Skip to main content

Model-Based Image Segmentation for Image-Guided Interventions

  • Chapter
Image-Guided Interventions

Medical image segmentation plays an important role in the field of image-guided surgery and minimally invasive interventions. By creating three-dimensional anatomical models from individual patients, training, planning, and computer guidance during surgery can be improved. This chapter briefly describes the most frequently used image segmentation techniques, shows examples of their application and potential in the field of image-guided surgery and interventions, and discusses future trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alderliesten T, Konings MK, and Niessen WJ. (2006). “Robustness and complexity of a minimally invasive vascular intervention simulation system.” Med Phys, 33 (12), 4758-4769.

    Article  Google Scholar 

  • Baert SAM, Viergever MA, and Niessen WJ. (2003). “Guide-wire tracking during endovascular interventions.” IEEE Trans Med Imaging, 22(8), 965-972.

    Article  Google Scholar 

  • Bishop CM. (2006). Pattern Recognition and Machine Learning, Springer, Berlin Heidelberg New York.

    Book  MATH  Google Scholar 

  • Brox T and Weickert J. (2004). “Level set based image segmentation with multiple regions.” Pattern Recognit, 3175, 415-423.

    Google Scholar 

  • Brox T and Weickert J. (2006). “Level set segmentation with multiple regions.” IEEE Trans Image Process, 15(10), 3213-3218.

    Article  Google Scholar 

  • Caselles V, Kimmel R, and Sapiro G. (1997). “Geodesic active contours.” Int J Comput Vis, 22(1), 61-79.

    Article  MATH  Google Scholar 

  • Chan TF and Vese LA. (2001). “Active contours without edges.” IEEE Trans Image Process, 10(2), 266-277.

    Article  MATH  Google Scholar 

  • Cohen I, Cohen LD, and Ayache N. (1992). “Using deformable surfaces to segment 3-D images and infer differential structures.” Cvgip-Image Understanding, 56 (2), 242-263.

    Article  MATH  Google Scholar 

  • Cootes TF, Edwards GJ, and Taylor CJ. (2001). “Active appearance models.” IEEE Trans Pattern Anal Machine Intell, 23(6), 681-685.

    Article  Google Scholar 

  • Cootes TF, Hill A, Taylor CJ, and Haslam J. (1994). “Use of active shape models for locating structure in medical images.” Image Vis Comput, 12(6), 355-365.

    Article  Google Scholar 

  • Cootes TF, Taylor CJ, Cooper DH, and Graham J. (1995). “Active shape models - Their training and application.” Comput Vis Image Understanding, 61(1), 38-59.

    Article  Google Scholar 

  • de Bruijne M, van Ginneken B, Viergever MA, and Niessen WJ. (2004). “Inter-active segmentation of abdominal aortic aneurysms in CTA images.” Med Image Anal, 8(2), 127-138.

    Article  Google Scholar 

  • De Buck S, Maes F, Ector J, Bogaert J, Dymarkowski S, Heidbuchel H, and Suetens P. (2005). “An augmented reality system for patient-specific guidance of cardiac catheter ablation procedures.” IEEE Trans Med Imaging, 24(11), 1512-1524.

    Article  Google Scholar 

  • Descoteaux M, Audette M, Chinzei K, and Siddiqi K. (2006). “Bone enhancement filtering: Application to sinus bone segmentation and simulation of pituitary surgery.” Comput Aided Surg, 11(5), 247-255.

    Article  Google Scholar 

  • Ding M and Fenster A. (2004). “Projection-based needle segmentation in 3D ultrasound images.” Comput Aided Surg, 9(5), 193-201.

    Article  Google Scholar 

  • Ding M, Wei Z, Gardi L, Downey DB, and Fenster A. (2006). “Needle and seed segmentation in intra-operative 3D ultrasound-guided prostate brachytherapy.” Ultrasonics, 44(Suppl 1), e331-e336.

    Google Scholar 

  • Doignon C, Graebling P, and de Mathelin M. (2005). “Real-time segmentation of surgical instruments inside the abdominal cavity using a joint hue saturation color feature.” Real-Time Imaging, 11(5-6), 429-442.

    Article  Google Scholar 

  • Duda RO, Hart PE, and Stork DG. (2000). Pattern Classification, Second Edition, ISBN: 987-0-471-05669-0, Wiley Interscience.

