Advertisement

Developing T-Cell Therapies for Cancer in an Academic Setting

  • Malcolm K. Brenner
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 610)
The development of targeted drug therapies for cancer has been a long-term ambition of clinicians and researchers alike. While most effort has been expended on identifying small molecule therapeutics, the immune system can be manipulated to provide biological components that will be the most targeted of all. Exploitation of the humoral immune system by manufacture of monoclonal antibodies has already been proven highly effective for treatment of many tumors.1 The successful manipulation of the cellular component of the immune response, however, has been somewhat slower. In part, this is because of the complexity of developing and manufacturing the cellular components, and in part also, because our understanding of cellular physiology and function has been less extensive and detailed. Immunotherapies based on dendritic cells appear promising and adoptive therapy with T lymphocytes is also finally gaining traction. The use of T cells in cancer has a number of potential advantages:
  • They have high targeting specificity

  • They are capable of recognizing internal antigens if these are processed and presented on the tumor cell surface

  • They have a good biodistribution and are able to actively traffic through multiple tissue planes

  • They kill their target cells through a wide range of effector mechanisms so that resistance to all of these in a single cancer cell is unlikely

  • They are self-amplifying – so that a small number of cells administered initially has the potential to expand to numbers sufficient to eradicate even bulky tumors

Keywords

Nasopharyngeal Carcinoma Side Population Side Population Cell Solid Organ Transplant Recipient Hemopoietic Stem Cell Transplantation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reichert, J. M.; Rosensweig, C. J.; Faden, L. B.; Dewitz, M. C. Monoclonal antibody successes in the clinic. Nat Biotechnol. 2005;23:1073–1078.PubMedCrossRefGoogle Scholar
  2. 2.
    Porter, D. L., Antin, J. H. The graft-versus-leukemia effects of allogeneic cell therapy. Annu Rev Med. 1999;50:369–386.PubMedCrossRefGoogle Scholar
  3. 3.
    Kolb, H. J.; Schmid, C.; Barrett, A. J.; Schendel, D. J. Graft-versus-leukemia reactions in allogeneic chimeras. Blood. 2004;103:767–776.PubMedCrossRefGoogle Scholar
  4. 4.
    O’Reilly, R. J.; Small, T. N.; Papadopoulos, E.; Lucas, K.; Lacerda, J.; Koulova, L. Adoptive immuno-therapy for Epstein-Barr virus-associated lymphoproliferative disorders complicating marrow allografts. Springer Semin Immunopathol. 1998;20:455–491.PubMedGoogle Scholar
  5. 5.
    Heslop, H. E.; Ng, C. Y. C.; Li, C.; Smith, C. A.; Loftin, S. K.; Krance, R. A.; Brenner, M. K.; Rooney, C. M. Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nature Medicine. 1996;2:551–555.PubMedCrossRefGoogle Scholar
  6. 6.
    Rooney, C. M.; Smith, C. A.; Ng, C. Y. C.; Loftin, S. K.; Sixbey, J. W., Gan, Y-J.; Srivastava, D-K; Bowman, L. C; Krance, R. A.; Brenner, M. K.; Heslop, H. E. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood. 1998;92:1549–1555.PubMedGoogle Scholar
  7. 7.
    Bollard, C. M.; Aguilar, L.; Straathof, K. C.; Gahn, B.; Huls, M. H.; Rousseau, A.; Sixbey, J.; Gresik, M. V.; Carrum, G.; Hudson, M.; Dilloo, D.; Gee, A.; Brenner, M. K.; Rooney, C. M.; Heslop, H. E. Cytotoxic T Lymphocyte Therapy for Epstein-Barr Virus+ Hodgkin’s Disease. J Exp Med. 2004;200:1623–1633.PubMedCrossRefGoogle Scholar
  8. 8.
    Straathof, K. C.; Bollard, C. M.; Popat, U.; Huls, M. H.; Lopez, T.; Morriss, M. C.; Gresik, M. V.; Gee, A. P.; Russell, H. V.; Brenner, M. K.; Rooney, C. M.; Heslop, H. E. Treatment of Nasopharyngeal Carcinoma with Epstein-Barr Virus-specific T Lymphocytes. Blood. 2005;105:1898–1904.PubMedCrossRefGoogle Scholar
  9. 9.
    Gottschalk, S.; Rooney, C. M.; Heslop, H. E. Post-Transplant Lymphoproliferative Disorders. Annu Rev Med. 2005;56:29–44.PubMedCrossRefGoogle Scholar
  10. 10.
    Comoli, P.; Pedrazzoli, P.; Maccario, R.; Basso, S.; Carminati, O.; Labirio, M.; Schiavo, R.; Secondino, S.; Frasson, C.; Perotti, C.; Moroni, M.; Locatelli, F.; Siena, S. Cell Therapy of Stage IV Nasopharyngeal Carcinoma With Autologous Epstein-Barr Virus-Targeted Cytotoxic T Lymphocytes. J Clin Oncol. 2005.Google Scholar
