Advertisement

This chapter provides an overview of the different imaging modalities used for image-guided interventions, including x-ray computed tomography (CT) and fluoroscopy, nuclear medicine, magnetic resonance imaging (MRI), and ultrasound. The emphasis is on the distinguishing physical and engineering properties of each modality and how these characteristics translate into strengths and weaknesses for the end user. Because the imaging methods are very different, there is no single ideal modality for image-guided interventions; rather, they are largely complementary and can all provide valuable information about the patient. The chapter also covers current research topics in medical imaging relating to image-guided interventions and how these trends could potentially improve image-guided interventions in the future.

Keywords

Positron Emission Tomography Magnetic Resonance Imaging Scanner Single Photon Emission Tomography Ultrasound Contrast Agent Compute Tomography System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albayrak B, Samdani AF, and Black PM. (2004). “Intra-operative magnetic re-sonance imaging in neurosurgery.” Acta Neurochir (Wien), 146(6), 543-556; discussion 557.CrossRefGoogle Scholar
  2. Archer BR. (2006). “Radiation management and credentialing of fluoroscopy users.” Pediatr Radiol, 36(Suppl 14), 182-184.CrossRefGoogle Scholar
  3. Beller S, Hunerbein M, Lange T, Eulenstein S, Gebauer B, and Schlag PM. (2007). “Image-guided surgery of liver metastases by three-dimensional ultrasound-based optoelectronic navigation.” Br J Surg, 94(7), 866-875.CrossRefGoogle Scholar
  4. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, Jerin J, Young J, Byars L, and Nutt R. (2000). “A combined PET/CT scanner for clinical oncology.” J Nucl Med, 41(8), 1369-1379.Google Scholar
  5. Blackall JM, Penney GP, King AP, and Hawkes DJ. (2005). “Alignment of sparse freehand 3-D ultrasound with preoperative images of the liver using models of respiratory motion and deformation.” IEEE Trans Med Imaging, 24(11), 1405-1416.CrossRefGoogle Scholar
  6. Bushberg J, Seibert J, Leidholdt E, and Boone J. (2002). The Essential Physics of Medical Imaging, 2nd edition, Lippincott Williams & Wilkins, Baltimore.Google Scholar
  7. D’Amico AV, Cormack R, Tempany CM, Kumar S, Topulos G, Kooy HM, and Coleman CN. (1998). “Real-time magnetic resonance image-guided interstitial brachytherapy in the treatment of select patients with clinically localized prostate cancer.” Int J Radiat Oncol Biol Phys, 42(3), 507-515.Google Scholar
  8. Daanen V, Gastaldo J, Giraud JY, Fourneret P, Descotes JL, Bolla M, Collomb D, and Troccaz J. (2006). “MRI/TRUS data fusion for brachytherapy.” Int J Med Robot, 2(3), 256-261.Google Scholar
  9. Endo M, Yoshida K, Kamagata N, Satoh K, Okazaki T, Hattori Y, Kobayashi S, Jimbo M, Kusakabe M, and Tateno Y. (1998). “Development of a3D CT-scanner using a cone beam and video-fluoroscopic system.” Radiat Med, 16(1), 7-12.Google Scholar
  10. French D, Morris J, Keyes M, Goksel O, and Salcudean S. (2005). “Computing intraoperative dosimetry for prostate brachytherapy using TRUS and fluoro-scopy.” Acad Radiol, 12(10), 1262-1272.CrossRefGoogle Scholar
  11. Fuller DB, Jin H, Koziol JA, and Feng AC. (2005). “CT-ultrasound fusion prostate brachytherapy: a dynamic dosimetry feedback and improvement method. A report of 54 consecutive cases.” Brachytherapy, 4(3), 207-216.CrossRefGoogle Scholar
  12. Gulec SA, Eckert M, and Woltering EA. (2002). “Gamma probe-guided lymph node dissection (‘gamma picking’) in differentiated thyroid carcinoma.” Clin Nucl Med, 27(12), 859-861.CrossRefGoogle Scholar
  13. Haker SJ, Mulkern RV, Roebuck JR, Barnes AS, Dimaio S, Hata N, and Tempany CM. (2005). “Magnetic resonance-guided prostate interventions.” Top Magn Reson Imaging, 16(5), 355-368.CrossRefGoogle Scholar
  14. Hasegawa B, Gingold E, Reilly S, Liew S, and Cann C. (1990). “Description of a simultaneous emission-transmission CT system.” Proc Soc Photo Opt Instrum Eng, 1231, 50-60.Google Scholar
  15. Herman GT, and Liu HK. (1977). “Display of three-dimensional information in computed tomography.” J Comput Assist Tomogr, 1(1), 155-160.CrossRefGoogle Scholar
  16. Huang X, Hill NA, Ren J, Guiraudon G, Boughner D, and Peters TM. (2005). “Dynamic 3D ultrasound and MR image registration of the beating heart.” Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv, 8(Pt 2), 171-178.Google Scholar
  17. Jaffray DA, Siewerdsen JH, Wong JW, and Martinez AA. (2002). “Flat-panel cone-beam computed tomography for image-guided radiation therapy.” Int J Radiat Oncol Biol Phys, 53(5), 1337-1349.CrossRefGoogle Scholar