    Google Scholar 

  • Ehrhardt J, Handels H, Malina T, Strathmann B, Plotz W, and Poppl SJ. (2001). “Atlas-based segmentation of bone structures to support the virtual planning of hip operations.” Int J Med Inf, 64(2-3), 439-447.

    Article  Google Scholar 

  • Frangi AF, Rueckert D, Schnabel JA, and Niessen WJ. (2002). “Automatic con-struction of multiple-object three-dimensional statistical shape models: Appli-cation to cardiac modeling.” IEEE Trans Med Imaging, 21(9), 1151-1166.

    Article  Google Scholar 

  • Freedman D, Radke RJ, Zhang T, Jeong Y, Lovelock DM, and Chen GT. (2005). “Model-based segmentation of medical imagery by matching distributions.” IEEE Trans Med Imaging, 24(3), 281-292.

    Article  Google Scholar 

  • Ghanei A, Soltanian-Zadeh H, Ratkewicz A, and Yin FF. (2001). “A three-dimensional deformable model for segmentation of human prostate from ultrasound images.” Med Phys, 28(10), 2147-2153.

    Article  Google Scholar 

  • Hata N, Muragaki Y, Inomata T, Maruyama T, Iseki H, Hori T, and Dohi T. (2005). “Intraoperative tumor segmentation and volume measurement in MRI-guided glioma surgery for tumor resection rate control.” Acad Radiol, 12(1), 116-122.

    Article  Google Scholar 

  • Hawkes DJ, Barratt D, Blackall JM, Chan C, Edwards PJ, Rhode K, Penney GP, McClelland J, and Hill DL. (2005). “Tissue deformation and shape models in image-guided interventions: A discussion paper.” Med Image Anal, 9(2), 163-175.

    Article  Google Scholar 

  • Hoad CL and Martel AL. (2002). “Segmentation of MR images for computer-assisted surgery of the lumbar spine.” Phys Med Biol, 47(19), 3503-3517.

    Article  Google Scholar 

  • Hodge AC, Fenster A, Downey DB, and Ladak HM. (2006). “Prostate boundary segmentation from ultrasound images using 2D active shape models: Opti-misation and extension to 3D.” Comput Methods Programs Biomed, 84(2-3), 99-113.

    Article  Google Scholar 

  • Kang Y, Engelke K, and Kalender WA. (2004). “Interactive 3D editing tools for image segmentation.” Med Image Anal, 8(1), 35-46.

    Article  Google Scholar 

  • Kass M, Witkin A, and Terzopoulos D. (1987). “Snakes - active contour models.” Int J Comput Vis, 1(4), 321-331.

    Article  Google Scholar 

  • Kaus MR, von Berg J, Weese J, Niessen W, and Pekar V. (2004). “Automated segmentation of the left ventricle in cardiac MRI.” Med Image Anal, 8(3), 245-254.

    Article  Google Scholar 

  • Kichenassamy S, Kuma A, Olver PJ, Tannenbaum A, and Yezzi AJ. (1995). “Gradient flows and geometric active contour models.” Proceedings of the Fifth International Conference on Computer Vision, IEEE Computer Society Press, Washington DC, USA, 810-815.

    Google Scholar 

  • Lazebnik RS, Weinberg BD, Breen MS, Lewin JS, and Wilson DL. (2005). “Semi-automatic parametric model-based 3D lesion segmentation for evaluation of MR-guided radiofrequency ablation therapy.” Acad Radiol, 12(12), 1491-1501.

    Article  Google Scholar 

  • Letteboer MM, Olsen OF, Dam EB, Willems PW, Viergever MA, and Niessen WJ. (2004). “Segmentation of tumors in magnetic resonance brain images using an interactive multiscale watershed algorithm.” Acad Radiol, 11(10), 1125-1138.

    Article  Google Scholar 

  • Lorigo LM, Faugeras OD, Grimson WEL, Keriven R, Kikinis R, Nabavi A, and Westin CF. (2001). “CURVES: Curve evolution for vessel segmentation.” Med Image Anal, 5(3), 195-206.

    Article  Google Scholar 

  • Malladi R, Sethian JA, and Vemuri BC. (1995). “Shape modeling with front propagation - A level set approach.” IEEE Trans Pattern Anal Machine Intell, 17 (2), 158-175.

