Model-Based Image Segmentation for Image-Guided Interventions

  • Wiro Niessen

Medical image segmentation plays an important role in the field of image-guided surgery and minimally invasive interventions. By creating three-dimensional anatomical models from individual patients, training, planning, and computer guidance during surgery can be improved. This chapter briefly describes the most frequently used image segmentation techniques, shows examples of their application and potential in the field of image-guided surgery and interventions, and discusses future trends.


Image Segmentation Deformable Model Active Appearance Model Active Shape Model Statistical Shape Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alderliesten T, Konings MK, and Niessen WJ. (2006). “Robustness and complexity of a minimally invasive vascular intervention simulation system.” Med Phys, 33 (12), 4758-4769.CrossRefGoogle Scholar
  2. Baert SAM, Viergever MA, and Niessen WJ. (2003). “Guide-wire tracking during endovascular interventions.” IEEE Trans Med Imaging, 22(8), 965-972.CrossRefGoogle Scholar
  3. Bishop CM. (2006). Pattern Recognition and Machine Learning, Springer, Berlin Heidelberg New York.MATHCrossRefGoogle Scholar
  4. Brox T and Weickert J. (2004). “Level set based image segmentation with multiple regions.” Pattern Recognit, 3175, 415-423.Google Scholar
  5. Brox T and Weickert J. (2006). “Level set segmentation with multiple regions.” IEEE Trans Image Process, 15(10), 3213-3218.CrossRefGoogle Scholar
  6. Caselles V, Kimmel R, and Sapiro G. (1997). “Geodesic active contours.” Int J Comput Vis, 22(1), 61-79.MATHCrossRefGoogle Scholar
  7. Chan TF and Vese LA. (2001). “Active contours without edges.” IEEE Trans Image Process, 10(2), 266-277.MATHCrossRefGoogle Scholar
  8. Cohen I, Cohen LD, and Ayache N. (1992). “Using deformable surfaces to segment 3-D images and infer differential structures.” Cvgip-Image Understanding, 56 (2), 242-263.MATHCrossRefGoogle Scholar
  9. Cootes TF, Edwards GJ, and Taylor CJ. (2001). “Active appearance models.” IEEE Trans Pattern Anal Machine Intell, 23(6), 681-685.CrossRefGoogle Scholar
  10. Cootes TF, Hill A, Taylor CJ, and Haslam J. (1994). “Use of active shape models for locating structure in medical images.” Image Vis Comput, 12(6), 355-365.CrossRefGoogle Scholar
  11. Cootes TF, Taylor CJ, Cooper DH, and Graham J. (1995). “Active shape models - Their training and application.” Comput Vis Image Understanding, 61(1), 38-59.CrossRefGoogle Scholar
  12. de Bruijne M, van Ginneken B, Viergever MA, and Niessen WJ. (2004). “Inter-active segmentation of abdominal aortic aneurysms in CTA images.” Med Image Anal, 8(2), 127-138.CrossRefGoogle Scholar
  13. De Buck S, Maes F, Ector J, Bogaert J, Dymarkowski S, Heidbuchel H, and Suetens P. (2005). “An augmented reality system for patient-specific guidance of cardiac catheter ablation procedures.” IEEE Trans Med Imaging, 24(11), 1512-1524.CrossRefGoogle Scholar
  14. Descoteaux M, Audette M, Chinzei K, and Siddiqi K. (2006). “Bone enhancement filtering: Application to sinus bone segmentation and simulation of pituitary surgery.” Comput Aided Surg, 11(5), 247-255.CrossRefGoogle Scholar
  15. Ding M and Fenster A. (2004). “Projection-based needle segmentation in 3D ultrasound images.” Comput Aided Surg, 9(5), 193-201.CrossRefGoogle Scholar
  16. Ding M, Wei Z, Gardi L, Downey DB, and Fenster A. (2006). “Needle and seed segmentation in intra-operative 3D ultrasound-guided prostate brachytherapy.” Ultrasonics, 44(Suppl 1), e331-e336.Google Scholar
  17. Doignon C, Graebling P, and de Mathelin M. (2005). “Real-time segmentation of surgical instruments inside the abdominal cavity using a joint hue saturation color feature.” Real-Time Imaging, 11(5-6), 429-442.CrossRefGoogle Scholar
  18. Duda RO, Hart PE, and Stork DG. (2000). Pattern Classification, Second Edition, ISBN: 987-0-471-05669-0, Wiley Interscience.Google Scholar
  19. Ehrhardt J, Handels H, Malina T, Strathmann B, Plotz W, and Poppl SJ. (2001). “Atlas-based segmentation of bone structures to support the virtual planning of hip operations.” Int J Med Inf, 64(2-3), 439-447.CrossRefGoogle Scholar
  20. Frangi AF, Rueckert D, Schnabel JA, and Niessen WJ. (2002). “Automatic con-struction of multiple-object three-dimensional statistical shape models: Appli-cation to cardiac modeling.” IEEE Trans Med Imaging, 21(9), 1151-1166.CrossRefGoogle Scholar
  21. Freedman D, Radke RJ, Zhang T, Jeong Y, Lovelock DM, and Chen GT. (2005). “Model-based segmentation of medical imagery by matching distributions.” IEEE Trans Med Imaging, 24(3), 281-292.CrossRefGoogle Scholar
  22. Ghanei A, Soltanian-Zadeh H, Ratkewicz A, and Yin FF. (2001). “A three-dimensional deformable model for segmentation of human prostate from ultrasound images.” Med Phys, 28(10), 2147-2153.CrossRefGoogle Scholar
  23. Hata N, Muragaki Y, Inomata T, Maruyama T, Iseki H, Hori T, and Dohi T. (2005). “Intraoperative tumor segmentation and volume measurement in MRI-guided glioma surgery for tumor resection rate control.” Acad Radiol, 12(1), 116-122.CrossRefGoogle Scholar
  24. Hawkes DJ, Barratt D, Blackall JM, Chan C, Edwards PJ, Rhode K, Penney GP, McClelland J, and Hill DL. (2005). “Tissue deformation and shape models in image-guided interventions: A discussion paper.” Med Image Anal, 9(2), 163-175.CrossRefGoogle Scholar
  25. Hoad CL and Martel AL. (2002). “Segmentation of MR images for computer-assisted surgery of the lumbar spine.” Phys Med Biol, 47(19), 3503-3517.CrossRefGoogle Scholar
  26. Hodge AC, Fenster A, Downey DB, and Ladak HM. (2006). “Prostate boundary segmentation from ultrasound images using 2D active shape models: Opti-misation and extension to 3D.” Comput Methods Programs Biomed, 84(2-3), 99-113.CrossRefGoogle Scholar
  27. Kang Y, Engelke K, and Kalender WA. (2004). “Interactive 3D editing tools for image segmentation.” Med Image Anal, 8(1), 35-46.CrossRefGoogle Scholar
  28. Kass M, Witkin A, and Terzopoulos D. (1987). “Snakes - active contour models.” Int J Comput Vis, 1(4), 321-331.CrossRefGoogle Scholar
  29. Kaus MR, von Berg J, Weese J, Niessen W, and Pekar V. (2004). “Automated segmentation of the left ventricle in cardiac MRI.” Med Image Anal, 8(3), 245-254.CrossRefGoogle Scholar
  30. Kichenassamy S, Kuma A, Olver PJ, Tannenbaum A, and Yezzi AJ. (1995). “Gradient flows and geometric active contour models.” Proceedings of the Fifth International Conference on Computer Vision, IEEE Computer Society Press, Washington DC, USA, 810-815.Google Scholar
  31. Lazebnik RS, Weinberg BD, Breen MS, Lewin JS, and Wilson DL. (2005). “Semi-automatic parametric model-based 3D lesion segmentation for evaluation of MR-guided radiofrequency ablation therapy.” Acad Radiol, 12(12), 1491-1501.CrossRefGoogle Scholar
  32. Letteboer MM, Olsen OF, Dam EB, Willems PW, Viergever MA, and Niessen WJ. (2004). “Segmentation of tumors in magnetic resonance brain images using an interactive multiscale watershed algorithm.” Acad Radiol, 11(10), 1125-1138.CrossRefGoogle Scholar
  33. Lorigo LM, Faugeras OD, Grimson WEL, Keriven R, Kikinis R, Nabavi A, and Westin CF. (2001). “CURVES: Curve evolution for vessel segmentation.” Med Image Anal, 5(3), 195-206.CrossRefGoogle Scholar
