58. Wu, G. S., Burns, T. F., Zhan, Y., Alnemri, E. S., and El-Deiry, W. S. (1999) Molecular cloning and functional analysis of the mouse homologue of the KILLER/DR5 tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor. Cancer Res. 59, 2770–2775.PubMedGoogle Scholar
  59. Zhang, L., and Fang, B. (2004) Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther.Google Scholar
  60. Zheng, S. J., Wang, P., Tsabary, G., and Chen, Y. H. (2004) Critical roles of TRAIL in hepatic cell death and hepatic inflammation. J Clin Invest. 113, 58–64.PubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Carmelo Carlo-Stella
    • 1
  • Cristiana Lavazza
    • 1
  • Antonino Carbone
    • 2
  • Alessandro M. Gianni
    • 1
  1. 1.Department of Medical OncologyUniversity of Milano and Istituto Nazionale TumoriMilanoItaly
  2. 2.Department of PathologyIstituto Nazionale TumoriMilanoItaly

Personalised recommendations