Advertisement

Augmented Reality

  • Frank Sauer
  • Sebastian Vogt
  • Ali Khamene

Much of the visualization in image-guided interventions is achieved by creating a virtual image of the surgical or therapeutic environment, based upon preoperative images, and displaying it on a workstation that is remote from the patient. Linkages between the patient and the image are created through image registration and tracked tools. Such solutions are not always ideal, and result in a psychophysical decoupling of the actual and virtual therapeutic working spaces. Using augmented reality, these two spaces are fused into a single volume, which is typically viewed stereoscopically so that a preoperative or intraoperative patient image appears at the location of the actual patient anatomy. The surgeon has the perception that he is “seeing through” the patient or organ surface to observe the operative site. This chapter reviews the various approaches to augmented reality, and discusses the engineering and psychophysical challenges in developing user-friendly systems.

Keywords

Augmented Reality Virtual Image Virtual View Video View Medical Image Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajura M, Fuchs H, and Ohbuchi R. (1992). “Merging virtual objects with the real world: Seeing ultrasound imagery within the patient.” Comput Graph, 26(2), 203-210.CrossRefGoogle Scholar
  2. Billinghurst M, and Kato H. (1999). “Collaborative Mixed Reality.” Proceedings of International Symposium on Mixed Reality(ISMR ‘99). Mixed Reality- Merging Real and Virtual Worlds, 261-284.Google Scholar
  3. Birkfellner W, Figl M, Huber K, Hummel J, Hanel RA, Homolka P, Watzinger F, Wanschitz F, Ewars R, and Bergmann H. (2001). “Calibration of projection parameters in the varioscope AR, a headmounted display for augmented-reality visualization in image-guided therapy.” Proceedings of SPIE’s Conference of Medical Imaging 2001: Visualization, Display, and Image-Guided Procedures, 471-480.Google Scholar
  4. Birkfellner W, Figl M, Huber K, Watzinger F, Wanschitz F, Hanel R, Wagner A, Rafolt D, Ewars R, and Bergmann H. (2000a). “The varioscope AR - a head-mounted operating microscope for augmented reality.” Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Pittsburg, PA, 869-877.Google Scholar
  5. Birkfellner W, Figl M, Huber K, Watzinger F, Wanschitz F, Hummel J, Hanel RA, Greimel W, Homolka P, Ewars R, and Bergmann H. (2002). “A head-mounted operating binocular for augmented reality visualization in medicine-design and initial evaluation.” IEEE Trans Med Imaging, 21(8), 991-997.CrossRefGoogle Scholar
  6. Birkfellner W, Huber K, Watzinger F, Figl M, Wanschitz F, Hanel R, Rafolt D, Ewars R, and Bergmann H. (2000b). “Development of the Varioscope AR, a see-through HMD for computer-aided surgery.” Proceedings of the IEEE and ACM International Symposium on Augmented Reality (ISAR), 54-59.Google Scholar
  7. Blackwell M, Morgan F, and DiGioia AM (1998a). “Augmented reality and its future in orthopaedics.” Clin Orthop Relat Res 354, 111-122.CrossRefGoogle Scholar
  8. Blackwell M, Nikou C, DiGioia AM, and Kanade T. (1998b). “An image overlay system for medical data visualization.” Proceedings of the First International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 232-240.Google Scholar
  9. Blackwell M, Nikou C, DiGioia AM, and Kanade T. (2000). “An image overlay system for medical data visualization.” Med Image Anal, 4(1), 67-72.CrossRefGoogle Scholar
  10. Blackwell M, O’Toole RV, Morgan F, and Gregor L. (1995). “Performance and accuracy experiments with 3D and 2D image overlay systems.” Proceedings of the Medical Robotics and Computer Assisted Surgery (MRCAS), 312-317.Google Scholar
  11. Chang WM, Horowitz MB, and Stetten GD. (2005a). “Intuitive intraoperative ultrasound guidance using the Sonic Flashlight: a novel ultrasound display system.” Neurosurgery, 56(2 Suppl), 434-437.CrossRefGoogle Scholar