  34. Malladi R, Sethian JA, and Vemuri BC. (1995). “Shape modeling with front propagation - A level set approach.” IEEE Trans Pattern Anal Machine Intell, 17 (2), 158-175.CrossRefGoogle Scholar
  35. Manniesing R, Velthuis BK, van Leeuwen MS, van der Schaaf IC, van Laar PJ, and Niessen WJ. (2006). “Level set based cerebral vasculature segmentation and diameter quantification in CT angiography.” Med Image Anal, 10(2), 200-214.CrossRefGoogle Scholar
  36. Mazonakis M, Damilakis J, Varveris H, Prassopoulos P, and Gourtsoyiannis N. (2001). “Image segmentation in treatment planning for prostate cancer using the region growing technique.” Br J Radiol, 74(879), 243-248.Google Scholar
  37. Mazzara GP, Velthuizen RP, Pearlman JL, Greenberg HM, and Wagner H. (2004). “Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation.” Int J Radiat Oncol Biol Phys, 59(1), 300-312.Google Scholar
  38. Metaxas DN. (1996). Physics-Based Deformable Models Applications to Computer Vision, Graphics, and Medical Imaging, Kluwer Academic, Boston MA.Google Scholar
  39. Mitchell SC, Lelieveldt BPF, van der Geest RJ, Bosch HG, Reiber JHC, and Sonka M. (2001). “Multistage hybrid active appearance model matching: Segmentation of left and right ventricles in cardiac MR images.” IEEE Trans Med Imaging, 20(5), 415-423.CrossRefGoogle Scholar
  40. Okazawa SH, Ebrahimi R, Chuang J, Rohling RN, and Salcudean SE. (2006). “Methods for segmenting curved needles in ultrasound images.” Med Image Anal, 10(3), 330-342.CrossRefGoogle Scholar
  41. Olabarriaga SD and Smeulders AWM. (2001). “Interaction in the segmentation of medical images: A survey.” Med Image Anal, 5(2), 127-142.CrossRefGoogle Scholar
  42. Osher S and Sethian JA. (1988). “Fronts propagating with curvature-dependent speed - Algorithms based on Hamilton-Jacobi formulations.” J Comput Phys, 79 (1), 12-49.MATHCrossRefMathSciNetGoogle Scholar
  43. Pettersson J, Knutsson H, Nordqvist P, and Borga M. (2006). “A hip surgery simulator based on patient specific models generated by automatic segmen-tation.” Stud Health Technol Inf, 119, 431-436.Google Scholar
  44. Pizer SM, Fletcher PT, Joshi S, Gash AG, Stough J, Thall A, Tracton G, and Chaney EL. (2005). “A method and software for segmentation of anatomic object ensembles by deformable m-reps.” Med Phys, 32(5), 1335-1345.CrossRefGoogle Scholar
  45. Pizer SM, Fletcher PT, Joshi S, Thall A, Chen JZ, Fridman Y, Fritsch DS, Gash AG, Glotzer JM, Jiroutek MR, Lu CL, Muller KE, Tracton G, Yushkevich P, and Chaney EL. (2003). “Deformable M-reps for 3D medical image segmen-tation.” Int J Comput Vis, 55(2-3), 85-106.CrossRefGoogle Scholar
  46. Pizer SM, Fritsch DS, Yushkevich PA, Johnson VE, and Chaney EL. (1999). “Segmentation, registration, and measurement of shape variation via image object shape.” IEEE Trans Med Imaging, 18(10), 851-865.CrossRefGoogle Scholar
  47. Pommert A, Hohne KH, Burmester E, Gehrmann S, Leuwer R, Petersik A, Pflesser B, and Tiede U. (2006). “Computer-based anatomy a prerequisite for computer-assisted radiology and surgery.” Acad Radiol, 13(1), 104-112.CrossRefGoogle Scholar
  48. Popple RA, Griffith HR, Sawrie SM, Fiveash JB, and Brezovich IA. (2006). “Implementation of talairach atlas based automated brain segmentation for radiation therapy dosimetry.” Technol Cancer Res Treat, 5(1), 15-21.Google Scholar
  49. Prastawa M, Bullitt E, Ho S, and Gerig G. (2004). “A brain tumor segmentation framework based on outlier detection.” Med Image Anal, 8(3), 275-283.CrossRefGoogle Scholar
  50. Rueckert D, Frangi AF, and Schnabel JA. (2003). “Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration.” IEEE Trans Med Imaging, 22(8), 1014-1025.CrossRefGoogle Scholar
