Skip to main content

Augmented Reality

  • Chapter

Much of the visualization in image-guided interventions is achieved by creating a virtual image of the surgical or therapeutic environment, based upon preoperative images, and displaying it on a workstation that is remote from the patient. Linkages between the patient and the image are created through image registration and tracked tools. Such solutions are not always ideal, and result in a psychophysical decoupling of the actual and virtual therapeutic working spaces. Using augmented reality, these two spaces are fused into a single volume, which is typically viewed stereoscopically so that a preoperative or intraoperative patient image appears at the location of the actual patient anatomy. The surgeon has the perception that he is “seeing through” the patient or organ surface to observe the operative site. This chapter reviews the various approaches to augmented reality, and discusses the engineering and psychophysical challenges in developing user-friendly systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bajura M, Fuchs H, and Ohbuchi R. (1992). “Merging virtual objects with the real world: Seeing ultrasound imagery within the patient.” Comput Graph, 26(2), 203-210.

    Article  Google Scholar 

  • Billinghurst M, and Kato H. (1999). “Collaborative Mixed Reality.” Proceedings of International Symposium on Mixed Reality(ISMR ‘99). Mixed Reality- Merging Real and Virtual Worlds, 261-284.

    Google Scholar 

  • Birkfellner W, Figl M, Huber K, Hummel J, Hanel RA, Homolka P, Watzinger F, Wanschitz F, Ewars R, and Bergmann H. (2001). “Calibration of projection parameters in the varioscope AR, a headmounted display for augmented-reality visualization in image-guided therapy.” Proceedings of SPIE’s Conference of Medical Imaging 2001: Visualization, Display, and Image-Guided Procedures, 471-480.

    Google Scholar 

  • Birkfellner W, Figl M, Huber K, Watzinger F, Wanschitz F, Hanel R, Wagner A, Rafolt D, Ewars R, and Bergmann H. (2000a). “The varioscope AR - a head-mounted operating microscope for augmented reality.” Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Pittsburg, PA, 869-877.

    Google Scholar 

  • Birkfellner W, Figl M, Huber K, Watzinger F, Wanschitz F, Hummel J, Hanel RA, Greimel W, Homolka P, Ewars R, and Bergmann H. (2002). “A head-mounted operating binocular for augmented reality visualization in medicine-design and initial evaluation.” IEEE Trans Med Imaging, 21(8), 991-997.

    Article  Google Scholar 

  • Birkfellner W, Huber K, Watzinger F, Figl M, Wanschitz F, Hanel R, Rafolt D, Ewars R, and Bergmann H. (2000b). “Development of the Varioscope AR, a see-through HMD for computer-aided surgery.” Proceedings of the IEEE and ACM International Symposium on Augmented Reality (ISAR), 54-59.

    Google Scholar 

  • Blackwell M, Morgan F, and DiGioia AM (1998a). “Augmented reality and its future in orthopaedics.” Clin Orthop Relat Res 354, 111-122.

    Article  Google Scholar 

  • Blackwell M, Nikou C, DiGioia AM, and Kanade T. (1998b). “An image overlay system for medical data visualization.” Proceedings of the First International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 232-240.

    Google Scholar 

  • Blackwell M, Nikou C, DiGioia AM, and Kanade T. (2000). “An image overlay system for medical data visualization.” Med Image Anal, 4(1), 67-72.

    Article  Google Scholar 

  • Blackwell M, O’Toole RV, Morgan F, and Gregor L. (1995). “Performance and accuracy experiments with 3D and 2D image overlay systems.” Proceedings of the Medical Robotics and Computer Assisted Surgery (MRCAS), 312-317.

    Google Scholar 

  • Chang WM, Horowitz MB, and Stetten GD. (2005a). “Intuitive intraoperative ultrasound guidance using the Sonic Flashlight: a novel ultrasound display system.” Neurosurgery, 56(2 Suppl), 434-437.

    Article  Google Scholar 

  • Chang W, Amesur N, Wang D, Zajko A, and Stetten G. (2005b). First Clinical Trial of the Sonic Flashlight - Guiding Placement of Peripherally Inserted Central Catheters, 2005 meeting of the Radiological Society of North America, November 2005, Chicago, Illinois. Paper Number SSJ03-02.