  12. Chang W, Amesur N, Wang D, Zajko A, and Stetten G. (2005b). First Clinical Trial of the Sonic Flashlight - Guiding Placement of Peripherally Inserted Central Catheters, 2005 meeting of the Radiological Society of North America, November 2005, Chicago, Illinois. Paper Number SSJ03-02.Google Scholar
  13. Chang W, Amesur N, Klatzky R, Zajko A, and Stetten G. (2006). Vascular Access: Comparison of US Guidance with the Sonic Flashlight and Conventional US in Phantoms, Radiology, 241, 771-779.CrossRefGoogle Scholar
  14. Coste-Maniere E, Adhami L, Mourgues F, and Bantiche O. (2004). “Optimal planning of robotically assisted heart surgery: Transfer precision in the opera-ting room.” Int J Robot Res, 23(4), 539-548.CrossRefGoogle Scholar
  15. Das M, Sauer F, Schoepf UJ, Khamene A, Vogt SK, Schaller S, Kikinis R, vanSonnenberg E, and Silverman SG. (2006). “Augmented reality visualization for CT-guided interventions: system description, feasibility, and initial evaluation in an abdominal phantom.” Radiology, 240(1), 230-235.CrossRefGoogle Scholar
  16. De Buck S, Van Cleynenbreugel J, Geys I, Koninck T, Koninck PR, and Suetens P. (2001). “A system to support laparoscopic surgery by augmented reality visualization.” Proceedings of the Fourth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 691-698.Google Scholar
  17. Dey D, Slomka P, Gobbi D, and Peters T. (2000). “Mixed reality merging of endoscopic images and 3-D surfaces.” Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 797-803.Google Scholar
  18. Edwards PJ, Hawkes DJ, Hill DL, Jewell D, Spink R, Strong A, and Gleeson M. (1995a). “Augmentation of reality using an operating microscope for otolaryn-gology and neurosurgical guidance.” J Image Guid Surg, 1(3), 172-178.CrossRefGoogle Scholar
  19. Edwards PJ, Hill DL, Hawkes DJ, Spink R, Colchester A, Strong A, and Gleeson M. (1995b). “Neurosurgical guidance using the stereo microscope.” Pro-ceedings of Computer Vision, Virtual Reality, and Robotics in Medicine ‘95 (CVRMed), 555-564.Google Scholar
  20. Edwards PJ, King A, Maurer C, De Cunha D, Hawkes DJ, Hill DL, Gaston R, Fenlon M, Chandra S, Strong A, Chandler C, Richards A, and Gleeson M. (1999). “Design and evaluation of a system for microscope-assisted guided interventions (MAGI).” Proceedings of the Second International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 843-851.Google Scholar
  21. Edwards PJ, King A, Maurer C, De Cunha D, Hawkes DJ, Hill DL, Gaston R, Fenlon M, Jusczyzck A, Strong A, Chandler C, and Gleeson M. (2000). “Design and evaluation of a system for microscope-assisted guided inter-ventions (MAGI).” IEEE Trans Med Imag, 19(11), 1082-1093.CrossRefGoogle Scholar
  22. Fiala M. (2004). ARTag Revision 1, A Fiducial Marker System Using Digital Techniques NRC/ERB-1117, November 24, 2004. NRC Publication Number: NRC 47419.Google Scholar
  23. Fichtinger G, Deguet A, Fischer G, Iordachita I, Balogh E, Masamune K, Taylor RH, Fayad LM, de Oliveira M, and Zinreich SJ. (2005a). “Image overlay for CT-guided needle insertions.” Comput Aided Surg, 10(4), 241-255.CrossRefGoogle Scholar
  24. Fichtinger G, Deguet A, Masamune K, Balogh E, Fischer G, Mathieu H, Taylor RH, Fayad LM, and Zinreich SJ. (2004). “Needle insertion in CT scanner with image overlay - cadaver studies.” Proceedings of the Seventh International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 795-803.Google Scholar
  25. Fichtinger G, Deguet A, Masamune K, Balogh E, Fischer G, Mathieu H, Taylor RH, Zinreich SJ, and Fayad LM. (2005b). “Image overlay guidance for needle insertion in CT scanner.” IEEE Trans Biomed Eng, 52(8), 1415-1424.CrossRefGoogle Scholar
  26. Figl M, Ede C, Hummel J, Wanschitz F, Ewers R, Bergmann H, and Birkfellner W. (2005). “ A fully automated calibration method for an optical see-through head-mounted operating microscope with variable zoom and focus”. IEEE Trans Med Imaging, 24, 1492-1499.CrossRefGoogle Scholar
