Aurora Kinases and Their Inhibitors: More Than One Target and One Drug

  • Patrizia Carpinelli
  • Jürgen Moll
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 610)

Dependent on the degree of inhibition of different Aurora kinase family members, various events in mitosis are affected, resulting in differential cellular responses. These different cellular responses have to be considered in the clinical development of the small molecule inhibitors with respect to the chosen indications, schedules and appropriate endpoints. Here the properties of the most advanced small molecule Aurora kinase inhibitors are compared and a case report on the development of PHA-739358 — a spectrum selective kinases inhibitor with a dominant phenotype of Aurora kinases inhibition, which is currently being tested in clinical trials — is discussed. One of the selection criteria for this compound was its property of inhibiting more than one cancer relevant target, such as Abl wild-type and the multidrug resistant Abl T315I mutant. This opens another path for clinical development in CML, and clinical trials are underway to evaluate the activity in patients suffering from chronic myelogenous leukemia, who developed resistance to currently approved treatments.


Esophageal Squamous Cell Carcinoma Aurora Kinase Spindle Assembly Checkpoint Regulatory Light Chain Aurora Kinase Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bischoff, J. R.; Anderson, L.; Zhu, Y.; Mossie, K.; Ng, L.; Souza, B.; Schryver, B.; Flanagan, P.; Clairvoyant, F.; Ginther, C.; Chan, C. S.; Novotny, M.; Slamon, D. J., and Plowman, G. D. (1998) A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J. 17, 3052–3065.PubMedCrossRefGoogle Scholar
  2. Bishop, J. D. and Schumacher, J. M. (2002) Phosphorylation of the carboxyl terminus of inner centromere protein (INCENP) by the Aurora B Kinase stimulates Aurora B kinase activity. J. Biol. Chem. 277, 27577–27580.PubMedCrossRefGoogle Scholar
  3. Bongarzone, I.; Vigneri, P.; Mariani, L.; Collini, P.; Pilotti, S., and Pierotti, M. A. (1998) RET/NTRK1 rearrangements in thyroid gland tumors of the papillary carcinoma family: correlation with clinicopathological features. Clin. Cancer Res. 4, 223–228.PubMedGoogle Scholar
  4. Briassouli, P.; Chan, F.; Savage, K.; Reis-Filho, J. S., and Linardopoulos S. (2007) Aurora-A regulation of nuclear factor-kappaB signaling by phosphorylation of IkappaBalpha. Cancer Res. 67, 1689–95.PubMedCrossRefGoogle Scholar
  5. Carlomagno, F.; Salvatore, D.; Santoro, M.; de, Franciscis, V.; Quadro, L.; Panariello, L.; Colantuoni, V., and Fusco, A. (1995) Point mutation of the RET proto-oncogene in the TT human medullary thyroid carcinoma cell line. Biochem. Biophys. Res. Commun. 207, 1022–1028.PubMedCrossRefGoogle Scholar
  6. Carmena, M. and Earnshaw, W. C. (2003) The cellular geography of aurora kinases. Nat. Rev. Mol. Cell Biol. 4, 842–854.PubMedCrossRefGoogle Scholar
  7. Carvajal, R. D.; Tse, A., and Schwartz, G. K. (2006) Aurora kinases: new targets for cancer therapy. Clin. Cancer Res. 12, 6869–6875.PubMedCrossRefGoogle Scholar