    Google Scholar 

  • Chang W, Amesur N, Klatzky R, Zajko A, and Stetten G. (2006). Vascular Access: Comparison of US Guidance with the Sonic Flashlight and Conventional US in Phantoms, Radiology, 241, 771-779.

    Article  Google Scholar 

  • Coste-Maniere E, Adhami L, Mourgues F, and Bantiche O. (2004). “Optimal planning of robotically assisted heart surgery: Transfer precision in the opera-ting room.” Int J Robot Res, 23(4), 539-548.

    Article  Google Scholar 

  • Das M, Sauer F, Schoepf UJ, Khamene A, Vogt SK, Schaller S, Kikinis R, vanSonnenberg E, and Silverman SG. (2006). “Augmented reality visualization for CT-guided interventions: system description, feasibility, and initial evaluation in an abdominal phantom.” Radiology, 240(1), 230-235.

    Article  Google Scholar 

  • De Buck S, Van Cleynenbreugel J, Geys I, Koninck T, Koninck PR, and Suetens P. (2001). “A system to support laparoscopic surgery by augmented reality visualization.” Proceedings of the Fourth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 691-698.

    Google Scholar 

  • Dey D, Slomka P, Gobbi D, and Peters T. (2000). “Mixed reality merging of endoscopic images and 3-D surfaces.” Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 797-803.

    Google Scholar 

  • Edwards PJ, Hawkes DJ, Hill DL, Jewell D, Spink R, Strong A, and Gleeson M. (1995a). “Augmentation of reality using an operating microscope for otolaryn-gology and neurosurgical guidance.” J Image Guid Surg, 1(3), 172-178.

    Article  Google Scholar 

  • Edwards PJ, Hill DL, Hawkes DJ, Spink R, Colchester A, Strong A, and Gleeson M. (1995b). “Neurosurgical guidance using the stereo microscope.” Pro-ceedings of Computer Vision, Virtual Reality, and Robotics in Medicine ‘95 (CVRMed), 555-564.

    Google Scholar 

  • Edwards PJ, King A, Maurer C, De Cunha D, Hawkes DJ, Hill DL, Gaston R, Fenlon M, Chandra S, Strong A, Chandler C, Richards A, and Gleeson M. (1999). “Design and evaluation of a system for microscope-assisted guided interventions (MAGI).” Proceedings of the Second International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 843-851.

    Google Scholar 

  • Edwards PJ, King A, Maurer C, De Cunha D, Hawkes DJ, Hill DL, Gaston R, Fenlon M, Jusczyzck A, Strong A, Chandler C, and Gleeson M. (2000). “Design and evaluation of a system for microscope-assisted guided inter-ventions (MAGI).” IEEE Trans Med Imag, 19(11), 1082-1093.

    Article  Google Scholar 

  • Fiala M. (2004). ARTag Revision 1, A Fiducial Marker System Using Digital Techniques NRC/ERB-1117, November 24, 2004. NRC Publication Number: NRC 47419.

    Google Scholar 

  • Fichtinger G, Deguet A, Fischer G, Iordachita I, Balogh E, Masamune K, Taylor RH, Fayad LM, de Oliveira M, and Zinreich SJ. (2005a). “Image overlay for CT-guided needle insertions.” Comput Aided Surg, 10(4), 241-255.

    Article  Google Scholar 

  • Fichtinger G, Deguet A, Masamune K, Balogh E, Fischer G, Mathieu H, Taylor RH, Fayad LM, and Zinreich SJ. (2004). “Needle insertion in CT scanner with image overlay - cadaver studies.” Proceedings of the Seventh International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 795-803.

    Google Scholar 

  • Fichtinger G, Deguet A, Masamune K, Balogh E, Fischer G, Mathieu H, Taylor RH, Zinreich SJ, and Fayad LM. (2005b). “Image overlay guidance for needle insertion in CT scanner.” IEEE Trans Biomed Eng, 52(8), 1415-1424.

    Article  Google Scholar 

  • Figl M, Ede C, Hummel J, Wanschitz F, Ewers R, Bergmann H, and Birkfellner W. (2005). “ A fully automated calibration method for an optical see-through head-mounted operating microscope with variable zoom and focus”. IEEE Trans Med Imaging, 24, 1492-1499.