    Article  Google Scholar 

  • Manniesing R, Velthuis BK, van Leeuwen MS, van der Schaaf IC, van Laar PJ, and Niessen WJ. (2006). “Level set based cerebral vasculature segmentation and diameter quantification in CT angiography.” Med Image Anal, 10(2), 200-214.

    Article  Google Scholar 

  • Mazonakis M, Damilakis J, Varveris H, Prassopoulos P, and Gourtsoyiannis N. (2001). “Image segmentation in treatment planning for prostate cancer using the region growing technique.” Br J Radiol, 74(879), 243-248.

    Google Scholar 

  • Mazzara GP, Velthuizen RP, Pearlman JL, Greenberg HM, and Wagner H. (2004). “Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation.” Int J Radiat Oncol Biol Phys, 59(1), 300-312.

    Google Scholar 

  • Metaxas DN. (1996). Physics-Based Deformable Models Applications to Computer Vision, Graphics, and Medical Imaging, Kluwer Academic, Boston MA.

    Google Scholar 

  • Mitchell SC, Lelieveldt BPF, van der Geest RJ, Bosch HG, Reiber JHC, and Sonka M. (2001). “Multistage hybrid active appearance model matching: Segmentation of left and right ventricles in cardiac MR images.” IEEE Trans Med Imaging, 20(5), 415-423.

    Article  Google Scholar 

  • Okazawa SH, Ebrahimi R, Chuang J, Rohling RN, and Salcudean SE. (2006). “Methods for segmenting curved needles in ultrasound images.” Med Image Anal, 10(3), 330-342.

    Article  Google Scholar 

  • Olabarriaga SD and Smeulders AWM. (2001). “Interaction in the segmentation of medical images: A survey.” Med Image Anal, 5(2), 127-142.

    Article  Google Scholar 

  • Osher S and Sethian JA. (1988). “Fronts propagating with curvature-dependent speed - Algorithms based on Hamilton-Jacobi formulations.” J Comput Phys, 79 (1), 12-49.

    Article  MATH  MathSciNet  Google Scholar 

  • Pettersson J, Knutsson H, Nordqvist P, and Borga M. (2006). “A hip surgery simulator based on patient specific models generated by automatic segmen-tation.” Stud Health Technol Inf, 119, 431-436.

    Google Scholar 

  • Pizer SM, Fletcher PT, Joshi S, Gash AG, Stough J, Thall A, Tracton G, and Chaney EL. (2005). “A method and software for segmentation of anatomic object ensembles by deformable m-reps.” Med Phys, 32(5), 1335-1345.

    Article  Google Scholar 

  • Pizer SM, Fletcher PT, Joshi S, Thall A, Chen JZ, Fridman Y, Fritsch DS, Gash AG, Glotzer JM, Jiroutek MR, Lu CL, Muller KE, Tracton G, Yushkevich P, and Chaney EL. (2003). “Deformable M-reps for 3D medical image segmen-tation.” Int J Comput Vis, 55(2-3), 85-106.

    Article  Google Scholar 

  • Pizer SM, Fritsch DS, Yushkevich PA, Johnson VE, and Chaney EL. (1999). “Segmentation, registration, and measurement of shape variation via image object shape.” IEEE Trans Med Imaging, 18(10), 851-865.

    Article  Google Scholar 

  • Pommert A, Hohne KH, Burmester E, Gehrmann S, Leuwer R, Petersik A, Pflesser B, and Tiede U. (2006). “Computer-based anatomy a prerequisite for computer-assisted radiology and surgery.” Acad Radiol, 13(1), 104-112.

    Article  Google Scholar 

  • Popple RA, Griffith HR, Sawrie SM, Fiveash JB, and Brezovich IA. (2006). “Implementation of talairach atlas based automated brain segmentation for radiation therapy dosimetry.” Technol Cancer Res Treat, 5(1), 15-21.

    Google Scholar 

  • Prastawa M, Bullitt E, Ho S, and Gerig G. (2004). “A brain tumor segmentation framework based on outlier detection.” Med Image Anal, 8(3), 275-283.

    Article  Google Scholar 

  • Rueckert D, Frangi AF, and Schnabel JA. (2003). “Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration.” IEEE Trans Med Imaging, 22(8), 1014-1025.

    Article  Google Scholar 

  • Sermesant M, Delingette H, and Ayache N. (2006). “An electromechanical model of the heart for image analysis and simulation.” IEEE Trans Med Imaging, 25 (5), 612-625.