  27. Fischer GS, Deguet A, Csoma C, Taylor RH, Fayad L, Carrino JA, Zinreich SJ, and Fichtinger G. (2007). “MRI image overlay: Application to arthrography needle insertion.” Comput Assist Surg, 12(1), 2-14.CrossRefGoogle Scholar
  28. Fischer GS, Deguet A, Schlattman D, Taylor RH, Fayad L, Zinreich SJ, and Fichtinger G.(2006).“MRI image overlay: Applications to arthrography needle insertion.” Proceedings of the 14th Annual Medicine Meets Virtual Reality Conference (MMVR), 150-155.Google Scholar
  29. Friets E, Strohbehn J, Hatch J, and Roberts D. (1989). “A frameless stereotaxic operating microscope for neurosurgery.” IEEE Trans Biomed Eng, 36, 608-617.CrossRefGoogle Scholar
  30. Fuchs H, Livingston M, Raskar R, Colluci D, Keller K, State A, Crawford J, Rademacher P, Drake S, and Meyer A. (1998). “Augmented reality visuali-zation for laparoscopic surgery.” First International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 934-943.Google Scholar
  31. Fuchs H, State A, Pisano E, Garrett W, Hirota G, Livingston M, Whitton M, and Pizer S. (1996). “Towards performing ultrasound guided needle biopsies from within a head-mounted display.” Proceedings of the Fourth International Con-ference on Vizualization in Biomedical Computing (VBC), 591-600.Google Scholar
  32. Glossop N, Wedlake C, Moore J, Peters T, and Wang Z. (2003). “Laser projection augmented reality system for computer assisted surgery.” Proceedings of the Sixth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 239-246.Google Scholar
  33. Goebbels G, Troche K, Braun M, Ivanovic A, Grab A, von Lubtow K, Sader R, Zeilhofer F, Albrecht K, and Praxmarer K. (2003). “ARSyS-Tricorder - Entwicklung eines Augmented Reality System für die intraoperative Navi-gation in der MKG Chirurgie.” Proceedings of the 2. Jahrestagung der Deuts-chen Gesellschaft für Computer- und Roboterassistierte Chirurgie e.V., 1619-1627.Google Scholar
  34. Grimson E, Leventon M, Ettinger G, Chabrerie A, Ozlen F, Nakajima S, Atsumi H, Kikinis R, and Black P. (1998). “Clinical experience with a high precision image guided neurosurgery system.” Proceedings of the First International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 63-73.Google Scholar
  35. Grimson W, Ettinger G, White S, Gleason P, Lozano-Perez T, Wells W, and Kikinis R. (1995). “Evaluating and validating an automated registration system for enhanced reality visualization in surgery.” Proceedings of Computer Vision, Virtual Reality, and Robotics in Medicine ‘95 (CVRMed), 3-12.Google Scholar
  36. Grimson W, Ettinger G, White S, Lozano-Perez T, Wells W, and Kikinis R. (1996). “An automatic registration method for fram eless stereotaxy, image guided surgery, and enhanced reality visualization.” IEEE Trans Med Imag, 15, 129-140.CrossRefGoogle Scholar
  37. Grimson W, Kikinis R, Jolesz F, and Black P. (1999). “Image guided surgery.” Sci Am, 280(6), 62-69.CrossRefGoogle Scholar
  38. Grimson W, Lozano-Perez T, Wells W, Ettinger G, White S, and Kikinis R. (1994). “An automatic registration method for frameless stereotaxy, image guided surgery, and enhanced reality visualization.” Proceedings of the IEEE Com-puter Vision and Pattern Recognition Conference (CVPR), 430-436.Google Scholar
  39. Hayashibe M, Suzuki N, Hattori A, Otake Y, Suzuki S, and Nakata N. (2005). “Data-fusion display system with volume rendering of intraoperatively scanned CT images.” Proceedings of the Eigth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 559-566.Google Scholar
  40. Heining S-M, Stefan P, Omary L, Wiesner S, Sielhorst T, Navab N, Sauer F, Euler E, Mutzler W, and Traub J. (2006). “Evaluation of an in-situ visualization system for navigated trauma surgery.” J Biomech, 39(Supplement), 209. HITLab. (2007). http://www.hitl.washington.edu/home/