    Article  Google Scholar 

  • Fischer GS, Deguet A, Csoma C, Taylor RH, Fayad L, Carrino JA, Zinreich SJ, and Fichtinger G. (2007). “MRI image overlay: Application to arthrography needle insertion.” Comput Assist Surg, 12(1), 2-14.

    Article  Google Scholar 

  • Fischer GS, Deguet A, Schlattman D, Taylor RH, Fayad L, Zinreich SJ, and Fichtinger G.(2006).“MRI image overlay: Applications to arthrography needle insertion.” Proceedings of the 14th Annual Medicine Meets Virtual Reality Conference (MMVR), 150-155.

    Google Scholar 

  • Friets E, Strohbehn J, Hatch J, and Roberts D. (1989). “A frameless stereotaxic operating microscope for neurosurgery.” IEEE Trans Biomed Eng, 36, 608-617.

    Article  Google Scholar 

  • Fuchs H, Livingston M, Raskar R, Colluci D, Keller K, State A, Crawford J, Rademacher P, Drake S, and Meyer A. (1998). “Augmented reality visuali-zation for laparoscopic surgery.” First International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 934-943.

    Google Scholar 

  • Fuchs H, State A, Pisano E, Garrett W, Hirota G, Livingston M, Whitton M, and Pizer S. (1996). “Towards performing ultrasound guided needle biopsies from within a head-mounted display.” Proceedings of the Fourth International Con-ference on Vizualization in Biomedical Computing (VBC), 591-600.

    Google Scholar 

  • Glossop N, Wedlake C, Moore J, Peters T, and Wang Z. (2003). “Laser projection augmented reality system for computer assisted surgery.” Proceedings of the Sixth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 239-246.

    Google Scholar 

  • Goebbels G, Troche K, Braun M, Ivanovic A, Grab A, von Lubtow K, Sader R, Zeilhofer F, Albrecht K, and Praxmarer K. (2003). “ARSyS-Tricorder - Entwicklung eines Augmented Reality System für die intraoperative Navi-gation in der MKG Chirurgie.” Proceedings of the 2. Jahrestagung der Deuts-chen Gesellschaft für Computer- und Roboterassistierte Chirurgie e.V., 1619-1627.

    Google Scholar 

  • Grimson E, Leventon M, Ettinger G, Chabrerie A, Ozlen F, Nakajima S, Atsumi H, Kikinis R, and Black P. (1998). “Clinical experience with a high precision image guided neurosurgery system.” Proceedings of the First International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 63-73.

    Google Scholar 

  • Grimson W, Ettinger G, White S, Gleason P, Lozano-Perez T, Wells W, and Kikinis R. (1995). “Evaluating and validating an automated registration system for enhanced reality visualization in surgery.” Proceedings of Computer Vision, Virtual Reality, and Robotics in Medicine ‘95 (CVRMed), 3-12.

    Google Scholar 

  • Grimson W, Ettinger G, White S, Lozano-Perez T, Wells W, and Kikinis R. (1996). “An automatic registration method for fram eless stereotaxy, image guided surgery, and enhanced reality visualization.” IEEE Trans Med Imag, 15, 129-140.

    Article  Google Scholar 

  • Grimson W, Kikinis R, Jolesz F, and Black P. (1999). “Image guided surgery.” Sci Am, 280(6), 62-69.

    Article  Google Scholar 

  • Grimson W, Lozano-Perez T, Wells W, Ettinger G, White S, and Kikinis R. (1994). “An automatic registration method for frameless stereotaxy, image guided surgery, and enhanced reality visualization.” Proceedings of the IEEE Com-puter Vision and Pattern Recognition Conference (CVPR), 430-436.

    Google Scholar 

  • Hayashibe M, Suzuki N, Hattori A, Otake Y, Suzuki S, and Nakata N. (2005). “Data-fusion display system with volume rendering of intraoperatively scanned CT images.” Proceedings of the Eigth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 559-566.

    Google Scholar 

  • Heining S-M, Stefan P, Omary L, Wiesner S, Sielhorst T, Navab N, Sauer F, Euler E, Mutzler W, and Traub J. (2006). “Evaluation of an in-situ visualization system for navigated trauma surgery.” J Biomech, 39(Supplement), 209. HITLab. (2007). http://www.hitl.washington.edu/home/

  • Hoppe H, Eggers G, Heurich T, Raczkowsky J, Marmuller R, Wörn H, Hassfeld S, and Moctezuma L. (2003). “Projector-based visualization for intraoperative navigation: first clinical results.” Proceedings of the 17th International Con-gress and Exhibition on Computer Assisted Radiology and Surgery (CARS), 771.

    Google Scholar 

  • Hoppe H, Kuebler C, Raczkowsky J, Wörn H, and Hassfeld S. (2002). “A clinical prototype system for projector-based augmented reality: Calibration and projection methods.” Proceedings of the 16th International Congress and Exhi-bition on Computer Assisted Radiology and Surgery (CARS), 1079.

    Google Scholar 

  • Iseki H, Masutani Y, Iwahara M, Tanikawa T, Muragaki Y, Taira T, Dohi T, and Takakura K. (1997). “Volumegraph (overlaid three-dimensional image-guided navigation). Clinical application of augmented reality in neurosurgery.” Stereo-tact Funct Neurosurg, 68(1-4 Pt 1), 18-24.

    Article  Google Scholar 

  • Johnson L, Edwards PJ, and Hawkes DJ. (2002). “Surface transparency makes stereo overlays unpredictable: the implication for augmented reality.” Stud Health Technol Inform, 94, 131-136.

    Google Scholar 

  • Khamene A, Vogt S, Azar F, Sielhorst T, Sauer F, and Niemann H. (2003a). “Local 3D reconstruction and augmented reality visualization of free-hand ultrasound for needle biopsy procedures.” Proceedings of the Sixth International Con-ference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 344-355.

    Google Scholar 

  • Khamene A, Wacker F, Vogt S, Azar F, Wendt M, Sauer F, and Lewin J. (2003b). “An Augmented Reality system for MRI-guided needle biopsies.” Proceedings of the 11th Annual Medicine Meets Virtual Reality Conference (MMVR), 151-157.

    Google Scholar 

  • King A, Edwards PJ, Maurer C, De Cunha D, Gaston R, Clarkson M, Hill DL, Hawkes DJ, Fenlon M, Strong A, TCS C, and Gleeson M. (2000). “Stereo augmented reality in the surgical microscope.” Presence, 9(4), 360-368.

    Article  Google Scholar 

  • Lerotic M, Chung A., Mylonas G, Yang G-Z. (2007). “pq-space Based Non-Photorealistic Rendering for Augmented Reality”. Proc MICCAI 10 part II, Lecture Notes in Computer Science 4792, 102-109.

    Article  Google Scholar 

  • Liao H, Hata N, Iwahara M, Nakajima S, Sakuma I, and Dohi T. (2002). “High-resolution stereoscopic surgical display using parallel integral videography and multi-projector.” Proceedings of the Fifth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 85-92.

    Google Scholar 

  • Liao H, Hata N, Nakajima S, Iwahara M, Sakuma I, and Dohi T. (2004). “Surgical navigation by autostereoscopic image overlay of integral videography.” IEEE Transactions on Information Technology in Biomedicine, 114-121.

    Google Scholar 

  • Liao H, Iwahara M, Koike T, Momoi Y, Hata N, Sakuma I, and Dohi T. (2006). “Integral videography autostereoscopic display using multiprojection”. Systems and Computers in Japan, 37, 34-45.

    Article  Google Scholar 

  • Liao H, Nakajima S, Iwahara M, Kobayashi E, Sakuma I, Yahagi N, and Dohi T. (2001). “Intra-operative real-time 3-D information display system based on integral videography.” Proceedings of the Fourth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 392-400.

    Google Scholar 

  • Lorensen W, Cline H, Kikinis R, Altobelli D, Gleason L, and Jolesz F. (1994). “Enhanced reality in the operating room.” Proceedings of the Second Annual Medicine Meets Virtual Reality Conference (MMVR), 124-127.

    Google Scholar 

  • Lorensen W, Cline H, Nafis C, Kikinis R, Altobelli D, and Gleason L. (1993). “Enhancing reality in the operating room.” Proceedings of IEEE Visualization ‘93, 410-415.

    Google Scholar 

  • Marmurek J, Wedlake C, Pardasani U, Eagleson R, and Peters TM. (2006). “Image-guided laser projection for port placement in minimally invasive surgery ” Stud Health Technol Inform, 119, 367-372.

    Google Scholar 

  • Masamune K, Fichtinger G, Deguet A, Matsuka D, and Taylor RH. (2002). “An image overlay system with enhanced reality for percutaneous therapy performed inside ct scanner.” Proceedings of the Fifth International Conference on Medi-cal Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 77-84.

    Google Scholar 

  • Masamune K, Masutani Y, Nakajima S, Sakuma I, Dohi T, Iseki H, and Takakura K. (2000). “Three-dimensional slice image overlay system with accurate depth perception for surgery.” Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 395-402.

    Google Scholar 

  • Masutani Y, Dohi T, Nishi Y, Iwahara M, Iseki H, and Takakura K. (1996). “Volumegraph - an integral photography based enhanced reality visualization system.” Proceedings of the Tenth International Symposium on Computer Assisted Radiology (CAR), 1051.

    Google Scholar 

  • Masutani Y, Iwahara M, Samuta O, Nishi Y, Suzuki M, Suzuki N, Dohi T, Iseki H, and Takakura K. (1995). “Development of integral photography-based en-han-ced reality visualization system for surgical support.” Proceedings of the Second International Symposium on Computer Aided Surgery (ISCAS), 16-17.

    Google Scholar 

  • Maurer C, Sauer F, Brown C, Hu B, Bascle B, Geiger B, Wenzel F, Maciunas R, Bakos R, and Bani-Hashemi A. (2001). “Augmented reality visualization of brain structures with stereo and kinetic depth cues: System description and initial evaluation with head phantom.” Proceedings of SPIE’s Conference of Medical Imaging 2001, 445-456.

    Google Scholar 

  • Milgram P, and Kishino FA. (1994). “Taxonomy of Mixed Reality Visual Displays,” Institute of Electronics, Information, and Communication Engineers Trans. Information and Systems (IECE special issue on networked reality), vol. E77-D, 12, 1321-1329.

    Google Scholar 

  • Mitschke M, Bani-Hashemi A, and Navab N. (2000). “Interventions under video-augmented X-ray guidance: Application to needle placement.” Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 858-868.

    Google Scholar 

  • Mourgues F, Devernay F, and Coste-Maniere E. (2001). “3D reconstruction of the operating field for image overlay in 3D-endoscopic surgery.” Proceedings of the IEEE and ACM International Symposium on Augmented Reality (ISAR), 191-192.

    Google Scholar 

  • Mourgues F, Vieville T, Falk V, and Coste-Maniere E. (2003). “Interactive guid-ance by image overlay in robot assisted coronary artery bypass.” Proceedings of the Sixth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 173-181.

    Google Scholar 

  • Nakajima S, Orita S, Masamune K, Sakuma I, Dohi T, and Nakamura K. (2000). “Surgical navigation system with intuitive three-dimensional display.” Pro-ceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 403-411.

    Google Scholar 

  • Navab N, Bani-Hashemi A, and Mitschke M. (1999). “Merging visible and invisible: Two camera-augmented mobile C-arm (CAMC) applications.” Proceedings of the Second International Workshop on Augmented Reality (IWAR), 134-141.

    Google Scholar 

  • Nicolau S, Garcia A, Pennec X, Soler L, and Ayache N. (2005a). “An augmented reality system to guide radio-frequency tumor ablation.” J Comput Animation Virtual World, 16(1), 1-10.

    Article  Google Scholar 

  • Nicolau S, Pennec X, Soler L, and Ayache N. (2005b). “A complete augmented reality guidance system for liver punctures: First clinical evaluation.” Proceedings of the Eighth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp 539-547.

    Google Scholar 

  • Springer-Verlag. Rosenthal M, State A, Lee J, Hirota G, Ackerman J, Keller K, Pisano E, Jiroutek M, Muller K, and Fuchs H. (2001). “Augmented reality guidance for needle biopsies: An initial randomized, controlled trial in phantoms.” Proceedings of the Fourth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 240-248.

    Google Scholar 

  • Rosenthal M, State A, Lee J, Hirota G, Ackerman J, Keller K, Pisano E, Jiroutek M, Muller K, and Fuchs H. (2002). “Augmented reality guidance for needle biopsies: An initial randomized, controlled trial in phantoms.” Med Image Anal, 6(2), 313-320.

    Article  Google Scholar 

  • Sauer F, Khamene A, Bascle B, and Rubino G. (2001a). “A headmounted display system for augmented reality image guidance: Towards clinical evaluation for iMRI-guided neurosurgery.” Proceedings of the fourth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 707-716.

    Google Scholar 

  • Sauer F, Khamene A, Bascle B, Schimmang L, Wenzel F, and Vogt S. (2001b). “Augmented reality visualization of ultrasound images: System description, calibration, and features.” Proceedings of IEEE and ACM International Sympo-sium on Augmented Reality (ISAR’01), 30-39.

    Google Scholar 

  • Sauer F, Khamene A, Bascle B, and Vogt S. (2002a). “An augmented reality system for ultrasound guided needle biopsies.” Proceedings of the Tenth Annual Medicine Meets Virtual Reality Conference (MMVR), 455-460.

    Google Scholar 

  • Sauer F, Khamene A, Bascle B, Vogt S, and Rubino G. (2002b). “Augmented reality visualization in iMRI operating room: System description and pre-clinical testing.” Proceedings of SPIE’s Conference of Medical Imaging 2002: Visualization, Image-Guided Procedures, and Display, 446-454.

    Google Scholar 

  • Sauer F, Khamene A, and Vogt S. (2002c). “An augmented reality navigation system with a single-camera tracker: System design and needle biopsy phantom trial.” Proceedings of the Fifth International Conference on Medical Image Com-puting and Computer-Assisted Intervention (MICCAI), 116-124.

    Google Scholar 

  • Sauer F, Schoepf J, Khamene A, Vogt S, Das M, and Silverman SG. (2003). “Augmented reality system for CT-guided interventions: System description

    Google Scholar 

  • and initial phantom trials.” Proceedings of SPIE’s Conference of Medical Ima-ging 2003: Visualization, Image-Guided Procedures, and Display, 384-394.

    Google Scholar 

  • Sauer F, Wenzel F, Vogt S, Tao Y, Genc Y, and Bani-Hashemi A. (2000). “Augmented workspace: Designing an AR testbed.” Proceedings of the IEEE and ACM International Symposium on Augmented Reality (ISAR), 47-53.

    Google Scholar 

  • Shahidi R, Wang B, Epitaux M, Grzeszczuk R, and Adler J. (1998). “Volumetric image guidance via a stereotactic endoscope.” Proceedings of the First International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 241-252.

    Google Scholar 

  • Sielhorst T, Obst T, Burgkart R, Riener R, and Navab N. (2004a). “An augmented reality delivery simulator for medical training.” Proceedings of the International Workshop on Augmented Environments for Medical Imaging (AMIARCS 2004) - MICCAI Satellite Workshop, 11-20.

    Google Scholar 

  • Sielhorst T, Traub J, and Navab N. (2004b). “The AR apprenticeship: Replication and omnidirectional viewing of subtle movements.” Proceedings of the Third IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR), 290-291.

    Google Scholar 

  • State A, Chen D, Tector C, Brandt A, Chen H, Ohbuchi R, Bajura M, and Fuchs H. (1994). “Case study: Observing a volume rendered fetus within a pregnant patient.” Proceedings of IEEE Visualization ’94, 364-368.

    Google Scholar 

  • State A, Keller K, Rosenthal M, Yang H, Ackerman J, and Fuchs H. (2003). “Stereo imagery from the UNC augmented reality system for breast biopsy guidance.” Proceedings of the 11th Annual Medicine Meets Virtual Reality Conference (MMVR), 325-328.

    Google Scholar 

  • State A, Livingston M, Hirota G, Garrett W, Whitton M, Fuchs H, and Pisano E. (1996). “Technologies for augmented-reality systems: realizing ultrasound-guided needle biopsies.” SIGGRAPH, 96 Computer Graphics Proceedings, Annual Conference Series, 439-446.

    Google Scholar 

  • Stetten G, and Chib V. (2001a). “Magnified real-time tomographic reflection.” Proceedings of the Fourth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 683-690.

    Google Scholar 

  • Stetten G, Chib V, and Tamburo R. (2000). “Tomographic reflection to merge ultrasound images with direct vision.” Proceedings of the Applied Imagery Pattern Recognition Annual Workshop (AIPR), 200-205.

    Google Scholar 

  • Stetten G, Chib VS, Hildebrand D, and Bursee J. (2001). “Real time tomographic reflection: Phantoms for calibration and biopsy.” Proceedings of the IEEE and ACM International Symposium on Augmented Reality (ISAR), 11-19.

    Google Scholar 

  • Stetten G, Cois A, Chang W, Shelton D, Tamburo R, Castellucci J, and Von Ramm O. (2003). “C-mode real time tomographic reflection for a matrix array ultrasound sonic flashlight.” Proceedings of the Sixth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 336-343.

    Google Scholar 

  • Stetten G, Cois A, Chang W, Shelton D, Tamburo R, Castellucci J, and von Ramm O. (2005). “C-mode real-time tomographic reflection for a matrix array ultrasound sonic flashlight.” Acad Radiol, 12(5), 535-543.

    Article  Google Scholar 

  • Stetten GD, and Chib VS. (2001b). “Overlaying ultrasonographic images on direct vision.” J Ultrasound Med, 20(3), 235-240.

    Google Scholar 

  • Traub J, Feuerstein M, Bauer M, Schirmbrck E, Najafi H, Bauernschmitt R, and Klinker G. (2004). “Augmented reality for port placement and navigation in robotically assisted minimally invasive cardiovascular surgery.” Proceedings of the 18th International Congress and Exhibition on Computer Assisted Radio-logy and Surgery (CARS), 735-740.

    Google Scholar 

  • Tuceryan M, and Navab N. (2000). “Single point active alignment method (SPAAM) for optical see-through HMD calibration for AR.” Proceedings of IEEE and ACM International Symposium on Augmented Reality (ISAR’00), Munich, Germany, 149-158.

    Google Scholar 

  • Vogt S, Khamene A, Niemann H, and Sauer F. (2004a). “An AR system with intuitive user interface for manipulation and visualization of 3D medical data.” Proceedings of the 12th Annual Medicine Meets Virtual Reality Conference (MMVR), 397-403.

    Google Scholar 

  • Vogt S, Khamene A, and Sauer F. (2006). “Reality augmentation for medical procedures: System architecture, single camera marker tracking, and system evaluation.” Int J Comput Vis, 70(2), 179-190.

    Article  Google Scholar 

  • Vogt S, Khamene A, Sauer F, Keil A, and Niemann H. (2003). “A high performance AR system for medical applications.” Proceedings of the Second IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR), 270-271.

    Google Scholar 

  • Vogt S, Khamene A, Sauer F, and Niemann H. (2002). “Single camera tracking of marker clusters: Multiparameter cluster optimization and experimental verify-cation.” Proceedings of the IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR), 127-136.

    Google Scholar 

  • Vogt S, Wacker F, Khamene A, Elgort D, Sielhorst T, Niemann H, Duerk J, Lewin J, and Sauer F. (2004b). “Augmented reality system for MR-guided in- terventions: Phantom studies and first animal test.” Proceedings of SPIE’s Conference of Medical Imaging 2004: Visualization, Image-Guided Pro-cedures, and Display, 100-109.

    Google Scholar 

  • Wacker FK, Vogt S, Khamene A, Jesberger JA, Nour SG, Elgort DR, Sauer F, Duerk JL, and Lewin JS. (2006). “An augmented reality system for MR image-guided needle biopsy: initial results in a swine model.” Radiology, 238(2), 497-504.

    Article  Google Scholar 

  • Wang D, Wu B, and Stetten G. (2005). “Laser needle guide for the sonic flash-light.” Proceedings of the Eighth International Conference on Medical Image Com-puting and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 647-653.

    Google Scholar 

  • Wendt M, Sauer F, Khamene A, Bascle B, Vogt S, and Wacker F. (2003). “A head-mounted display system for augmented reality: Initial evaluation for interven-tional MRI.” RöFo - Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren, 175(3), 418-421.

    Article  Google Scholar 

  • Worn H, and Hoppe H. (2001). “Augmented reality in the operating theatre of the future.”Proceedings of the Fourth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer-Verlag, 1195-1196.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sauer, F., Vogt, S., Khamene, A. (2008). Augmented Reality. In: Peters, T., Cleary, K. (eds) Image-Guided Interventions. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73858-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-73858-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-73856-7

  • Online ISBN: 978-0-387-73858-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics