Advertisement

Nonrigid Registration

  • David Hawkes
  • Dean Barratt
  • Tim Carter
  • Jamie McClelland
  • Bill Crum

This chapter describes the convergence of technologies between interventional radiology, image-guided surgery, and image-directed therapy. Nonrigid registration has an important part to play in this trend and different approaches to nonrigid registration are summarized. The role of nonrigid registration for image-guided procedures in the building and instantiation of anatomical atlases, modeling large deformations of soft tissues by incorporating biomechanical models, and modeling cyclic respiratory and cardiac motion for image guidance is described. These concepts are illustrated with descriptions of prototype systems with applications in the brain, breast, lung, liver, and orthopaedics.

Keywords

Deep Brain Stimulation Biomechanical Model Nonrigid Registration Breathing Cycle Active Appearance Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Audette, M.A., Siddiqi, K., Peters, T.M. (1999) “Level-set surface segmentation and fast cortical range image tracking for computing intrasurgical deformations”. Proc. MICCAI’99, Lect Notes Comput Sci; 1679:788-97.CrossRefGoogle Scholar
  2. Aylward, S.R., Jomier, J., Weeks, S., Bullitt, E. (2003) “Registration and analysis of vascular images”. Int J Comput Vision; 55:123-38.CrossRefGoogle Scholar
  3. Bajcsy, R., Kovacic, S. (1989) “Multiresolution elastic matching”. Comp Vision Graphi Image Process; 46:1-21.CrossRefGoogle Scholar
  4. Barratt, D.C., Davies, A.H., Hughes, A.D., Thom, S.A., Humphries, K.N. (2001) “Optimisation and evaluation of an electromagnetic tracking device for high-accuracy three-dimensional ultrasound imaging of the carotid arteries”. Ultra-sound Med Biol; 27:957-968.CrossRefGoogle Scholar
  5. Barratt, D.C., Penney, G.P., Chan, C.S.K., Slomczykowski, M., Carter, T.J., Edwards, P.J., Hawkes, D.J. (2006) “Self-calibrating 3D-ultrasound-based bone registration for minimally-invasive orthopaedic surgery”. IEEE Trans Med Imag; 25:312-323.CrossRefGoogle Scholar
  6. Bathe, K.-J. (1996) Finite element procedures. Prentice Hall: Englewood cliffs NJ.Google Scholar
  7. Besl, P.J. and McKay, N.D. (1992) “A method for registration of 3D shapes”. IEEE Trans PAMI; 14:239-256.Google Scholar
  8. Blackall, J.M., Penney, G.P., King, A.P., Hawkes, D.J. (2005) “Alignment of sparse freehand 3D ultrasound with preoperative images of the liver and an inter-ventional plan using models of respiratory motion and deformation”. IEEE Trans Med Imag; 24:1405-1416.CrossRefGoogle Scholar
  9. Bookstein F.L. (1989) “Principal warps - thin-plate splines and the decomposition of deformations”. IEEE Trans Pattern Anal; 11:567-85.MATHCrossRefGoogle Scholar
  10. Bro-Nielsen, M. and Gramkow, C. (1996) “Fast fluid registration of medical images”. Proc Visual Biomed Comput Lect Notes Comput Sci; 1131:267-76.Google Scholar
  11. Bucholz, R.D., Yeh, D.D., Trobaugh, J., McDurmont, L.L., Sturm, C.D., Baumann, C., Henderson, J.M., Levy, A., Kessman, P. (1997) “The correction of stereo-tactic inaccuracy caused by brain shift using an intraoperative ultrasound device”. Proc CVRMed-MRCAS’97, Lect Notes Comput Sci; 1205:459-466.CrossRefGoogle Scholar
  12. Cahill, N.D., Noble, J.A., Hawkes, D.J. (2007) “Fourier methods for nonparametric image registration”. Proc CVPR 2007. Minneapolis, MN, USA.Google Scholar
  13. Carter, T.J., Tanner, C., Crum, W.R., Beechey-Newman, N, Hawkes, D.J. (2006) “A framework for image-guided breast surgery”. Med Imag Augmented Reality, LNCS; 4091:203-210.CrossRefGoogle Scholar
  14. Chan, C.S.K., Barratt, D.C., Edwards, P.J., Penney, G.P., Slomczykowski, M., Carter, T.J., Hawkes, D.J. (2004) “Cadaver validation of the use of ultrasound for 3D model instantiation of bony anatomy in image guided orthopaedic surgery”. Proc MICCAI, Lect Notes Comput Sci; 3216:397-404.Google Scholar
  15. Christensen, G., Joshi, S., Miller, M. (1996) “Volumetric transformation of brain anatomy”. IEEE Trans Med Imag; 16:864-877.CrossRefGoogle Scholar
  16. Clatz, O., Delingette, H., Bardinet, E., Dormont, D., Ayache N. (2003) “Patient-specific biomechanical model of the brain: Application to Parkinson’s disease procedure, in surgery simulation and soft tissue modeling”. Proc Lecture Notes Comput Sci; 2673:321-331.CrossRefGoogle Scholar
  17. Coolens, C., White, M., et al. (2007) “Free breathing gated radiotherapy with external markers using MRI derived models of hepatic motion”. Proc XVth International Conference on the use of Computers in Radiation Therapy, Toronto Canada, June 4-7, 2007.Google Scholar
  18. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J. (1995) “Active shape models -Their training and application”. Comput Vision Image Understanding; 61(1): 38-59.CrossRefGoogle Scholar
  19. Cootes, T.F., Edwards, G.J., Taylor, C.J. (2001) “Active Appearance Models”, IEEE Pattern Anal Mach Intell, 23, 6, 681-685.CrossRefGoogle Scholar
  20. Crum, W.R., Griffin, L.D., Hill, D.L.G., Hawkes, D.J. (2003) “Zen and the art of medical image registration: Correspondence, homology and quality”. Neuro-Image; 20:1425-1437.Google Scholar
  21. Crum, W.R., Hartkens, T., Hill, D.L.G. (2004) “Non-rigid image registration: Theory and practice”. Br J Radiol; 77:S140-153.CrossRefGoogle Scholar
  22. Crum, W.R., Tanner, C., Hawkes, D.J. (2005) “Anisotropic multiscale fluid regis-tration: evaluation in magnetic resonance breast imaging”. Phys Med Biol; 50:5153-5174.CrossRefGoogle Scholar
  23. D’Haese, P.F., Cetinkaya, E., Konrad, P.E., Kao, C., Dawant, B.M. (2005) “Computer-aided placement of deep brain stimulators: from planning to intraoperative guidance”. IEEE Trans Med Imag; 24(11):1469-78.CrossRefGoogle Scholar
  24. Edwards, P.J., Hill, D.L.G., Little, J.A., Hawkes D.J. (1997) “Deformation for image guided interventions using a three component tissue model”. Proc Inform Processing Med Imag Lect Notes Comput Sci; 1230:218-231.Google Scholar
  25. Ferrant, M., Nabavi, A., Macq, B., Jolesz, F.A., Kikinis, R., Warfield, S.K. (2001) “Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model”. IEEE Trans Med Imag; 20:1384-1397.CrossRefGoogle Scholar
  26. Fleute M., Lavallée S. (1999) “Nonrigid 3-D/2-D Registration of Images Using Statistical Models”. Proc MICCAI-2, LNCS 1679, 138-147.Google Scholar
  27. Fleute M., Lavallée S. (1998). “Building a Complete Surface Model from Sparse Data Using Statistical Shape Models: Application to Computer Assisted Knee Surgery System”. Proc MICCAI-1, LNCS 1496, 879-887.Google Scholar
  28. Fung, YC. (1993) Biomechanics: Mechanical Properties of Living Tissues. 2nd Ed. Springer-Verlag: NY.Google Scholar
  29. Gee, J.C., Reivich, M., Bajcsy, R. (1993) “Elastically deforming 3D atlas to match anatomical brain images”. J Comp Assis t Tomogr; 17:225-236.CrossRefGoogle Scholar
  30. Guo, T., Finnis, K.W.P.A.G., Peters, T.M. (2006) “Visualization and navigation system development and application for stereotactic deep-brain neurosurgeries”. Comput Aided Surg; 11(5):231-239.CrossRefGoogle Scholar
  31. Guo T., Parrent A.G., Peters T.M. (2007). “Surgical targeting accuracy analysis of six methods for subthalamic nucleus deep brain stimulation”. Computer Assisted Surgery. 12(6): 325-334.CrossRefGoogle Scholar
  32. Hagemann, A., Rohr, K., Stiehl, H.S., Spetzger, U., Gilsbach, J.M. (1999) “Bio-mechanical modeling of the human head for physically based, nonrigid image registration” IEEE Trans Med Imag; 18:875-884.CrossRefGoogle Scholar
  33. Hajnal, J.V., Hill, D.L.G., Hawkes, D.J. (eds) (2001) Medical Image Registration. CRC Press: West Palm Beach, FL. ISBN 0-8493-0064-9.Google Scholar
