Advertisement

Tracking Devices

  • Wolfgang Birkfellner
  • Johann Hummel
  • Emmanuel Wilson
  • Kevin Cleary

Tracking devices are an essential component of an image-guided surgery system. These devices are used to track the position of instruments relative to the patient anatomy. Although early tracking systems were essentially mechanical digitizers, the field quickly adopted optical tracking systems because of their high accuracy and relatively large workspace. However, optical tracking systems require that a line-of-sight be maintained between the tracking device and the instrument to be tracked, which is not always convenient and precludes tracking of flexible instruments inside the body. Therefore, electromagnetic tracking systems were developed that had no line-of-sight requirement and could track instruments such as catheters and the tips of needles inside the body. The choice of tracking system is highly application dependent and requires an understanding of the desired working volume and accuracy requirements. To meet these needs, a variety of tracking devices and techniques have been introduced as described in this chapter.

Keywords

Tracking System Augmented Reality Radiat Oncol Biol Phys Tracking Device Electronic Portal Imaging Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anon JB (1998).“Computer-aided endoscopic sinus surgery.” Laryngoscope, 108(7), 949-61.Google Scholar
  2. Ashe W (2003). “Magnetic position measurement system with field containment means.” U.S. Patent 6,528,991.Google Scholar
  3. Aubin S, Beaulieu L, Pouliot S, Pouliot J, Roy R, Girouard LM, Martel-Brisson N, Vigneault E, Laverdiere J (2003). “Robustness and precision of an automatic marker detection algorithm for online prostate daily targeting using a standard V-EPID.” Med Phys, 30(7), 1825-32.Google Scholar
  4. Azuma R, Bishop G (1994). Improving static and dynamic registration in an optical see-through HMD. SIGGRAPH’04, 197-204.Google Scholar
  5. Baert SA, Viergever MA, Niessen WJ (2003). “Guide-wire tracking during endo vascular interventions.” IEEE Trans Med Imaging, 22(8), 965-72.Google Scholar
  6. Barratt DC, Davies AH, Hughes AD, Thom SA, Humphries KN (2001). “Accuracy of an electromagnetic three-dimensional ultrasound system for carotid artery imaging.” Ultrasound Med Biol, 27(10), 1421-5.Google Scholar
  7. Bercik P, Schlageter V, Mauro M, Rawlinson J, Kucera P, Armstrong D (2005). “Noninvasive verification of nasogastric tube placement using a magnet-tracking system: a pilot study in healthy subjects.” JPEN J Parenter Enteral Nutr, 29(4), 305-10.Google Scholar
  8. Birkfellner W, Figl M, Huber K, Watzinger F, Wanschitz F, Hummel J, Hanel R, Greimel W, Homolka P, Ewers R, Bergmann H (2002). “A head-mounted operating binocular for augmented reality visualization in medicine - design and initial evaluation.” IEEE Trans Med Imaging, 21(8), 991-7.Google Scholar
  9. Birkfellner W, Seemann R, Figl M, Hummel J, Ede C, Homolka P, Yang X, Niederer P, Bergmann H (2005). “Wobbled splatting-a fast perspective volume rendering method for simulation of x-ray images from CT.” Phys Med Biol, 50(9), N73-N84.Google Scholar
  10. Birkfellner W, Watzinger F, Wanschitz F, Enislidis G, Kollmann C, Rafolt D, Nowotny R, Ewers R, Bergmann H (1998a). “Systematic distortions in magnetic position digitizers.” Med Phys, 25(11), 2242-8.Google Scholar