  41. Hoppe H, Eggers G, Heurich T, Raczkowsky J, Marmuller R, Wörn H, Hassfeld S, and Moctezuma L. (2003). “Projector-based visualization for intraoperative navigation: first clinical results.” Proceedings of the 17th International Con-gress and Exhibition on Computer Assisted Radiology and Surgery (CARS), 771.Google Scholar
  42. Hoppe H, Kuebler C, Raczkowsky J, Wörn H, and Hassfeld S. (2002). “A clinical prototype system for projector-based augmented reality: Calibration and projection methods.” Proceedings of the 16th International Congress and Exhi-bition on Computer Assisted Radiology and Surgery (CARS), 1079.Google Scholar
  43. Iseki H, Masutani Y, Iwahara M, Tanikawa T, Muragaki Y, Taira T, Dohi T, and Takakura K. (1997). “Volumegraph (overlaid three-dimensional image-guided navigation). Clinical application of augmented reality in neurosurgery.” Stereo-tact Funct Neurosurg, 68(1-4 Pt 1), 18-24.CrossRefGoogle Scholar
  44. Johnson L, Edwards PJ, and Hawkes DJ. (2002). “Surface transparency makes stereo overlays unpredictable: the implication for augmented reality.” Stud Health Technol Inform, 94, 131-136.Google Scholar
  45. Khamene A, Vogt S, Azar F, Sielhorst T, Sauer F, and Niemann H. (2003a). “Local 3D reconstruction and augmented reality visualization of free-hand ultrasound for needle biopsy procedures.” Proceedings of the Sixth International Con-ference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 344-355.Google Scholar
  46. Khamene A, Wacker F, Vogt S, Azar F, Wendt M, Sauer F, and Lewin J. (2003b). “An Augmented Reality system for MRI-guided needle biopsies.” Proceedings of the 11th Annual Medicine Meets Virtual Reality Conference (MMVR), 151-157.Google Scholar
  47. King A, Edwards PJ, Maurer C, De Cunha D, Gaston R, Clarkson M, Hill DL, Hawkes DJ, Fenlon M, Strong A, TCS C, and Gleeson M. (2000). “Stereo augmented reality in the surgical microscope.” Presence, 9(4), 360-368.CrossRefGoogle Scholar
  48. Lerotic M, Chung A., Mylonas G, Yang G-Z. (2007). “pq-space Based Non-Photorealistic Rendering for Augmented Reality”. Proc MICCAI 10 part II, Lecture Notes in Computer Science 4792, 102-109.CrossRefGoogle Scholar
  49. Liao H, Hata N, Iwahara M, Nakajima S, Sakuma I, and Dohi T. (2002). “High-resolution stereoscopic surgical display using parallel integral videography and multi-projector.” Proceedings of the Fifth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 85-92.Google Scholar
  50. Liao H, Hata N, Nakajima S, Iwahara M, Sakuma I, and Dohi T. (2004). “Surgical navigation by autostereoscopic image overlay of integral videography.” IEEE Transactions on Information Technology in Biomedicine, 114-121.Google Scholar
  51. Liao H, Iwahara M, Koike T, Momoi Y, Hata N, Sakuma I, and Dohi T. (2006). “Integral videography autostereoscopic display using multiprojection”. Systems and Computers in Japan, 37, 34-45.CrossRefGoogle Scholar
  52. Liao H, Nakajima S, Iwahara M, Kobayashi E, Sakuma I, Yahagi N, and Dohi T. (2001). “Intra-operative real-time 3-D information display system based on integral videography.” Proceedings of the Fourth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 392-400.Google Scholar
  53. Lorensen W, Cline H, Kikinis R, Altobelli D, Gleason L, and Jolesz F. (1994). “Enhanced reality in the operating room.” Proceedings of the Second Annual Medicine Meets Virtual Reality Conference (MMVR), 124-127.Google Scholar
  54. Lorensen W, Cline H, Nafis C, Kikinis R, Altobelli D, and Gleason L. (1993). “Enhancing reality in the operating room.” Proceedings of IEEE Visualization ‘93, 410-415.Google Scholar
  55. Marmurek J, Wedlake C, Pardasani U, Eagleson R, and Peters TM. (2006). “Image-guided laser projection for port placement in minimally invasive surgery ” Stud Health Technol Inform, 119, 367-372.Google Scholar
  56. Masamune K, Fichtinger G, Deguet A, Matsuka D, and Taylor RH. (2002). “An image overlay system with enhanced reality for percutaneous therapy performed inside ct scanner.” Proceedings of the Fifth International Conference on Medi-cal Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 77-84.Google Scholar
  57. Masamune K, Masutani Y, Nakajima S, Sakuma I, Dohi T, Iseki H, and Takakura K. (2000). “Three-dimensional slice image overlay system with accurate depth perception for surgery.” Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 395-402.Google Scholar
  58. Masutani Y, Dohi T, Nishi Y, Iwahara M, Iseki H, and Takakura K. (1996). “Volumegraph - an integral photography based enhanced reality visualization system.” Proceedings of the Tenth International Symposium on Computer Assisted Radiology (CAR), 1051.Google Scholar
  59. Masutani Y, Iwahara M, Samuta O, Nishi Y, Suzuki M, Suzuki N, Dohi T, Iseki H, and Takakura K. (1995). “Development of integral photography-based en-han-ced reality visualization system for surgical support.” Proceedings of the Second International Symposium on Computer Aided Surgery (ISCAS), 16-17.Google Scholar
  60. Maurer C, Sauer F, Brown C, Hu B, Bascle B, Geiger B, Wenzel F, Maciunas R, Bakos R, and Bani-Hashemi A. (2001). “Augmented reality visualization of brain structures with stereo and kinetic depth cues: System description and initial evaluation with head phantom.” Proceedings of SPIE’s Conference of Medical Imaging 2001, 445-456.Google Scholar
  61. Milgram P, and Kishino FA. (1994). “Taxonomy of Mixed Reality Visual Displays,” Institute of Electronics, Information, and Communication Engineers Trans. Information and Systems (IECE special issue on networked reality), vol. E77-D, 12, 1321-1329.Google Scholar
  62. Mitschke M, Bani-Hashemi A, and Navab N. (2000). “Interventions under video-augmented X-ray guidance: Application to needle placement.” Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 858-868.Google Scholar
  63. Mourgues F, Devernay F, and Coste-Maniere E. (2001). “3D reconstruction of the operating field for image overlay in 3D-endoscopic surgery.” Proceedings of the IEEE and ACM International Symposium on Augmented Reality (ISAR), 191-192.Google Scholar
  64. Mourgues F, Vieville T, Falk V, and Coste-Maniere E. (2003). “Interactive guid-ance by image overlay in robot assisted coronary artery bypass.” Proceedings of the Sixth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 173-181.Google Scholar
  65. Nakajima S, Orita S, Masamune K, Sakuma I, Dohi T, and Nakamura K. (2000). “Surgical navigation system with intuitive three-dimensional display.” Pro-ceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 403-411.Google Scholar
  66. Navab N, Bani-Hashemi A, and Mitschke M. (1999). “Merging visible and invisible: Two camera-augmented mobile C-arm (CAMC) applications.” Proceedings of the Second International Workshop on Augmented Reality (IWAR), 134-141.Google Scholar
  67. Nicolau S, Garcia A, Pennec X, Soler L, and Ayache N. (2005a). “An augmented reality system to guide radio-frequency tumor ablation.” J Comput Animation Virtual World, 16(1), 1-10.CrossRefGoogle Scholar
  68. Nicolau S, Pennec X, Soler L, and Ayache N. (2005b). “A complete augmented reality guidance system for liver punctures: First clinical evaluation.” Proceedings of the Eighth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp 539-547.Google Scholar
  69. Springer-Verlag. Rosenthal M, State A, Lee J, Hirota G, Ackerman J, Keller K, Pisano E, Jiroutek M, Muller K, and Fuchs H. (2001). “Augmented reality guidance for needle biopsies: An initial randomized, controlled trial in phantoms.” Proceedings of the Fourth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 240-248.Google Scholar
  70. Rosenthal M, State A, Lee J, Hirota G, Ackerman J, Keller K, Pisano E, Jiroutek M, Muller K, and Fuchs H. (2002). “Augmented reality guidance for needle biopsies: An initial randomized, controlled trial in phantoms.” Med Image Anal, 6(2), 313-320.CrossRefGoogle Scholar