  34. Hartkens, T., Hill, D.L.G., Castellano-Smith, A.D., Hawkes, D.J., Maurer, C.R., Jr., Martin, A.J., Hall, W.A., Liu, H., Truwitt, C.L. (2003) “Measurement and analysis of brain deformation during neurosurgery”. IEEE Trans Med Imag; 22 (1):82-92.CrossRefGoogle Scholar
  35. Hawkes, D.J., Barratt, D., Blackall, J.M., Chan, C., Edwards, P.J., Rhode, K., Penney, G.P., Hill, D.L.G. (2005) “Tissue deformation and shape models in image-guided interventions: A discussion paper”. Med Image Anal; 8(2):163-175.CrossRefGoogle Scholar
  36. Hill, D.L.G., Batchelor, P.G., Holden, M., Hawkes, D.J. (2001) “Medical image registration.” Phys Med Bio; l46(3):R1-R45.CrossRefGoogle Scholar
  37. Lavallée, S., Merloz, P., Stindel, E., Kilian, P., Troccaz, J., Cinquin, P., Langlotz, F., Nolte, L.P. (2004) “Echomorphing: introducing an intraoperative imaging modality to reconstruct 3D bone surfaces for minimally-invasive surgery”. Proc CAOS; 38-39.Google Scholar
  38. Little, J., Hill, D.L.G., Hawkes, D.J. (1997) “Deformation incorporating rigid structures”. Comput Vision Image Understanding; 66:223-32.CrossRefGoogle Scholar
  39. Lunn, K.E., Paulsen, K.D., Roberts, D.W., Kennedy, F.E., Hartov, A., Platenik, L.A. (2003) “Nonrigid brain registration: synthesizing full volume deformation fields from model basis solutions constrained by partial volume intraoperative data”. Comp Vision Image Understanding; 89:299-317.CrossRefGoogle Scholar
  40. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P. (1997) “Multimodality image registration by maximization of mutual information”. IEEE Trans Med Imag; 16:187-198.CrossRefGoogle Scholar
  41. McClelland, J.M., Blackall, J.M., Tarte, S., Chandler, A., Hughes, S., Ahmad, S., Landau, D.B., Hawkes, D.J. (2006) “A continuous 4D motion model from multiple respiratory cycles for use in lung radiotherapy”. Med Phys; 33(9): 3348-58.CrossRefGoogle Scholar
  42. McClelland, J.R., Webb, S., McQuaid, D., Binnie, D.M., Hawkes, D.J. (2007) “Tracking “differential organ motion” with a “breathing” multileaf collimator: Magnitude of problem assessed using 4D CT data and a motion-compensation strategy”. Phys Med Biol 52, 16, 4805-4826.CrossRefGoogle Scholar
  43. Miller, K. and Chinzei, K. (2002) “Mechanical properties of brain tissue in tension”. J Biomech; 35:483-490.CrossRefGoogle Scholar
  44. Modersitzki, J. (2004) Numerical Methods for Image Registration. Oxford University Press: NY.MATHGoogle Scholar
  45. Monga, O. and Benayoun, S. (1995) “Using partial derivatives of 3D images to extract typical surface features”. Comput Vision Image Understanding; 61: 171-89.CrossRefGoogle Scholar
  46. Paulsen, K.D., Miga, M.I., Kennedy, F.E., Hoopes, P.J., Hartov, A., Roberts, D.W. (1999) “A computational model for tracking subsurface tissue deformation during stereotactic neurosurgery”. IEEE Trans Biomed Eng; 46:213-225.CrossRefGoogle Scholar
  47. Penney, G.P., Blackall, J.M., Hamady, M., Sabharwal, T., Adam, A., Hawkes, D.J. (2004) “Registration of freehand 3D ultrasound and magnetic resonance liver images”. Med Image Anal; 8:81-91.CrossRefGoogle Scholar
  48. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. (1992) Numerical recipes in C: The art of scientific computing. Cambridge University Press: Cambridge, UK.Google Scholar
  49. Rhode, K., Sermesant, M., Brogan, D., Hegde, S., Hipwell, J., Lambiase, P., Rosenthal, E., Bucknall, C., Qureshi, S.A., Gill, J.S., Razavi, R., Hill, D.L.G. (2005) “A system for real-time XMR guided cardiovascular intervention”. IEEETrans Med Imag; 24:1428-1440.CrossRefGoogle Scholar
  50. Roche, A., Malandain, G., Pennec, X., Ayache, N. (1998) “The correlation ratio as a new similarity measure for multimodal image registration”. Proc MICCAI’98, Lect Notes Comput Sci; 1496:1115-1124.CrossRefGoogle Scholar
  51. Rohr, K., Fornefett, M., Stiehl, H.S. (2003) “Spline-based elastic image registration: Integration of landmark errors and orientation attributes”. Comput Vision Image Understanding; 90:153-68.CrossRefGoogle Scholar
  52. Rohr, K., Stiehl, H.S., Sprengel, R., Buzug, T.M., Weese, J., Kuhn, M.H. (2001) “Landmark-based elastic registration using approximating thin-plate splines”. IEEE Trans Med Imaging; 20:526-34.CrossRefGoogle Scholar
  53. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J. (1999) “Non-rigid registration using free-form deformations: Application to breast MR images”. IEEE Trans Med Imag; 18:712-721.CrossRefGoogle Scholar
  54. Rueckert, D., Frangi, A.F., Schnabel, J.A. (2003) “Automatic construction of 3-D statistical deformation models of the brain using non-rigid registration”. IEEE Trans Med Imag; 22:1014-1025.CrossRefGoogle Scholar
  55. Rueckert, D., Aljabar, P., Heckemann, R.A., Hajnal, J.V., Hammers, A. (2006) “Diffeomorphic registration using B-splines”. Proc MICCAI 2006, Lect Notes Comput Sci; 4191:702-709.Google Scholar
  56. Schnabel, J.A., Tanner, C., Castellano-Smith, A.D., Degenhard, A., Leach, M.O., Hose, D.R., Hill, D.L.G., Hawkes, D.J. (2003) “Validation of non-rigid image registration using finite element methods: Application to breast MR images”. IEEE Trans Med Imag; 22(2):238-247.CrossRefGoogle Scholar
  57. Skrinjar, O.M., Studholme, C., Nabavi, A., Duncan J. (2001) “Steps toward a stereo-camera-guided biomechanical model for brain shift compensation”. Proc IPMI, Davis CA, June 18-22, 2001 Lecture Notes in Computer Science 2082, 863-866.Google Scholar
  58. Solbiati, L., Livraghi, T., Goldberg, S., Ierace, T., Meloni, F., Dellanoce, M., Cova, L., Halpern, E., Gazelle, G. (2001) “Percutaneous radiofrequency ablation of hepatic metastases from colorectal cancer: long term results in 117 patients”. Radiology; 221:159-166.CrossRefGoogle Scholar
  59. Studholme, C., Hill, D.L.G., Hawkes, D.J. (1999) “An overlap invariant entropy measure of 3D medical image alignment”. Pattern Recognition; 32:71-86.CrossRefGoogle Scholar
  60. Studholme, C., Hill, D.L.G., Hawkes, D.J. (1996) “Automated 3D registration of MR and CT images of the head”. Med Image Anal; 1:163-75.CrossRefGoogle Scholar
  61. Studholme, C., Hill, D.L.G., Hawkes, D.J. (1997) “Automated 3D registration of MR and PET brain images by multi-resolution optimisation of voxel similarity measures”. Med Phys; 24:25-36.CrossRefGoogle Scholar
  62. Tanner, C., Schnabel, J.A., Hill, D.L., Hawkes, D.J. et al. (2007). “Quantitative evaluation of free-form deformation registration for dynamic contrast-enhanced MR mam-mography”. Med Phys 34(4): 1221-1233.CrossRefGoogle Scholar
  63. Thirion, J-P. (1998) “Image matching as a diffusion process: An analogy with Maxwell’s demons”. Med Image Anal; 2:243-260.CrossRefGoogle Scholar
  64. Viola, P., Wells, W.M. (2005) “Alignment by maximization of mutual infor-mation”. Int J Comput Vision; 24:137-154.CrossRefGoogle Scholar
  65. Warfield, S.K., Talos, F., Tei, A., Bharatha, A., Nabavi, A., Ferrant, M., Black, P.M., Jolesz, F.A., Kikinis, R. (2002) “Real-time registration of volumetric brain MRI by biomechanical simulation of deformation during image guided neurosurgery”. Comput Visual Sci; 5:3-11.MATHCrossRefGoogle Scholar
  66. Yao, J. and Taylor, R. (2003) “A multiple-layer flexible mesh template matching method for nonrigid registration between a pelvis model and CT images”. Proc SPIE; 1117-1124.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • David Hawkes
    • 1
  • Dean Barratt
    • 1
  • Tim Carter
    • 1
  • Jamie McClelland
    • 1
  • Bill Crum
    • 2
  1. 1.University College LondonUK
  2. 2.Centre for Medical Image ComputingUniversity College LondonUK

Personalised recommendations