  11. Birkfellner W, Watzinger F, Wanschitz F, Ewers R, Bergmann H (1998b). “Calibration of tracking systems in a surgical environment.” IEEE Trans Med Imaging, 17(5), 737-42.Google Scholar
  12. Birkfellner W, Wirth J, Burgstaller W, Baumann B, Staedele H, Hammer B, Gellrich NC, Jacob AL, Regazzoni P, Messmer P (2003). “A faster method for 3D/2D medical image registration-a simulation study.” Phys Med Biol, 48(16), 2665-79.Google Scholar
  13. Blood E (1989). “Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields.” U.S. Patent 4,849,692.Google Scholar
  14. Bottlang M, Marsh JL, Brown TD (1998). “Factors influencing accuracy of screw displacement axis detection with a D.C.-based electromagnetic tracking system.” J Biomech Eng, 120(3), 431-5.Google Scholar
  15. Buhler P, Just U, Will E, Kotzerke J, van den Hoff J (2004). “An accurate method for correction of head movement in PET.” IEEE Trans Med Imaging, 23(9), 1176-85.Google Scholar
  16. Carney AS, Patel N, Baldwin DL, Coakham HB, Sandeman DR (1996). “Intra-operative image guidance in otolaryngology - the use of the ISG viewing wand.” J Laryngol Otol, 110(4), 322-7.Google Scholar
  17. Cash DM, Miga MI, Glasgow SC, Dawant BM, Clements LW, Cao Z, Galloway RL, Chapman WC (2007). Concepts and preliminary data toward the reali-zation of image-guided liver surgery. J Gastrointest Surg, 11(7), 844-59.Google Scholar
  18. Chou JCK (1992). “Quaternion kinematic and dynamic differential equations.” IEEE Trans Robotic Autom, 8(1), 53-64.Google Scholar
  19. Colchester AC, Zhao J, Holton-Tainter KS, Henri CJ, Maitland N, Roberts PT, Harris CG, Evans RJ (1996). “Development and preliminary evaluation of VISLAN, a surgical planning and guidance system using intra-operative video imaging.” Med Image Anal, 1(1), 73-90.Google Scholar
  20. Das M, Sauer F, Schoepf UJ, Khamene A, Vogt SK, Schaller S, Kikinis R, vanSonnenberg E, Silverman SG (2006). “Augmented reality visualization for CT-guided interventions: system description, feasibility, and initial eva-luation in an abdominal phantom.” Radiology, 240(1), 230-5.Google Scholar
  21. Deguchi D, Akiyama K, Mori K, Kitasaka T, Suenaga Y, Maurer CR Jr, Takabatake H, Mori M, Natori H (2006). “A method for bronchoscope tracking by com-bining a position sensor and image registration.” Comput Aided Surg, 11(3), 109-17.Google Scholar
  22. Doshi PK, Lemieux L, Fish DR, Shorvon SD, Harkness WH, Thomas DG (1995). “Frameless stereotaxy and interactive neurosurgery with the ISG viewing wand.” Acta Neurochir Suppl, 64, 49-53.Google Scholar
  23. Dyer PV, Patel N, Pell GM, Cummins B, Sandeman DR (1995). “The ISG viewing wand: an application to atlanto-axial cervical surgery using the Le Fort I maxil-lary osteotomy.” Br J Oral Maxillofac Surg, 33(6), 370-4.Google Scholar
  24. Edwards PJ, King AP, Maurer CR Jr, de Cunha DA, Hawkes DJ, Hill DL, Gaston RP, Fenlon MR, Jusczyzck A, Strong AJ, Chandler CL, Gleeson MJ (2000). “Design and evaluation of a system for microscope-assisted guided inter-ventions (MAGI).” IEEE Trans Med Imaging, 19(11), 1082-93.Google Scholar
  25. Eljamel MS (1997). “Accuracy, efficacy, and clinical applications of the Radionics Operating Arm System.” Comput Aided Surg, 2(5), 292-7.Google Scholar
  26. Ellsmere J, Stoll J, Wells W 3rd, Kikinis R, Vosburgh K, Kane R, Brooks D, Rattner D (2004). “A new visualization technique for laparoscopic ultrasono-graphy.” Surgery, 136(1), 84-92.Google Scholar