  71. Sauer F, Khamene A, Bascle B, and Rubino G. (2001a). “A headmounted display system for augmented reality image guidance: Towards clinical evaluation for iMRI-guided neurosurgery.” Proceedings of the fourth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 707-716.Google Scholar
  72. Sauer F, Khamene A, Bascle B, Schimmang L, Wenzel F, and Vogt S. (2001b). “Augmented reality visualization of ultrasound images: System description, calibration, and features.” Proceedings of IEEE and ACM International Sympo-sium on Augmented Reality (ISAR’01), 30-39.Google Scholar
  73. Sauer F, Khamene A, Bascle B, and Vogt S. (2002a). “An augmented reality system for ultrasound guided needle biopsies.” Proceedings of the Tenth Annual Medicine Meets Virtual Reality Conference (MMVR), 455-460.Google Scholar
  74. Sauer F, Khamene A, Bascle B, Vogt S, and Rubino G. (2002b). “Augmented reality visualization in iMRI operating room: System description and pre-clinical testing.” Proceedings of SPIE’s Conference of Medical Imaging 2002: Visualization, Image-Guided Procedures, and Display, 446-454.Google Scholar
  75. Sauer F, Khamene A, and Vogt S. (2002c). “An augmented reality navigation system with a single-camera tracker: System design and needle biopsy phantom trial.” Proceedings of the Fifth International Conference on Medical Image Com-puting and Computer-Assisted Intervention (MICCAI), 116-124.Google Scholar
  76. Sauer F, Schoepf J, Khamene A, Vogt S, Das M, and Silverman SG. (2003). “Augmented reality system for CT-guided interventions: System descriptionGoogle Scholar
  77. and initial phantom trials.” Proceedings of SPIE’s Conference of Medical Ima-ging 2003: Visualization, Image-Guided Procedures, and Display, 384-394.Google Scholar
  78. Sauer F, Wenzel F, Vogt S, Tao Y, Genc Y, and Bani-Hashemi A. (2000). “Augmented workspace: Designing an AR testbed.” Proceedings of the IEEE and ACM International Symposium on Augmented Reality (ISAR), 47-53.Google Scholar
  79. Shahidi R, Wang B, Epitaux M, Grzeszczuk R, and Adler J. (1998). “Volumetric image guidance via a stereotactic endoscope.” Proceedings of the First International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 241-252.Google Scholar
  80. Sielhorst T, Obst T, Burgkart R, Riener R, and Navab N. (2004a). “An augmented reality delivery simulator for medical training.” Proceedings of the International Workshop on Augmented Environments for Medical Imaging (AMIARCS 2004) - MICCAI Satellite Workshop, 11-20.Google Scholar
  81. Sielhorst T, Traub J, and Navab N. (2004b). “The AR apprenticeship: Replication and omnidirectional viewing of subtle movements.” Proceedings of the Third IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR), 290-291.Google Scholar
  82. State A, Chen D, Tector C, Brandt A, Chen H, Ohbuchi R, Bajura M, and Fuchs H. (1994). “Case study: Observing a volume rendered fetus within a pregnant patient.” Proceedings of IEEE Visualization ’94, 364-368.Google Scholar
  83. State A, Keller K, Rosenthal M, Yang H, Ackerman J, and Fuchs H. (2003). “Stereo imagery from the UNC augmented reality system for breast biopsy guidance.” Proceedings of the 11th Annual Medicine Meets Virtual Reality Conference (MMVR), 325-328.Google Scholar
  84. State A, Livingston M, Hirota G, Garrett W, Whitton M, Fuchs H, and Pisano E. (1996). “Technologies for augmented-reality systems: realizing ultrasound-guided needle biopsies.” SIGGRAPH, 96 Computer Graphics Proceedings, Annual Conference Series, 439-446.Google Scholar
  85. Stetten G, and Chib V. (2001a). “Magnified real-time tomographic reflection.” Proceedings of the Fourth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 683-690.Google Scholar
  86. Stetten G, Chib V, and Tamburo R. (2000). “Tomographic reflection to merge ultrasound images with direct vision.” Proceedings of the Applied Imagery Pattern Recognition Annual Workshop (AIPR), 200-205.Google Scholar
  87. Stetten G, Chib VS, Hildebrand D, and Bursee J. (2001). “Real time tomographic reflection: Phantoms for calibration and biopsy.” Proceedings of the IEEE and ACM International Symposium on Augmented Reality (ISAR), 11-19.Google Scholar
  88. Stetten G, Cois A, Chang W, Shelton D, Tamburo R, Castellucci J, and Von Ramm O. (2003). “C-mode real time tomographic reflection for a matrix array ultrasound sonic flashlight.” Proceedings of the Sixth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 336-343.Google Scholar
  89. Stetten G, Cois A, Chang W, Shelton D, Tamburo R, Castellucci J, and von Ramm O. (2005). “C-mode real-time tomographic reflection for a matrix array ultrasound sonic flashlight.” Acad Radiol, 12(5), 535-543.CrossRefGoogle Scholar
  90. Stetten GD, and Chib VS. (2001b). “Overlaying ultrasonographic images on direct vision.” J Ultrasound Med, 20(3), 235-240.Google Scholar
  91. Traub J, Feuerstein M, Bauer M, Schirmbrck E, Najafi H, Bauernschmitt R, and Klinker G. (2004). “Augmented reality for port placement and navigation in robotically assisted minimally invasive cardiovascular surgery.” Proceedings of the 18th International Congress and Exhibition on Computer Assisted Radio-logy and Surgery (CARS), 735-740.Google Scholar
  92. Tuceryan M, and Navab N. (2000). “Single point active alignment method (SPAAM) for optical see-through HMD calibration for AR.” Proceedings of IEEE and ACM International Symposium on Augmented Reality (ISAR’00), Munich, Germany, 149-158.Google Scholar
  93. Vogt S, Khamene A, Niemann H, and Sauer F. (2004a). “An AR system with intuitive user interface for manipulation and visualization of 3D medical data.” Proceedings of the 12th Annual Medicine Meets Virtual Reality Conference (MMVR), 397-403.Google Scholar
  94. Vogt S, Khamene A, and Sauer F. (2006). “Reality augmentation for medical procedures: System architecture, single camera marker tracking, and system evaluation.” Int J Comput Vis, 70(2), 179-190.CrossRefGoogle Scholar
  95. Vogt S, Khamene A, Sauer F, Keil A, and Niemann H. (2003). “A high performance AR system for medical applications.” Proceedings of the Second IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR), 270-271.Google Scholar
  96. Vogt S, Khamene A, Sauer F, and Niemann H. (2002). “Single camera tracking of marker clusters: Multiparameter cluster optimization and experimental verify-cation.” Proceedings of the IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR), 127-136.Google Scholar
  97. Vogt S, Wacker F, Khamene A, Elgort D, Sielhorst T, Niemann H, Duerk J, Lewin J, and Sauer F. (2004b). “Augmented reality system for MR-guided in- terventions: Phantom studies and first animal test.” Proceedings of SPIE’s Conference of Medical Imaging 2004: Visualization, Image-Guided Pro-cedures, and Display, 100-109.Google Scholar
  98. Wacker FK, Vogt S, Khamene A, Jesberger JA, Nour SG, Elgort DR, Sauer F, Duerk JL, and Lewin JS. (2006). “An augmented reality system for MR image-guided needle biopsy: initial results in a swine model.” Radiology, 238(2), 497-504.CrossRefGoogle Scholar
  99. Wang D, Wu B, and Stetten G. (2005). “Laser needle guide for the sonic flash-light.” Proceedings of the Eighth International Conference on Medical Image Com-puting and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 647-653.Google Scholar
  100. Wendt M, Sauer F, Khamene A, Bascle B, Vogt S, and Wacker F. (2003). “A head-mounted display system for augmented reality: Initial evaluation for interven-tional MRI.” RöFo - Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren, 175(3), 418-421.CrossRefGoogle Scholar
  101. Worn H, and Hoppe H. (2001). “Augmented reality in the operating theatre of the future.”Proceedings of the Fourth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 1195-1196.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Frank Sauer
    • 1
  • Sebastian Vogt
    • 1
  • Ali Khamene
    • 1
  1. 1.Siemens Corporate ResearchUSA

Personalised recommendations