  51. Sermesant M, Delingette H, and Ayache N. (2006). “An electromechanical model of the heart for image analysis and simulation.” IEEE Trans Med Imaging, 25 (5), 612-625.CrossRefGoogle Scholar
  52. Sierra R, Zsemlye G, Szekely G, and Bajka M. (2006). “Generation of variable anatomical models for surgical training simulators.” Med Image Anal, 10(2), 275-285.CrossRefGoogle Scholar
  53. Singh A, Goldgof D, and Terzopoulos D (Eds.). (1998). Deformable Models in Medical Image Analysis, IEEE Computer Society Press, Los Alamitos, CA.Google Scholar
  54. Soler L, Delingette H, Malandain G, Montagnat J, Ayache N, Koehl C, Dourthe O, Malassagne B, Smith M, Mutter D, and Marescaux J. (2001). “Fully automatic anatomical, pathological, and functional segmentation from CT scans for hepatic surgery.” Comput Aided Surg, 6(3), 131-142.CrossRefGoogle Scholar
  55. Sra J, Narayan G, Krum D, and Akhtar M. (2006). “Registration of 3D computed tomographic images with interventional systems: Implications for catheter ablation of atrial fibrillation.” J Interv Card Electrophysiol, 16, 141-148.CrossRefGoogle Scholar
  56. Staib LH and Duncan JS. (1996). “Model-based deformable surface finding for medical images.” IEEE Trans Med Imaging, 15(5), 720-731.CrossRefGoogle Scholar
  57. Suri JS and Farag A (Eds.). (2007). Deformable Models: Biomedical and Clinical Applications, Springer-Verlag, New York.MATHGoogle Scholar
  58. Terzopoulos D and Metaxas D. (1991). “Dynamic 3d Models with Local and Global Deformations - Deformable Superquadrics.” IEEE Trans Pattern Anal Mach Intell, 13(7), 703-714.CrossRefGoogle Scholar
  59. Tsai A, Yezzi A, Jr., Wells W, Tempany C, Tucker D, Fan A, Grimson WE, and Willsky A. (2003). “A shape-based approach to the segmentation of medical imagery using level sets.” IEEE Trans Med Imaging, 22(2), 137-154.CrossRefGoogle Scholar
  60. van Bemmel CM, Viergever MA, and Niessen WJ. (2004). “Semiautomatic segmentation of 3D contrast-enhanced MR and stenosis quantification angio-grams of the internal carotid artery.” Magn Resonance Med, 51(4), 753-760.CrossRefGoogle Scholar
  61. van Ginneken B, Frangi AF, Staal JJ, Romeny BMT, and Viergever MA. (2002). “Active shape model segmentation with optimal features.” IEEE Trans Med Imaging, 21(8), 924-933.CrossRefGoogle Scholar
  62. Wei Z, Ding M, Downey D, and Fenster A. (2005). “3D TRUS guided robot assisted prostate brachytherapy.” Proc MICCAI , Part II, Lecture Notes in Computer Science 3750, 17-24.CrossRefGoogle Scholar
  63. Wierzbicki M, Drangova M, Guiraudon G, and Peters T. (2004). “Validation of dynamic heart models obtained using non-linear registration for virtual reality training, planning, and guidance of minimally invasive cardiac surgeries.” Med Image Anal, 8(3), 387-401.CrossRefGoogle Scholar
  64. Wu Z, Paulsen KD, and Sullivan JM, Jr. (2005). “Adaptive model initialization and deformation for automatic segmentation of T1-weighted brain MRI data.” IEEE Trans Biomed Eng, 52(6), 1128-1131.CrossRefGoogle Scholar
  65. Yang J and Duncan JS. (2004). “3D image segmentation of deformable objects with joint shape-intensity prior models using level sets.” Med Image Anal, 8(3), 285-294.CrossRefGoogle Scholar
  66. Yang J, Staib LH, and Duncan JS. (2004). “Neighbor-constrained segmentation with level set based 3-D deformable models.” IEEE Trans Med Imaging, 23(8), 940-948.CrossRefGoogle Scholar
  67. Zeng XL, Staib LH, Schultz RT, and Duncan JS. (1999). “Segmentation and measurement of the cortex from 3-D MR images using coupled-surfaces propagation.” IEEE Trans Med Imaging, 18(10), 927-937.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Wiro Niessen
    • 1
  1. 1.Delft University of TechnologyNetherlands

Personalised recommendations