  27. Feng B, Gifford HC, Beach RD, Boening G, Gennert MA, King MA (2006). “Use of three-dimensional Gaussian interpolation in the projector/backprojector pair of iterative reconstruction for compensation of known rigid-body motion in SPECT.” IEEE Trans Med Imaging, 25(7), 838-44.Google Scholar
  28. Figl M, Ede C, Hummel J, Wanschitz F, Ewers R, Bergmann H, Birkfellner W (2005). “A fully automated calibration method for an optical see-through head-mounted operating microscope with variable zoom and focus.” IEEE Trans Med Imaging, 24(11), 1492-9.Google Scholar
  29. Fitzpatrick JM, West JB, Maurer CR Jr (1998). “Predicting error in rigid-body point-based registration.” IEEE Trans Med Imaging, 17(5), 694-702.Google Scholar
  30. Frantz DD, Wiles AD, Leis SE, Kirsch SR (2003). “Accuracy assessment protocols for electromagnetic tracking systems.” Phys Med Biol, 48(14), 2241-51.Google Scholar
  31. Freysinger W, Gunkel AR, Thumfart WF (1997). “Image guided endoscopic ENT surgery.” Eur Arch Otorhinolaryngol, 254(7), 343-6.Google Scholar
  32. Fried MP, Kleefield J, Gopal H, Reardon E, Ho BT, Kuhn FA (1997). “Image guided endoscopic surgery: results of accuracy and performance in a multicenter clini-cal study using an electromagnetic tracking system.” Laryngoscope, 107(5), 594-601.Google Scholar
  33. Fristrup CW, Pless T, Durup J, Mortensen MB, Nielsen HO, Hovendal CP (2004). “A new method for three-dimensional laparoscopic ultrasound model recon-struction.” Surg Endosc, 18(11), 1601-4.Google Scholar
  34. Gepstein L, Hayam G, Ben-Haim SA (1997). “A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart. In vitro and in vivo accuracy results.” Circulation, 95(6), 1611-22.Google Scholar
  35. Goerss SJ, Kelly PJ, Kall B, Stiving S (1994). “A stereotactic magnetic field digitizer.” Stereotact Funct Neurosurg, 63(1-4), 89-92.Google Scholar
  36. Gumprecht HK, Widenka DC, Lumenta CB (1999). “BrainLab VectorVision Neuronavigation System: technology and clinical experiences in 131 cases.” Neurosurgery, 44(1), 97-104.Google Scholar
  37. Harada T, Shirato H, Ogura S, Oizumi S, Yamazaki K, Shimizu S, Onimaru R, Miyasaka K, Nishimura M, Dosaka-Akita H (2002). “Real-time tumor-tracking radiation therapy for lung carcinoma by the aid of insertion of a gold marker using bronchofiberscopy.” Cancer, 95(8), 1720-7.Google Scholar
  38. Hassfeld S, Muhling J, Zoller J (1995). “Intraoperative navigation in oral and maxillofacial surgery.” Int J Oral Maxillofac Surg, 24(1 Pt 2), 111-9.Google Scholar
  39. Hastenteufel M, Vetter M, Meinzer HP, Wolf I (2006). “Effect of 3D ultrasound probes on the accuracy of electromagnetic tracking systems.” Ultrasound Med Biol, 32(9), 1359-68.Google Scholar
  40. Hata N, Dohi T, Iseki H, Takakura K (1997). “Development of a frameless and armless stereotactic neuronavigation system with ultrasonographic registration.” Neurosurgery, 41(3), 608-13.Google Scholar
  41. Hautmann H, Schneider A, Pinkau T, Peltz F, Feussner H (2005). “Electromagnetic catheter navigation during bronchoscopy: validation of a novel method by conventional fluoroscopy.” Chest, 128(1), 382-7.Google Scholar
  42. Hipwell JH, Penney GP, McLaughlin RA, Rhode K, Summers P, Cox TC, Byrne JV, Noble JA, Hawkes DJ (2003). “Intensity-based 2-D-3-D registration of cerebral angiograms.” IEEE Trans Med Imaging, 22(11), 1417-26.Google Scholar