  18. Jolesz FA, Talos IF, Schwartz RB, Mamata H, Kacher DF, Hynynen K, McDannold N, Saivironporn P, and Zao L. (2002). “Intraoperative magnetic resonance imaging and magnetic resonance imaging-guided therapy for brain tumors.” Neuroimaging Clin N Am, 12(4), 665-683.CrossRefGoogle Scholar
  19. Kaplan I, Oldenburg NE, Meskell P, Blake M, Church P, and Holupka EJ. (2002). “Real time MRI-ultrasound image guided stereotactic prostate biopsy.” Magn Reson Imaging, 20(3), 295-299.CrossRefGoogle Scholar
  20. Lakshminarayanan AV. (1975). Reconstruction from divergent x-ray data, State University of New York, Buffalo NY.Google Scholar
  21. Lange T, Eulenstein S, Hunerbein M, and Schlag PM. (2003). “Vessel-based non-rigid registration of MR/CT and 3D ultrasound for navigation in liver surgery.” Comput Aided Surg, 8(5), 228-240.CrossRefGoogle Scholar
  22. Leslie TA, and Kennedy JE. (2007). “High intensity focused ultrasound in the treatment of abdominal and gynaecological diseases.” Int J Hyperthermia, 23 (2), 173-182.CrossRefGoogle Scholar
  23. Lewin JS, and Metzger AK. (2001). “Intraoperative MR systems. Low-field appro-aches.” Neuroimaging Clin N Am, 11(4), 611-628.Google Scholar
  24. McRobbie DW, Pritchard S, and Quest RA. (2003). “Studies of the human oro-pharyngeal airspaces using magnetic resonance imaging. I. Validation of a three-dimensional MRI method for producing ex vivo virtual and physical casts of the oropharyngeal airways during inspiration.” J Aerosol Med, 16(4), 401-415.CrossRefGoogle Scholar
  25. Mittal S, and Black PM. (2006). “Intraoperative magnetic resonance imaging in neurosurgery: the Brigham concept.” Acta Neurochir Suppl, 98, 77-86.CrossRefGoogle Scholar
  26. Murat FJ, Poissonnier L, Pasticier G, and Gelet A. (2007). “High-intensity focused ultrasound (HIFU) for prostate cancer.” Cancer Control, 14(3), 244-249.Google Scholar
  27. Ozturk C, Guttman M, McVeigh ER, and Lederman RJ. (2005). “Magnetic re-sonance imaging-guided vascular interventions.” Top Magn Reson Imaging, 16 (5), 369-381.CrossRefGoogle Scholar
  28. Reynier C, Troccaz J, Fourneret P, Dusserre A, Gay-Jeune C, Descotes JL, Bolla M, and Giraud JY. (2004). “MRI/TRUS data fusion for prostate brachytherapy. Preliminary results.” Med Phys, 31(6), 1568-1575.CrossRefGoogle Scholar
  29. Rubens DJ, Yu Y, Barnes AS, Strang JG, and Brasacchio R. (2006). “Image-guided brachytherapy for prostate cancer.” Radiol Clin North Am, 44(5), 735-748.CrossRefGoogle Scholar
  30. Schwartz RB, Kacher DF, Pergolizzi RS, and Jolesz FA. (2001). “Intraoperative MR systems. Midfield approaches.” Neuroimaging Clin N Am, 11(4), 629-644.Google Scholar
  31. Scudder H. (1978). “Introduction to computer aided tomography.” Proc IEEE, 66, 628.CrossRefGoogle Scholar
  32. Stoianovici D. (2005). “Multi-imager compatible actuation principles in surgical robotics.” Int J Med Robot, 1(2), 86-100.Google Scholar
  33. Stoianovici D, Song D, Petrisor D, Ursu D, Mazilu D, Mutener M, Schar M, and Patriciu A. (2007). “MRI Stealth” robot for prostate interventions.” Minim Invasive Ther Allied Technol, 16(4), 241-248.CrossRefGoogle Scholar
  34. Su Y, Davis BJ, Furutani KM, Herman MG, and Robb RA. (2007). “Seed locali-zation and TRUS-fluoroscopy fusion for intraoperative prostate brachytherapy dosimetry.” Comput Aided Surg, 12(1), 25-34.CrossRefGoogle Scholar
  35. Truwit CL, and Hall WA. (2001). “Intraoperative MR systems. High-field appro-aches.” Neuroimaging Clin N Am, 11(4), 645-650.Google Scholar
  36. Vaezy S, Zderic V, Karmy-Jones R, Jurkovich GJ, Cornejo C, and Martin RW. (2007). “Hemostasis and sealing of air leaks in the lung using high-intensity focused ultrasound.” J Trauma, 62(6), 1390-1395.CrossRefGoogle Scholar
  37. Valentin J. (2000). “Avoidance of radiation injuries from medical interventional procedures.” Ann ICRP, 30(2), 7-67.CrossRefGoogle Scholar
  38. Wawroschek F, Vogt H, Weckermann D, Wagner T, and Harzmann R. (1999). “The sentinel lymph node concept in prostate cancer - first results of gamma probe-guided sentinel lymph node identification.” Eur Urol, 36(6), 595-600.CrossRefGoogle Scholar
  39. Webb A. (2002). Introduction to Biomedical Imaging, 1st edition, Wiley-IEEE Press, Hoboken, NJ.Google Scholar
  40. Wernick M, Brankov J, Chapman D, Anastasio M, Zhong Z, Muehleman C, and Li J. (2004). “Multiple-image Computed Tomography.” IEEE International Sym-posium on Biomedical Imaging: From Nano to Macro, Arlington, VA.Google Scholar
  41. Wu F, TerHaar G, and Chen WR. (2007). “High-intensity focused ultrasound ablation of breast cancer.” Expert Rev Anticancer Ther, 7(6), 823-831.CrossRefGoogle Scholar
  42. Yrjana SK, Tuominen J, and Koivukangas J. (2007). “Intraoperative magnetic resonance imaging in neurosurgery.” Acta Radiol, 48(5), 540-549.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Kenneth H. Wong
    • 1
  1. 1.Georgetown UniversityWashingtonUSA

Personalised recommendations