  11. 11.
    Comoli, P.; Labirio, M.; Basso, S.; Baldanti, F.; Grossi, P.; Furione, M.; Vigano, M.; Fiocchi, R.; Rossi, G.; Ginevri, F.; Gridelli, B.; Moretta, A.; Montagna, D.; Locatelli, F.; Gerna, G; Maccario, R. Infusion of autologous Epstein-Barr virus (EBV)-specific cytotoxic T cells for prevention of EBV-related lymphoproliferative disorder in solid organ transplant recipients with evidence of active virus replication. Blood. 2002;99:2592–2598.PubMedCrossRefGoogle Scholar
  12. 12.
    Savoldo, B.; Goss, J. A.; Hammer, M. M.; Zhang, L.; Lopez, T.; Gee, A. P.; Lin, Y. F.; Quiros- Tejeira, R. E.; Reinke, P.; Schubert, S; Gottschalk, S.; Finegold, M. J.; Brenner, M. K.; Rooney, C. M.; Heslop, H. E. Treatment of solid organ transplant recipients with autologous Epstein Barr virus-specific cytotoxic T lymphocytes (CTLs). Blood. 2006;108:2942–2949.PubMedCrossRefGoogle Scholar
  13. 13.
    Morgan, R. A.; Dudley, M. E.; Wunderlich, J. R.; Hughes, M. S.; Yang, J. C.; Sherry, R. M.; Royal, R. E.; Topalian, S L.; Kammula, U. S.; Restifo, N. P.; Zheng, Z.; Nahvi, A.; de Vries, C. R.; Rogers-Freezer, L. J.; Mavroukakis, S. A.; Rosenberg, S. A. Cancer Regression in Patients After Transfer of Genetically Engineered Lymphocytes. Science. 2006;314:126–129.PubMedCrossRefGoogle Scholar
  14. 14.
    Dudley, M. E.; Wunderlich, J. R.; Robbins, P. F.; Yang, J. C.; Hwu, P.; Schwartzentruber, D. J.; Topalian, S. L.; Sherry, R.; Restifo, N. P.; Hubicki, A. M.; Robinson, M. R.; Raffeld, M.; Duray, P.; Seipp, C. A.; Rogers-Freezer, L.; Morton, K. E.; Mavroukakis, S. A.; White, D. E.; Rosenberg, S. A. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298:850–854.PubMedCrossRefGoogle Scholar
  15. 15.
    Dudley, M. E.; Wunderlich, J. R.; Robbins, P. F.; Yang, J. C.; Hwu, P.; Schwartzentruber, D. J.; Topalian, S. L.; Sherry, R.; Restifo, N. P.; Hubicki, A. M.; Robinson, M. R.; Raffeld, M.; Duray, P.; Seipp, C. A.; Rogers-Freezer, L.; Morton, K. E.; Mavroukakis, S. A.; White, D. E.; Rosenberg, S. A. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298:850–854.PubMedCrossRefGoogle Scholar
  16. 16.
    Yee, C.; Thompson, J. A.; Byrd, D.; Riddell, S. R.; Roche, P.; Celis, E.; Greenberg, P. D. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci U S A. 2002;99:16168–16173.PubMedCrossRefGoogle Scholar
  17. 17.
    Smith, C. A.; Ng, C. Y. C.; Heslop, H. E.; Holladay, M. S.; Richardson, S.; Turner, E. V.; Loftin, S. K.; Li, C.; Brenner, M. K.; Rooney, C. M. Production of genetically modified EBVspecific cytotoxic T cells for adoptive transfer to patients at high risk of EBV-associated lymphoproliferative disease. J Hematother. 1995;4:73–79.PubMedGoogle Scholar
  18. 18.
    Bollard, C. M.; Straathof, K. C.; Huls, M. H.; Leen, A.; Lacuesta, K.; Davis, A.; Gottschalk, S.; Brenner, M. K.; Heslop, H. E.; Rooney, C. M. The generation and characterization of LMP2-specific CTLs for use as adoptive transfer from patients with relapsed EBV-positive Hodgkin’s disease. J Immunother. 2004;27:317–327.PubMedCrossRefGoogle Scholar
  19. 19.
    Biagi, E.; Rousseau, R.; Yvon, E.; Schwartz, M.; Dotti, G.; Foster, A.; Havlik-Cooper, D.; Grilley, B. Gee, A.; Baker, K.; Carrum, G.; Rice, L.; Andreeff, M.; Popat, U.; Brenner, M. Responses to human CD40 ligand/human interleukin-2 autologous cell vaccine in patients with B-cell chronic lymphocytic leukemia. Clin Cancer Res. 2005;11:6916–6923.PubMedCrossRefGoogle Scholar
  20. 20.
    Dilloo, D.; Brown, M.; Roskrow, M.; Zhong, W.; Holden, W.; Holladay, M.; Brenner, M. CD40 ligand induces an anti-leukemia immune response in vivo. Blood. 1997;90:1927–1933.PubMedGoogle Scholar
  21. 21.
    Goodell, M. A.; Rosenzweig, M.; Kim, H.; Marks, D. F.; DeMaria, M.; Paradis, G.; Grupp, S. A.; Sieff, C. A.; Mulligan, R. C.; Johnson, R. P. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nature Medicine. 1997;3:1337–1345.PubMedCrossRefGoogle Scholar
  22. 22.
    Hirschmann-Jax, C.; Foster, A. E.; Wulf, G. G.; Nuchtern, J. G.; Jax, T. W.; Gobel, U.; Goodell, M. A.; Brenner, M. K. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A. 2004;101:14228–14233.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Malcolm K. Brenner

There are no affiliations available

Personalised recommendations