  43. Hummel J, Bax MR, Figl ML, Kang Y, Maurer C Jr, Birkfellner WW, Bergmann H, Shahidi R (2005). “Design and application of an assessment protocol for electromagnetic tracking systems.” Med Phys, 32(7), 2371-9.Google Scholar
  44. Hummel J, Figl M, Birkfellner W, Bax MR, Shahidi R, Maurer CR Jr, Bergmann H (2006). “Evaluation of a new electromagnetic tracking system using a standard-ized assessment protocol.” Phys Med Biol, 51(10), N205-10.Google Scholar
  45. Hummel J, Figl M, Kollmann C, Bergmann H, Birkfellner W (2002). “Evaluation of a miniature electromagnetic position tracker.” Med Phys, 29(10), 2205-12.Google Scholar
  46. Javer AR, Kuhn FA, Smith D (2000). “Stereotactic computer-assisted navigational sinus surgery: accuracy of an electromagnetic tracking system with the tissue debrider and when utilizing different headsets for the same patient.” Am J Rhinol, 14 (6), 361-5.Google Scholar
  47. Josefsson T, Nordh E, Eriksson PO (1996). “A flexible high-precision video system for digital recording of motor acts through lightweight reflex markers.” Comput Methods Programs Biomed, 49(2), 119-29.Google Scholar
  48. Kalman RE (1960). “A new approach to linear filtering and prediction problems.” Trans ASME - J Basic Eng, 82, 35-45.Google Scholar
  49. Kato H, Billinghurst M (1999). “Marker Tracking and HMD Calibration for a video-based Augmented Reality Conferencing System.” Proceedings of the 2nd International Workshop on Augmented Reality (IWAR 99). October, San Francisco, CA.Google Scholar
  50. Khadem R, Yeh CC, Sadeghi-Tehrani M, Bax MR, Johnson JA, Welch JN, Wilkinson EP, Shahidi R (2000). “Comparative tracking error analysis of five different optical tracking systems.” Comput Aided Surg, 5(2), 98-107.Google Scholar
  51. Khan MF, Dogan S, Maataoui A, Gurung J, Schiemann M, Ackermann H, Wesarg S, Sakas G, Vogl TJ (2005). “Accuracy of biopsy needle navigation using the Medarpa system - computed tomography reality superimposed on the site of intervention.” Eur Radiol, 15(11), 2366-74.Google Scholar
  52. Khan MF, Dogan S, Maataoui A, Wesarg S, Gurung J, Ackermann H, Schiemann M, Wimmer-Greinecker G, Vogl TJ (2006). “Navigation-based needle puncture of a cadaver using a hybrid tracking navigational system.” Invest Radiol, 41(10), 713-20.Google Scholar
  53. King DL (2002). “Errors as a result of metal in the near environment when using an electromagnetic locator with freehand three-dimensional echocardiography.” J Am Soc Echocardiogr, 15(7), 731-5.Google Scholar
  54. Kirsch S, Boksberger HU, Greuter U, Schilling C, Seiler PG (1997). “Real-time tracking of tumor positions for precision irradiation.” In Advances in Hadron-therapy, Excerpta Medica International Congress Series 1144, Elsevier, 269-274.Google Scholar
  55. Koizumi N, Sumiyama K, Suzuki N, Hattori A, Tajiri H, Uchiyama A (2003). “Development of a new three-dimensional endoscopic ultrasound system through endoscope shape monitoring.” Stud Health Technol Inform, 94, 168-70.Google Scholar
  56. Krueger S, Timinger H, Grewer R, Borgert J (2005). “Modality-integrated magnetic catheter tracking for x-ray vascular interventions.” Phys Med Biol, 50(4), 581-97.Google Scholar
  57. Kuipers JB (1980). “SPASYN - an electromagnetic relative position and orientation tracking system.” IEEE Trans Instrum Meas, 29, 462-66.Google Scholar
  58. LaScalza S, Arico J, Hughes R (2003). “Effect of metal and sampling rate on accuracy of Flock of Birds electromagnetic tracking system.” J Biomech, 36(1), 141-4.Google Scholar
  59. Lemieux L, Jagoe R, Fish DR, Kitchen ND, Thomas DG (1994). “A patient-to-computed-tomography image registration method based on digitally recon-structed radiographs.” Med Phys, 21(11), 1749-60.Google Scholar
  60. Li Q, Zamorano L, Jiang Z, Gong JX, Pandya A, Perez R, Diaz F (1999). “Effect of optical digitizer selection on the application accuracy of a surgical localization system-a quantitative comparison between the OPTOTRAK and flashpoint tracking systems.” Comput Aided Surg, 4(6), 314-21.Google Scholar
  61. Litzenberg DW, Balter JM, Hadley SW, Sandler HM, Willoughby TR, Kupelian PA, Levine L (2006). “Influence of intrafraction motion on margins for prostate radiotherapy.” Int J Radiat Oncol Biol Phys, 65(2), 548-53.Google Scholar
  62. Livyatan H, Yaniv Z, Joskowicz L (2003). “Gradient-based2-D/3-D rigid registration of fluoroscopic X-ray to CT.” IEEE Trans Med Imaging, 22(11), 1395-406.Google Scholar
  63. Meskers CG, Fraterman H, van der Helm FC, Vermeulen HM, Rozing PM (1999). “Calibration of the “Flock of Birds” electromagnetic tracking device and its application in shoulder motion studies.” J Biomech, 32(6), 629-33.Google Scholar
  64. Milne AD, Chess DG, Johnson JA, King GJ (1996). “Accuracy of an electro-magnetic tracking device: a study of the optimal range and metal interference.” J Biomech, 29(6), 791-3.Google Scholar
  65. Mori K, Deguchi D, Sugiyama J, Suenaga Y, Toriwaki J, Maurer CR Jr, Takabatake H, Natori H (2002). “Tracking of a bronchoscope using epipolar geometry analysis and intensity-based image registration of real and virtual endoscopic images.” Med Image Anal, 6(3), 321-36.Google Scholar
  66. Muench RK, Blattmann H, Kaser-Hotz B, Bley CR, Seiler PG, Sumova A, Verwey J (2004). “Combining magnetic and optical tracking for computer aided therapy.” Z Med Phys, 14(3), 189-94.Google Scholar
  67. Nederveen AJ, Lagendijk JJ, Hofman P (2001). “Feasibility of automatic marker detection with an a-Si flat-panel imager.” Phys Med Biol, 46(4), 1219-30.Google Scholar
  68. Nishizaki K, Masuda Y, Nishioka S, Akagi H, Takeda Y, Ohkawa Y (1996). “A computer-assisted operation for congenital aural malformations.” Int J Pediatr Otorhinolaryngol, 36(1), 31-7.Google Scholar
  69. Nolte LP, Zamorano L, Visarius H, Berlemann U, Langlotz F, Arm E, Schwarzenbach O (1995). “Clinical evaluation of a system for precision en-hancement in spine surgery.” Clin Biomech, 10(6), 293-303.Google Scholar
  70. Pang G, Beachey DJ, O’Brien PF, Rowlands JA (2002). “Imaging of 1.0-mm-diameter radiopaque markers with megavoltage X-rays: an improved online imaging system.” Int J Radiat Oncol Biol Phys, 52(2), 532-7.Google Scholar
  71. Penney GP, Weese J, Little JA, Desmedt P, Hill DL, Hawkes DJ (1998). “A comparison of similarity measures for use in 2-D-3-D medical image registration.” IEEE Trans Med Imaging, 17(4), 586-95.Google Scholar
  72. Petersch B, Bogner J, Dieckmann K, Potter R, Georg D (2004). “Automatic real-time surveillance of eye position and gating for stereotactic radiotherapy of uveal melanoma.” Med Phys, 31(12), 3521-7.Google Scholar
  73. Poulin F, Amiot LP (2002). “Interference during the use of an electromagnetic tracking system under OR conditions.” J Biomech, 35(6), 733-7.Google Scholar
  74. Raab FH, Blood EB, Steiner TO, Jones HR (1979). “Magnetic position and orien-tation tracking system.” IEEE Trans Aerosp Electron Syst, AES-15, 709-17.Google Scholar
  75. Reinhardt HF, Landolt H (1989). “CT-guided “real time” stereotaxy.” Acta Neurochir Suppl (Wien), 46, 107-8.Google Scholar
  76. Reinhardt HF, Zweifel HJ (1990). “Interactive sonar-operated device for stereo-tactic and open surgery.” Stereotact Funct Neurosurg, 54-55, 93-7.Google Scholar
  77. Reittner P, Tillich M, Luxenberger W, Weinke R, Preidler K, Kole W, Stammberger H, Szolar D. (2002). “Multislice CT-image guided endoscopic sinus surgery using an electromagnetic tracking system.” Eur Radiol, 12(3), 592-6.Google Scholar
  78. Roberts DW, Strohbehn JW, Hatch JF, Murray W, Kettenberger H (1986). “A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope.” J Neurosurg, 65(4), 545-9.Google Scholar
  79. Rohling R, Munger P, Hollerbach JM, Peter T (1995). “Comparison of relative accuracy between a mechanical and an optical position tracker for image guided neurosurgery.” J Image Guid Surg, 1(1), 30-4.Google Scholar
  80. Russakoff DB, Rohlfing T, Mori K, Rueckert D, Ho A, Adler JR Jr, Maurer CR Jr (2005). “Fast generation of digitally reconstructed radiographs using attenu-ation fields with application to 2D-3D image registration.” IEEE Trans Med Imaging, 24(11), 1441-54.Google Scholar
  81. Sagi HC, Manos R, Benz R, Ordway NR, Connolly PJ (2003). “Electromagnetic field-based image guided spine surgery part I & II: results of a cadaveric study evaluating lumbar pedicle screw placement.” Spine, 28(17), 2013-8 and E351-4.Google Scholar
  82. Sandeman DR, Patel N, Chandler C, Nelson RJ, Coakham HB, Griffith HB (1994). “Advances in image-directed neurosurgery: preliminary experience with the ISG Viewing Wand compared with the Leksell G frame.” Br J Neurosurg, 8(5), 529-44.Google Scholar
  83. Schicho K, Figl M, Donat M, Birkfellner W, Seemann R, Wagner A, Bergmann H, Ewers R (2005). “Stability of miniature electromagnetic tracking systems.” Phys Med Biol, 50(9), 2089-98.Google Scholar
  84. Schmerber S, Chassat F (2001). “Accuracy evaluation of a CAS system: labo-ratory protocol and results with 6D localizers, and clinical experiences in otorhinolaryngology.” Comput Aided Surg, 6(1), 1-13.Google Scholar
  85. Seiler P (2007). “Device for determining the position of body parts and use of the same.” U.S. Patent 7,204,796.Google Scholar
  86. Seiler PG, Blattmann H, Kirsch S, Muench RK, Schilling C (2000). “A novel tracking technique for the continuous precise measurement of tumour positions in conformal radiotherapy.” Phys Med Biol, 45(9), N103-10.Google Scholar
  87. Shahidi R, Bax MR, Maurer CR Jr, Johnson JA, Wilkinson EP, Wang B, West JB, Citardi MJ, Manwaring KH, Khadem R (2002). “Implementation, calibration and accuracy testing of an image-enhanced endoscopy system.” IEEE Trans Med Imaging, 21(12), 1524-35.Google Scholar
  88. Shepperd SW (1978). “Quaternion from rotation matrix.” J Guid Control, 1(3), 223-4.MATHGoogle Scholar
  89. Shimizu S, Shirato H, Kitamura K, Shinohara N, Harabayashi T, Tsukamoto T, Koyanagi T, Miyasaka K (2000). “Use of an implanted marker and real-time tracking of the marker for the positioning of prostate and bladder cancers.” Int J Radiat Oncol Biol Phys, 48(5), 1591-7.Google Scholar
  90. Sipos EP, Tebo SA, Zinreich SJ, Long DM, Brem H (1996). “In vivo accuracy testing and clinical experience with the ISG Viewing Wand.” Neurosurgery, 39 (1), 194-202.Google Scholar
  91. Skerl D, Likar B, Pernus F (2006). “A protocol for evaluation of similarity measures for rigid registration.” IEEE Trans Med Imaging, 25(6), 779-91.Google Scholar
  92. Smith KR, Frank KJ, Bucholz RD (1994). “The NeuroStation-a highly accurate, minimally invasive solution to frameless stereotactic neurosurgery.” Comput Med Imaging Graph, 18(4), 247-56.Google Scholar
  93. Solomon SB, Dickfeld T, Calkins H (2003). “Real-time cardiac catheter navigation on three-dimensional CT images.” J Interv Card Electrophysiol, 8(1), 27-36.Google Scholar
  94. Solomon SB, White P Jr, Wiener CM, Orens JB, Wang KP (2000). “Three-dimen-sional CT-guided bronchoscopy with a real-time electromagnetic position sensor: a comparison of two image registration methods.” Chest, 118(6), 1783-7.Google Scholar
  95. Suess O, Kombos T, Kurth R, Suess S, Mularski S, Hammersen S, Brock M (2001). “Intracranial image guided neurosurgery: experience with a new electromag-netic navigation system.” Acta Neurochir (Wien), 143(9), 927-34.Google Scholar
  96. Sumiyama K, Suzuki N, Kakutani H, Hino S, Tajiri H, Suzuki H, Aoki T (2002). “A novel 3-dimensional EUS technique for real-time visualization of the volume data reconstruction process.” Gastrointest Endosc, 55(6), 723-8.Google Scholar
  97. Talamini MA, Chapman S, Horgan S, Melvin WS (2003). “The Academic Robotics Group. A prospective analysis of 211 robotic-assisted surgical procedures.” Surg Endosc, 17(10), 1521-4.Google Scholar
  98. Turgeon GA, Lehmann G, Guiraudon G, Drangova M, Holdsworth D, Peters T (2005). “2D-3D registration of coronary angiograms for cardiac procedure plan-ning and guidance.” Med Phys, 32(12), 3737-49.Google Scholar
  99. van de Kraats EB, van Walsum T, Kendrick L, Noordhoek NJ, Niessen WJ (2006). “Accuracy evaluation of direct navigation with an isocentric 3D rotational X-ray system.” Med Image Anal, 10(2), 113-24.Google Scholar
  100. van Ruijven LJ, Beek M, Donker E, van Eijden TM (2000). “The accuracy of joint surface models constructed from data obtained with an electromagnetic track-ing device.” J Biomech, 33(8), 1023-8.Google Scholar
  101. van Walsum T, Baert SA, Niessen WJ (2005). “Guide wire reconstruction and visualization in 3DRA using monoplane fluoroscopic imaging.” IEEE Trans Med Imaging, 24(5), 612-23.Google Scholar
  102. Vetterli D, Thalmann S, Behrensmeier F, Kemmerling L, Born EJ, Mini R, Greiner RH, Aebersold DM (2006). “Daily organ tracking in intensity-modulated radio-therapy of prostate cancer using an electronic portal imaging device with a dose saving acquisition mode.” Radiother Oncol, 79(1), 101-8.Google Scholar
  103. Wacker FK, Vogt S, Khamene A, Jesberger JA, Nour SG, Elgort DR, Sauer F, Duerk JL, Lewin JS (2006). “An augmented reality system for MR image guided needle biopsy: initial results in a swine model.” Radiology, 238(2), 497-504.Google Scholar
  104. Wagner A, Ploder O, Enislidis G, Truppe M, Ewers R (1995). “Virtual image guided navigation in tumor surgery-technical innovation.” J Craniomaxillofac Surg, 23(5), 217-3.Google Scholar
  105. Wagner A, Ploder O, Zuniga J, Undt G, Ewers R (1996). “Augmented reality environment for temporomandibular joint motion analysis.” Int J Adult Ortho-don Orthognath Surg, 11(2), 127-36.Google Scholar
  106. Wagner A, Schicho K, Birkfellner W, Figl M, Seemann R, Konig F, Kainberger F, Ewers R (2002). “Quantitative analysis of factors affecting intraoperative precision and stability of optoelectronic and electromagnetic tracking systems.” Med Phys, 29(5), 905-12.Google Scholar
  107. Wagner AA, Varkarakis IM, Link RE, Sullivan W, Su LM (2006). “Comparison of surgical performance during laparoscopic radical prostatectomy of two robotic camera holders, EndoAssist and AESOP: a pilot study.” Urology, 68(1), 70-4.Google Scholar
  108. Watanabe Y, Anderson LL (1997). “A system for nonradiographic source locali-zation and real-time planning of intraoperative high dose rate brachytherapy.” Med Phys, 24(12), 2014-23.Google Scholar
  109. Watanabe E, Watanabe T, Manaka S, Mayanagi Y, Takakura K (1987). “Three-dimensional digitizer (neuronavigator): new equipment for computed tomography-guided stereotaxic surgery.” Surg Neurol, 27(6), 543-7.Google Scholar
  110. Watzinger F, Birkfellner W, Wanschitz F, Millesi W, Schopper C, Sinko K, Huber K, Bergmann H, Ewers R (1999). “Positioning of dental implants using computer-aided navigation and an optical tracking system: case report and presentation of a new method.” J Craniomaxillofac Surg, 27(2), 77-81.Google Scholar
  111. Willoughby TR, Kupelian PA, Pouliot J, Shinohara K, Aubin M, Roach M 3rd, Skrumeda LL, Balter JM, Litzenberg DW, Hadley SW, Wei JT, Sandler HM (2006). “Target localization and real-time tracking using the Calypso 4D localization system in patients with localized prostate cancer.” Int J Radiat Oncol Biol Phys, 65(2), 528-34.Google Scholar
  112. Wilson E, Yaniv Z, Zhang H, Nafis C, Shen E, Shechter G, Wiles A, Peters T, Lindisch D, Cleary K (2007). “A hardware and software protocol for the evaluation of electromagnetic tracker accuracy in the clinical environment: a multi-center study.” SPIE Medical Imaging, 6509, 2T1-T11.Google Scholar
  113. Wood BJ, Zhang H, Durrani A, Glossop N, Ranjan S, Lindisch D, Levy E, Banovac F, Borgert J, Krueger S, Kruecker J, Viswanathan A, Cleary K (2005). “Navigation with electromagnetic tracking for interventional radiology proce-dures: a feasibility study.” J Vasc Interv Radiol, 16(4), 493-505.Google Scholar
  114. Zaaroor M, Bejerano Y, Weinfeld Z, Ben-Haim S (2001). “Novel magnetic technology for intraoperative intracranial frameless navigation: in vivo and in vitro results.” Neurosurgery, 48(5), 1100-7.Google Scholar
  115. Zamorano L, Jiang Z, Kadi AM (1994). “Computer-assisted neurosurgery system: Wayne State University hardware and software configuration.” Comput Med Imaging Graph, 18(4), 257-71.Google Scholar
  116. Zhang H, Banovac F, Lin R, Glossop N, Wood BJ, Lindisch D, Levy E, Cleary K (2006). “Electromagnetic tracking for abdominal interventions in computer aided surgery.” Computer Aided Surgery, 11(3), 127-36.Google Scholar
  117. Zhou H, Hu H, Tao Y (2006). “Inertial measurements of upper limb motion.” Med Biol Eng Comput, 44(6), 479-87.Google Scholar
  118. Zhu R, Zhou Z (2004). “A real-time articulated human motion tracking using tri-axis inertial/magnetic sensors package.” IEEE Trans Neural Syst Rehabil Eng, 12 (2), 295-302.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Wolfgang Birkfellner
    • 1
  • Johann Hummel
    • 1
  • Emmanuel Wilson
    • 2
  • Kevin Cleary
    • 3
  1. 1.Medical UniversityAustria
  2. 2.Georgetown UniversityWashingtonUSA
  3. 3.Radiology DepartmentImaging Science and Information Systems (ISIS) CenterWashingtonUSA

Personalised recommendations