  8. Clarkson, B.; Strife, A.; Wisniewski, D.; Lambek, C. L., and Liu, C. (2003) Chronic myelogenous leukemia as a paradigm of early cancer and possible curative strategies. Leukemia 17, 1211–1262.PubMedCrossRefGoogle Scholar
  9. Crosio, C.; Fimia, G. M.; Loury, R.; Kimura, M.; Okano, Y.; Zhou, H.; Sen, S.; Allis, C. D., and Sassone-Corsi, P. (2002) Mitotic phosphorylation of histone H3: spatio-temporal regulation by mammalian Aurora kinases. Mol. Cell Biol. 22, 874–885.PubMedCrossRefGoogle Scholar
  10. DiCioccio, R. A.; Song, H.; Waterfall, C.; Kimura, M. T.; Nagase, H.; McGuire, V.; Hogdall, E.; Shah, M. N.; Luben, R. N.; Easton, D. F.; Jacobs, I. J.; Ponder, B. A. J.; Whittemore, A. S.; Gayther, S. A.; Pharoah, P. D. P., and Kruger-Kjaer, S. (2004) STK15 Polymorphisms and Association with Risk of Invasive Ovarian Cancer. Cancer Epidemiology Biomarkers & Prevention13, 1589–1594.Google Scholar
  11. Dionne, C. A.; Camoratto, A. M.; Jani, J. P.; Emerson, E.; Neff, N.; Vaught, J. L.; Murakata, C.; Djakiew, D.; Lamb, J.; Bova, S.; George, D., and Isaacs, J. T. (1998) Cell cycle-independent death of prostate adenocarcinoma is induced by the trk tyrosine kinase inhibitor CEP-751 (KT6587). Clin. Cancer Res. 4, 1887–1898.PubMedGoogle Scholar
  12. Ditchfield, C.; Johnson, V. L.; Tighe, A.; Ellston, R.; Haworth, C.; Johnson, T.; Mortlock, A.; Keen, N., and Taylor, S. S. (2003) Aurora-B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J. Cell Biol. 161, 267–280.PubMedCrossRefGoogle Scholar
  13. Drews, J. (2006) Case histories, magic bullets and the state of drug discovery. Nat. Rev. Drug Discov. 5, 635–640.PubMedCrossRefGoogle Scholar
  14. Egan, K. M.; Newcomb, P. A.; Ambrosone, C. B.; Trentham-Dietz, A.; Titus-Ernstoff, L.; Hampton, J. M.; Kimura, M. T., and Nagase, H. (2004) STK15 polymorphism and breast cancer risk in a population-based study. Carcinogenesis 25, 2149–2153.PubMedCrossRefGoogle Scholar
  15. el-Deiry, W. S.; Harper, J. W.; O’Connor, P. M.; Velculescu, V. E.; Canman, C. E.; Jackman, J.; Pietenpol, J. A.; Burrell, M.; Hill, D. E.; Wang, Y.;Widman, K.;G. Mercer, W.;E. Kastan, M. B.; Kohn, K. W.; Elledge, S. J.; Kinzler, K. W., and Vogelstein, B. (1994) WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 54, 1169–1174.PubMedGoogle Scholar
  16. Fancelli, D. and Moll, J. (2005) Inhibitors of Aurora kinases for the treatment of cancer. Expert Opinion on Therapeutic Patents 15, 1169–1182.CrossRefGoogle Scholar
  17. Fancelli, D.; Moll, J.; Varasi, M.; Bravo, R.; Artico, R.; Berta, D.; Bindi, S.; Cameron, A.; Candiani, I.; Cappella, P.; Carpinelli, P.; Croci, W.; Forte, B.; Giorgini, M. L.; Klapwijk, J.; Marsiglio, A.; Pesenti, E.; Rocchetti, M.; Roletto, F.; Severino, D.; Soncini, C.; Storici, P.; Tonani, R.; Zugnoni, P., and Vianello, P. (2006) 1,4,5,6-tetrahydropyrrolo-[3,4c]pyrazoles: identification of a potent Aurora kinase inhibitor with a favorable antitumor kinase inhibition profile. J. Med. Chem. 49, 7247–7251.PubMedCrossRefGoogle Scholar
  18. Galvin, K. M.; Huck, J.; Burenkova, O.; Burke, K.; Bowman, D.; Shinde, V.; Stringer, B.; Zhang, M.; Manfredi, M., and Meetze, K. (2006) Preclinical pharmacodynamic studies of Aurora-A inhibition by MLN8054. Journal of Clinical Oncology, ASCO Annual Meeting Proceedings (June 20 Supplement), 24, 13059.Google Scholar
  19. Gassmann, R.; Carvalho, A.; Henzing, A. J.; Ruchaud, S.; Hudson, D. F.; Honda, R.; Nigg, E. A.; Gerloff, D. L., and Earnshaw, W. C. (2004) Borealin: a novel chromosomal passenger required for stability of the bipolar mitotic spindle. J. Cell Biol. 166, 179–191.PubMedCrossRefGoogle Scholar
  20. Giles, F. J.; Cortes, J.; Jones, D.; Bergstrom, D.; Kantarjian, H., and Freedman, S. J. (2007) MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation. Blood 109, 500–502.PubMedCrossRefGoogle Scholar
  21. Girdler, F.; Gascoigne, K. E.; Eyers, P. A.; Hartmuth, S.; Crafter, C.; Foote, K. M.; Keen, N. J., and Taylor, S. S. (2006) Validating Aurora-B as an anticancer drug target. J. Cell Sci. 119, 3664–3675.PubMedCrossRefGoogle Scholar
  22. Glover, D. M.; Leibowitz, M. H.; McLean, D. A., and Parry, H. (1995) Mutations in Aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81, 95–105.PubMedCrossRefGoogle Scholar
  23. Goto, H.; Yasui, Y.; Kawajiri, A.; Nigg, E. A.; Terada, Y.; Tatsuka, M.; Nagata, K., and Inagaki, M. (2003) Aurora-B regulates the cleavage furrow-specific vimentin phosphorylation in the cytokinetic process. J. Biol. Chem. 278, 8526–8530.PubMedCrossRefGoogle Scholar
  24. Greenberg, N. M.; DeMayo, F.; Finegold, M. J.; Medina, D.; Tilley, W. D.; Aspinall, J. O.; Cunha, G. R.; Donjacour, A. A.; Matusik, R. J., and Rosen, J. M. (1995) Prostate cancer in a transgenic mouse. Proc. Natl. Acad. Sci. U.S.A 92, 3439–3443.PubMedCrossRefGoogle Scholar
  25. Gritsko, T. M.; Coppola, D.; Paciga, J. E.; Yang, L.; Sun, M.; Shelley, S. A.; Fiorica, J. V.; Nicosia, S. V., and Cheng, J. Q. (2003) Activation and over-expression of centrosome kinase BTAK/Aurora-A in human ovarian cancer. Clin. Cancer Res. 9, 1420–1426.PubMedGoogle Scholar
  26. Hampton, T. (2007) New blood cancer therapies under study. JAMA 297, 457–458.PubMedCrossRefGoogle Scholar
  27. Harrington, E. A.; Bebbington, D.; Moore, J.; Rasmussen, R. K.; Jose-Adeogun, A. O.; Nakayama, T.; Graham, J. A.; Demur, C.; Hercend, T.; Diu-Hercend, A.; Su, M.; Golec, J. M., and Miller, K. M. (2004) VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat. Med. 10, 262–267.PubMedCrossRefGoogle Scholar
  28. Hauf, S.; Cole, R. W.; LaTerra, S.; Zimmer, C.; Schnapp, G.; Walter, R.; Heckel, A.; van, Meel J.; Rieder, C. L., and Peters, J. M. (2003) The small molecule Hesperadin reveals a role for Aurora-B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell Biol. 161, 281–294.PubMedCrossRefGoogle Scholar
  29. Jackson, J. R.; Patrick, D. R.; Dar, M. M., and Huang, P. S. (2007) Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat. Rev. Cancer 7, 107–117.PubMedCrossRefGoogle Scholar
  30. Jeng, Y. M.; Peng, S. Y.; Lin, C. Y., and Hsu, H. C. (2004) Over-expression and amplification of Aurora-A in hepatocellular carcinoma. Clin. Cancer Res. 10, 2065–2071.PubMedCrossRefGoogle Scholar
  31. Ju, H.; Cho, H.; Kim, Y. S.; Kim, W. H.; Ihm, C.; Noh, S. M.; Kim, J. B.; Hahn, D. S.; Choi, B. Y., and Kang, C. (2006) Functional polymorphism 57Val>Ile of aurora kinase A associated with increased risk of gastric cancer progression. Cancer Lett. 242, 273–279.PubMedCrossRefGoogle Scholar
  32. Kantarjian, H.; Giles, F.; Wunderle, L.; Bhalla, K.; O’Brien, S.; Wassmann, B.; Tanaka, C.; Manley, P.; Rae, P.; Mietlowski, W.; Bochinski, K.; Hochhaus, A.; Griffin, J. D.; Hoelzer, D.; Albitar, M.; Dugan, M.; Cortes, J.; Alland, L., and Ottmann, O. G. (2006) Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N. Engl. J. Med. 354, 2542–2551.PubMedCrossRefGoogle Scholar
  33. Katayama, H.; Sasai, K.; Kawai, H.; Yuan, Z. M.; Bondaruk, J.; Suzuki, F.; Fujii, S.; Arlinghaus, R. B.; Czerniak, B. A., and Sen, S. (2004) Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat. Genet. 36, 55–62.PubMedCrossRefGoogle Scholar
  34. Kawajiri, A.; Yasui, Y.; Goto, H.; Tatsuka, M.; Takahashi, M.; Nagata, K., and Inagaki, M. (2003) Functional significance of the specific sites phosphorylated in desmin at cleavage furrow: Aurora-B may phosphorylate and regulate type III intermediate filaments during cytokinesis coordinatedly with Rho-kinase. Mol. Biol. Cell 14, 1489–1500.PubMedCrossRefGoogle Scholar
  35. Kling, J. (2006) Moving diagnostics from the bench to the bedside. Nat. Biotechnol. 24, 891–893.PubMedCrossRefGoogle Scholar
  36. Lanni, J. S. and Jacks, T. (1998) Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol. Cell Biol. 18, 1055–1064.PubMedGoogle Scholar
  37. Lee, C. Y.; Andersen, R. O.; Cabernard, C.; Manning, L.; Tran, K. D.; Lanskey, M. J.; Bashirullah, A., and Doe, C. Q. (2006) Drosophila Aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. Genes Dev. 20, 3464–3474.PubMedCrossRefGoogle Scholar
  38. Li, D.; Zhu, J.; Firozi, P. F.; Abbruzzese, J. L.; Evans, D. B.; Cleary, K.; Friess, H., and Sen, S. (2003) Over-expression of oncogenic STK15/BTAK/Aurora A kinase in human pancreatic cancer. Clin. Cancer Res. 9, 991–997.PubMedGoogle Scholar
  39. Li, J. J. and Li, S. A. (2006) Mitotic kinases: the key to duplication, segregation, and cytokinesis errors, chromosomal instability, and oncogenesis. Pharmacol. Ther. 111, 974–984.PubMedCrossRefGoogle Scholar
  40. Li, X.; Sakashita, G.; Matsuzaki, H.; Sugimoto, K.; Kimura, K.; Hanaoka, F.; Taniguchi, H.; Furukawa, K., and Urano, T. (2004) Direct association with inner centromere protein (INCENP) activates the novel chromosomal passenger protein, Aurora-C. J. Biol. Chem. 279, 47201–47211.PubMedCrossRefGoogle Scholar
  41. Liu, Q.; Kaneko, S.; Yang, L.; Feldman, R. I.; Nicosia, S. V.; Chen, J., and Cheng, J. Q. (2004) Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215. J. Biol. Chem. 279, 52175–52182.PubMedCrossRefGoogle Scholar
  42. Manfredi, M. G.; Ecsedy, J. A.; Meetze, K. A.; Balani, S. K. Burenkova, O.; Chen, W.; Galvin, K. M.; Hoar, K. M.; Huck, J. J.; Leroy, P. J.; Ray, E. T.; Sells, T. B.; Stringer, B.; Stroud, S. G.; Vos T. J.; Weatherhead, G. S.; Wysong, D. R.; Zhang, M.; Bolen, J. B., and Claiborne, C. F. (2007) Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora-A kinase. Proc Natl Acad Sci U S A. 104, 4106–4111.PubMedCrossRefGoogle Scholar
  43. Mao, J. H.; Wu, D.; Perez-Losada, J.; Jiang, T.; Li, Q.; Neve, R. M.; Gray, J. W.; Cai, W. W., and Balmain, A. (2007) Crosstalk between Aurora-A and p53: Frequent Deletion or Down-regulation of Aurora-A in Tumors from p53 Null Mice. Cancer Cell 11, 161–173.PubMedCrossRefGoogle Scholar
  44. Marumoto, T.; Honda, S.; Hara, T.; Nitta, M.; Hirota, T.; Kohmura, E., and Saya, H. (2003) Aurora-A kinase maintains the fidelity of early and late mitotic events in HeLa cells. J. Biol. Chem. 278, 51786–51795.PubMedCrossRefGoogle Scholar
  45. Maurer, J.; Janssen, J. W.; Thiel, E.; van, Denderen J.; Ludwig, W. D.; Aydemir, U.; Heinze, B.; Fonatsch, C.; Harbott, J., and Reiter, A. (1991) Detection of chimeric BCR- ABL genes in acute lymphoblastic leukaemia by the polymerase chain reaction. Lancet 337, 1055–1058.PubMedCrossRefGoogle Scholar
  46. Miao, X.; Sun, T.; Wang, Y.; Zhang, X.; Tan, W., and Lin, D. (2004) Functional STK15 Phe31Ile polymorphism is associated with the occurrence and advanced disease status of esophageal squamous cell carcinoma. Cancer Res. 64, 2680–2683.PubMedCrossRefGoogle Scholar
  47. Morrow, C. J.; Tighe, A.; Johnson, V. L.; Scott, M. I.; Ditchfield, C., and Taylor, S. S. (2005) Bub1 and Aurora-B cooperate to maintain BubR1-mediated inhibition of APC/CCdc20. J. Cell Sci. 118, 3639–3652.PubMedCrossRefGoogle Scholar
  48. Murata-Hori, M.; Fumoto, K.; Fukuta, Y.; Iwasaki, T.; Kikuchi, A.; Tatsuka, M., and Hosoya, H. (2000) Myosin II regulatory light chain as a novel substrate for AIM-1, an aurora/Ipl1p-related kinase from rat. J. Biochem. (Tokyo) 128, 903–907.PubMedGoogle Scholar
  49. Neben, K.; Korshunov, A.; Benner, A.; Wrobel, G.; Hahn, M.; Kokocinski, F.; Golanov, A.; Joos, S., and Lichter, P. (2004) Microarray-based screening for molecular markers in medulloblastoma revealed STK15 as independent predictor for survival. Cancer Res. 64, 3103–3111.PubMedCrossRefGoogle Scholar
  50. Sakakura, C.; Hagiwara, A.; Yasuoka, R.; Fujita, Y.; Nakanishi, M.; Masuda, K.; Shimomura, K.; Nakamura, Y.; Inazawa, J.; Abe, T., and Yamagishi, H. (2001) Tumor-amplified kinase BTAK is amplified and over-expressed in gastric cancers with possible involvement in aneuploid formation. Br. J. Cancer 84, 824–831.PubMedCrossRefGoogle Scholar
  51. Sasai, K.; Katayama, H.; Stenoien, D. L.; Fujii, S.; Honda, R.; Kimura, M.; Okano, Y.; Tatsuka, M.; Suzuki, F.; Nigg, E. A.; Earnshaw, W. C.; Brinkley, W. R., and Sen, S. (2004) Aurora-C kinase is a novel chromosomal passenger protein that can complement Aurora-B kinase function in mitotic cells. Cell Motil. Cytoskeleton 59, 249–263.PubMedCrossRefGoogle Scholar
  52. Sasayama, T.; Marumoto, T.; Kunitoku, N.; Zhang, D.; Tamaki, N.; Kohmura, E.; Saya, H., and Hirota, T. (2005) Over-expression of Aurora-A targets cytoplasmic polyadenylation element binding protein and promotes mRNA polyadenylation of Cdk1 and cyclin B1. Genes Cells 10, 627–638.PubMedCrossRefGoogle Scholar
  53. Schellens, J. H.; Boss, D.; Witteveen, P. O. Zandvliet, A.; Beijnen, J. H. Voogel-Fuchs, M. Morris, C. Wilson, D., and Voest, E. E. (2006) Phase I and pharmacological study of the novel Aurora kinase inhibitor AZD1152. Journal of Clinical Oncology, ASCO Annual Meeting Proceedings (June 20 Supplement), 24, 3008.Google Scholar
  54. Sen, S.; Zhou, H., and White, R. A. (1997) A putative serine/threonine kinase encoding gene BTAK on chromosome 20q13 is amplified and over-expressed in human breast cancer cell lines. Oncogene 14, 2195–2200.PubMedCrossRefGoogle Scholar
  55. Simeoni, M.; Magni, P.; Cammia, C.; De, Nicolao G.; Croci, V.; Pesenti, E.; Germani, M.; Poggesi, I., and Rocchetti, M. (2004) Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res. 64, 1094–1101.PubMedCrossRefGoogle Scholar
  56. Sjoblom, T.; Jones, S.; Wood, L. D.; Parsons, D. W.; Lin, J.; Barber, T. D.; Mandelker, D.; Leary, R. J.; Ptak, J.; Silliman, N.; Szabo, S.; Buckhaults, P.; Farrell, C.; Meeh, P.; Markowitz, S. D.; Willis, J.; Dawson, D.; Willson, J. K.; Gazdar, A. F.; Hartigan, J.; Wu, L.; Liu, C.; Parmigiani, G.; Park, B. H.; Bachman, K. E.; Papadopoulos, N.; Vogelstein, B.; Kinzler, K. W., and Velculescu, V. E. (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274.PubMedCrossRefGoogle Scholar
  57. Sun, C.; Chan, F.; Briassouli, P., and Linardopoulos, S. (2007) Aurora kinase inhibition down-regulates NF-kappaB and sensitizes tumor cells to chemotherapeutic agents. Biochem. Biophys. Res. Commun. 352, 220–225.PubMedCrossRefGoogle Scholar
  58. Talpaz, M.; Shah, N. P.; Kantarjian, H.; Donato, N.; Nicoll, J.; Paquette, R.; Cortes, J.; O’Brien, S.; Nicaise, C.; Bleickardt, E.; Blackwood-Chirchir, M. A.; Iyer, V.; Chen, T. T.; Huang, F.; Decillis, A. P., and Sawyers, C. L. (2006) Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N. Engl. J. Med. 354, 2531–2541.PubMedCrossRefGoogle Scholar
  59. Tang, C. J.; Lin, C. Y., and Tang, T. K. (2006) Dynamic localization and functional implications of Aurora-C kinase during male mouse meiosis. Dev. Biol. 290, 398–410.PubMedCrossRefGoogle Scholar
  60. Tatsuka, M.; Katayama, H.; Ota, T.; Tanaka, T.; Odashima, S.; Suzuki, F., and Terada, Y. (1998) Multinuclearity and increased ploidy caused by over-expression of the Aurora- and Ipl1-like midbody-associated protein mitotic kinase in human cancer cells. Cancer Res. 58, 4811–4816.PubMedGoogle Scholar
  61. Wang, H.; Somers, G. W.; Bashirullah, A.; Heberlein, U.; Yu, F.; and Chia, W. (2006) Aurora-A acts as a tumor suppressor and regulates self-renewal of Drosophila neuroblasts. Genes Dev. 20, 3453–3463.PubMedCrossRefGoogle Scholar
  62. Wheatley, S. P.; Henzing, A. J.; Dodson, H.; Khaled, W., and Earnshaw, W. C. (2004) Aurora-B phosphorylation in vitro identifies a residue of survivin that is essential for its localization and binding to inner centromere protein (INCENP) in vivo. J. Biol. Chem. 279, 5655–5660.PubMedCrossRefGoogle Scholar
  63. Young, M. A.; Shah, N. P.; Chao, L. H.; Seeliger, M.; Milanov, Z. V.; Biggs, W. H., III; Treiber, D. K.; Patel, H. K.; Zarrinkar, P. P.; Lockhart, D. J.; Sawyers, C. L., and Kuriyan, J. (2006) Structure of the kinase domain of an imatinib-resistant Abl mutant in complex with the Aurora kinase inhibitor VX-680. Cancer Res. 66, 1007–1014.PubMedCrossRefGoogle Scholar
  64. Zhou, H.; Kuang, J.; Zhong, L.; Kuo, W. L.; Gray, J. W.; Sahin, A.; Brinkley, B. R., and Sen, S. (1998) Tumor amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat. Genet. 20, 189–193.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Patrizia Carpinelli
    • 1
  • Jürgen Moll
    • 1
  1. 1.Nerviano Medical Sciences Srl.Nerviano (Mi)Italy

Personalised recommendations