    Article  Google Scholar 

  • Sierra R, Zsemlye G, Szekely G, and Bajka M. (2006). “Generation of variable anatomical models for surgical training simulators.” Med Image Anal, 10(2), 275-285.

    Article  Google Scholar 

  • Singh A, Goldgof D, and Terzopoulos D (Eds.). (1998). Deformable Models in Medical Image Analysis, IEEE Computer Society Press, Los Alamitos, CA.

    Google Scholar 

  • Soler L, Delingette H, Malandain G, Montagnat J, Ayache N, Koehl C, Dourthe O, Malassagne B, Smith M, Mutter D, and Marescaux J. (2001). “Fully automatic anatomical, pathological, and functional segmentation from CT scans for hepatic surgery.” Comput Aided Surg, 6(3), 131-142.

    Article  Google Scholar 

  • Sra J, Narayan G, Krum D, and Akhtar M. (2006). “Registration of 3D computed tomographic images with interventional systems: Implications for catheter ablation of atrial fibrillation.” J Interv Card Electrophysiol, 16, 141-148.

    Article  Google Scholar 

  • Staib LH and Duncan JS. (1996). “Model-based deformable surface finding for medical images.” IEEE Trans Med Imaging, 15(5), 720-731.

    Article  Google Scholar 

  • Suri JS and Farag A (Eds.). (2007). Deformable Models: Biomedical and Clinical Applications, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Terzopoulos D and Metaxas D. (1991). “Dynamic 3d Models with Local and Global Deformations - Deformable Superquadrics.” IEEE Trans Pattern Anal Mach Intell, 13(7), 703-714.

    Article  Google Scholar 

  • Tsai A, Yezzi A, Jr., Wells W, Tempany C, Tucker D, Fan A, Grimson WE, and Willsky A. (2003). “A shape-based approach to the segmentation of medical imagery using level sets.” IEEE Trans Med Imaging, 22(2), 137-154.

    Article  Google Scholar 

  • van Bemmel CM, Viergever MA, and Niessen WJ. (2004). “Semiautomatic segmentation of 3D contrast-enhanced MR and stenosis quantification angio-grams of the internal carotid artery.” Magn Resonance Med, 51(4), 753-760.

    Article  Google Scholar 

  • van Ginneken B, Frangi AF, Staal JJ, Romeny BMT, and Viergever MA. (2002). “Active shape model segmentation with optimal features.” IEEE Trans Med Imaging, 21(8), 924-933.

    Article  Google Scholar 

  • Wei Z, Ding M, Downey D, and Fenster A. (2005). “3D TRUS guided robot assisted prostate brachytherapy.” Proc MICCAI , Part II, Lecture Notes in Computer Science 3750, 17-24.

    Article  Google Scholar 

  • Wierzbicki M, Drangova M, Guiraudon G, and Peters T. (2004). “Validation of dynamic heart models obtained using non-linear registration for virtual reality training, planning, and guidance of minimally invasive cardiac surgeries.” Med Image Anal, 8(3), 387-401.

    Article  Google Scholar 

  • Wu Z, Paulsen KD, and Sullivan JM, Jr. (2005). “Adaptive model initialization and deformation for automatic segmentation of T1-weighted brain MRI data.” IEEE Trans Biomed Eng, 52(6), 1128-1131.

    Article  Google Scholar 

  • Yang J and Duncan JS. (2004). “3D image segmentation of deformable objects with joint shape-intensity prior models using level sets.” Med Image Anal, 8(3), 285-294.

    Article  Google Scholar 

  • Yang J, Staib LH, and Duncan JS. (2004). “Neighbor-constrained segmentation with level set based 3-D deformable models.” IEEE Trans Med Imaging, 23(8), 940-948.

    Article  Google Scholar 

  • Zeng XL, Staib LH, Schultz RT, and Duncan JS. (1999). “Segmentation and measurement of the cortex from 3-D MR images using coupled-surfaces propagation.” IEEE Trans Med Imaging, 18(10), 927-937.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Niessen, W. (2008). Model-Based Image Segmentation for Image-Guided Interventions. In: Peters, T., Cleary, K. (eds) Image-Guided Interventions. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73858-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-73858-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-73856-7

  • Online ISBN: 978-0-387-73858-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics