• Sonja Dieterich
  • James Rodgers
  • Rosanna Chan

Radiosurgery involves the use of radiation to treat tumors and is often an alternative to surgery. Many of the same advances in technology that have enabled the development of image-guided interventions have been applied in radiosurgery as well. In particular, the development of high resolution tomographic imaging for identification of the target treatment volume, as well as new methods for precisely delivering the radiation beam, have enabled more exact treatments. This chapter begins with a definition of radiosurgery and a brief historical review, followed by a description of the Gamma Knife® system for noninvasive treatment of intracranial brain disorders. The chapter describes conventional LINAC-based radiosurgery systems, and the CyberKnife® system robotic radiosurgery system, which can account for respiratory motion in the thorax and abdomen. The chapter concludes with a look at future tracking technologies.


Radiat Oncol Biol Phys Gamma Knife Stereotactic Radiosurgery Treatment Couch Leksell Gamma Knife 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler JR, Jr., Chang SD, Murphy MJ, Doty J, Geis P, and Hancock SL. (1997). The Cyberknife: A frameless robotic system for radiosurgery. Stereotact Funct Neurosurg, 69, 124-128CrossRefGoogle Scholar
  2. Adler JR, Jr., Colombo F, Heilbrun MP, and Winston K. (2004). Toward an expanded view of radiosurgery. Neurosurgery, 55(6), 1374-1376CrossRefGoogle Scholar
  3. Balter JM, Wright JN, Newell LN, Friemel B, Dimmer S, Cheng Y, Wong J, Vertatschitsch E, and Mate TP. (2005). Accuracy of a wireless localization system for radiotherapy. Int J Radiat Oncol Biol Phys, 61(3), 933-937Google Scholar
  4. Bank MI and Timmerman R. (2002). Superimposition of beams to vary shot size in gamma knife stereotactic radiosurgery. J Appl Clin Med Phys, 3(1), 19-25CrossRefGoogle Scholar
  5. Berbeco RI, Mostafavi H, Sharp GC, and Jiang SB. (2005). Towards fluoroscopic respiratory gating for lung tumours without radiopaque markers. Phys Med Biol, 50(19), 4481-4490CrossRefGoogle Scholar
  6. Cheung JY, Yu KN, Yu CP, and Ho RT. (1998). Monte Carlo calculation of single-beam dose profiles used in a gamma knife treatment planning system. Med Phys, 25(9), 1673-1675CrossRefGoogle Scholar
  7. D’Souza WD, Naqvi SA, and Yu CX. (2005). Real-time intra-fraction-motion tracking using the treatment couch: A feasibility study. Phys Med Biol, 50(17), 4021-4033CrossRefGoogle Scholar
  8. Deng J, Guerrero T, Ma CM, and Nath R. (2004). Modelling 6 MV photon beams of a stereotactic radiosurgery system for Monte Carlo treatment planning. Phys Med Biol, 49(9), 1689-1704CrossRefGoogle Scholar
  9. Deng J, Ma CM, Hai J, and Nath R. (2003). Commissioning 6 MV photon beams of a stereotactic radiosurgery system for Monte Carlo treatment planning. Med Phys, 30(12), 3124-3134CrossRefGoogle Scholar
  10. Dieterich S. (2005). Dynamic tracking of moving tumors in stereotactic radio-surgery. In: Robotic Radiosurgery, ed. by Mould RF, (The CyberKnife Society Press, Sunnyvale), pp. 51-63Google Scholar
  11. Ding GX and Yu CW. (2001). A study on beams passing through hip prosthesis for pelvic radiation treatment. Int J Radiat Oncol Biol Phys, 51(4), 1167-1175Google Scholar
  12. Fu D and Kuduvalli G. (2006). Enhancing skeletal features in digitally reconstructed radiographs. In: Medical Imaging 2006: Image Processing, ed. by Reinhardt JM and Pluim JP, (The International Society for Optical Engineering, San Diego), Abstract 61442MGoogle Scholar
  13. Fu D, Kuduvalli G, Maurer CJ, Allision J, and Adler J. (2006). D target localization using 2D local displacements of skeletal structures in orthogonal X-ray images for image-guided spinal radiosurgery. Int J CARS, 1(Suppl 1), 198-200Google Scholar
  14. Gerszten PC, Ozhasoglu C, Burton SA, Vogel W, Atkins B, Kalnicki S, and Welch WC. (2003a). Evaluation of CyberKnife frameless real-time image-guided stereotactic radiosurgery for spinal lesions. Stereotact Funct Neurosurg, 81 (1-4), 84-89CrossRefGoogle Scholar
  15. Gerszten PC, Ozhasoglu C, Burton SA, Vogel WJ, Atkins BA, Kalnicki S, and Welch WC. (2003b). Cyberknife frameless real-time image-guided stereotactic radiosurgery for the treatment of spinal lesions. Int J Radiat Oncol Biol Phys, 57 (Suppl. 2), S370-371Google Scholar
  16. Groh BA, Siewerdsen JH, Drake DG, Wong JW, and Jaffray DA. (2002). A performance comparison of flat-panel imager-based mV and kV cone-beam CT. Med Phys, 29(6), 967-975CrossRefGoogle Scholar
  17. Hoisak JD, Sixel KE, Tirona R, Cheung PC, and Pignol JP. (2004). Correlation of lung tumor motion with external surrogate indicators of respiration. Int J Radiat Oncol Biol Phys, 60(4), 1298-1306Google Scholar
  18. Jaffray DA, Siewerdsen JH, Wong JW, and Martinez AA. (2002). Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys, 53(5), 1337-1349CrossRefGoogle Scholar
  19. Kavanagh BD, Ding M, Schefter TE, Stuhr K, and Newman FA. (2006). The dosimetric effect of inhomogeneity correction in dynamic conformal arc stereotactic body radiation therapy for lung tumors. J Appl Clin Med Phys, 7 (2), 58-63CrossRefGoogle Scholar
  20. Keall PJ, Cattell H, Pokhrel D, Dieterich S, Wong KH, Murphy MJ, Vedam SS, Wijesooriya K, and Mohan R. (2006). Geometric accuracy of a real-time target tracking system with dynamic multileaf collimator tracking system. Int J Radiat Oncol Biol Phys, 65(5), 1579-1584Google Scholar
  21. Keall PJ, Siebers JV, Jeraj R, and Mohan R. (2003). Radiotherapy dose calculations in the presence of hip prostheses. Med Dosim, 28(2), 107-112CrossRefGoogle Scholar
  22. Kitamura K, Shirato H, Shimizu S, Shinohara N, Harabayashi T, Shimizu T, Kodama Y, Endo H, Onimaru R, Nishioka S, Aoyama H, Tsuchiya K, and Miyasaka K. (2002). Registration accuracy and possible migration of internal fiducial gold marker implanted in prostate and liver treated with real-time tumor-tracking radiation therapy (RTRT). Radiother Oncol, 62(3), 275-281CrossRefGoogle Scholar
  23. Kondziolka D, Maitz AH, Niranjan A, Flickinger JC, and Lunsford LD. (2002). An evaluation of the Model C gamma knife with automatic patient positioning. Neurosurgery, 50(2), 429-431CrossRefGoogle Scholar
  24. Kuo JS, Yu C, Petrovich Z, and Apuzzo ML. (2003). The cyberknife stereotactic radiosurgery system: Description, installation, and an initial evaluation of use and functionality. Neurosurgery, 53(5), 1235-1239CrossRefGoogle Scholar
  25. Kupelian PA, Forbes A, Willoughby TR, Wallace K, Manon RR, Meeks SL, Herrera L, Johnston A, and Herran JJ. (2007). Implantation and stability of metallic fiducials within pulmonary lesions. Int J Radiat Oncol Biol Phys, 69 (3), 777-785Google Scholar
  26. Laub WU and Nusslin F. (2003). Monte Carlo dose calculations in the treatment of a pelvis with implant and comparison with pencil-beam calculations. Med Dosim, 28(4), 229-233CrossRefGoogle Scholar
  27. Leksell L. (1951). The stereotaxic method and radiosurgery of the brain. Acta Chir Scand, 102(4), 316-319Google Scholar
  28. Mihaescu C, Dieterich S, Testa C, Mocanu M, and Cleary K (2004). Electro-magnetic marker tracking in the cyberknife suite: A feasibility study. 46th AAPM Annual Meeting, Pittsburgh, PA, USA, July 25-29Google Scholar
  29. Mu Z, Fu D, and Kuduvally G. (2006). Multiple fiducial identification using the Hidden Markov model in image guided radiosurgery. Conference on Computer Vision and Pattern Recognition Workshop, IEEE, June 17-22Google Scholar
  30. Muacevic A, Staehler M, Drexler C, Wowra B, Reiser M, and Tonn JC. (2006). Technical description, phantom accuracy, and clinical feasibility for fiducial-free frameless real-time image-guided spinal radiosurgery. J Neurosurg Spine, 5 (4), 303-312CrossRefGoogle Scholar
  31. Murphy MJ, Chang SD, Gibbs IC, Le QT, Hai J, Kim D, Martin DP, and Adler JR, Jr. (2003). Patterns of patient movement during frameless image-guided radiosurgery. Int J Radiat Oncol Biol Phys, 55(5), 1400-1408Google Scholar
  32. Neicu T, Shirato H, Seppenwoolde Y, and Jiang SB. (2003). Synchronized moving aperture radiation therapy (SMART): Average tumour trajectory for lung patients. Phys Med Biol, 48(5), 587-598CrossRefGoogle Scholar
  33. Pishvaian AC, Collins B, Gagnon G, Ahlawat S, and Haddad NG. (2006). EUS-guided fiducial placement for cyberknife radiotherapy of mediastinal and abdominal malignancies. Gastrointest Endosc, 64(3), 412-417CrossRefGoogle Scholar
  34. Quinn AM. (2002). CyberKnife: A robotic radiosurgery system. Clin J Oncol Nurs, 6(3), 149, 156CrossRefGoogle Scholar
  35. Reichner CA, Collins BT, Gagnon GJ, Malik S, Jamis-Dow C, and Anderson ED. (2005). The placement of gold fiducials for cyberknife stereotactic radiosurgery using a modified transbronchial needle aspiration technique. J Bronchol, 12(4), 193-195CrossRefGoogle Scholar
  36. Ryu SI, Chang SD, Kim DH, Murphy MJ, Le QT, Martin DP, and Adler JR, Jr. (2001). Image-guided hypo-fractionated stereotactic radiosurgery to spinal lesions. Neurosurgery, 49(4), 838-846CrossRefGoogle Scholar
  37. Schlaefer A, Fisseler J, Dieterich S, Shiomi H, Cleary K, and Schweikard A. (2005). Feasibility of four-dimensional conformal planning for robotic radiosurgery. Med Phys, 32(12), 3786-3792CrossRefGoogle Scholar
  38. Schweikard A, Bodduluri M, and Adler J. (1998). Planning for camera-guided robotic radiosurgery. IEEE Trans Rob Autom, 14(6), 951-962CrossRefGoogle Scholar
  39. Schweikard A, Shiomi H, and Adler J. (2004). Respiration tracking in radiosurgery. Med Phys, 31(10), 2738-2741CrossRefGoogle Scholar
  40. Seiler PG, Blattmann H, Kirsch S, Muench RK, and Schilling C. (2000). A novel tracking technique for the continuous precise measurement of tumour positions in conformal radiotherapy. Phys Med Biol, 45(9), N103-110CrossRefGoogle Scholar
  41. Shirato H, Harada T, Harabayashi T, Hida K, Endo H, Kitamura K, Onimaru R, Yamazaki K, Kurauchi N, Shimizu T, Shinohara N, Matsushita M, Dosaka-Akita H, and Miyasaka K. (2003). Feasibility of insertion/implantation of 2.0 mm-diameter gold internal fiducial markers for precise setup and real-time tumor tracking in radiotherapy. Int J Radiat Oncol Biol Phys, 56(1), 240-247Google Scholar
  42. Willoughby TR, Forbes AR, Buchholz D, Langen KM, Wagner TH, Zeidan OA, Kupelian PA, and Meeks SL. (2006). Evaluation of an infrared camera and X-ray system using implanted fiducials in patients with lung tumors for gated radiation therapy. Int J Radiat Oncol Biol Phys, 66(2), 568-575Google Scholar
  43. Wu A, Lindner G, Maitz AH, Kalend AM, Lunsford LD, Flickinger JC, and Bloomer WD. (1990). Physics of gamma knife approach on convergent beams in stereotactic radiosurgery. Int J Radiat Oncol Biol Phys, 18(4), 941-949Google Scholar
  44. Yamamoto M. (1999). Gamma Knife radiosurgery: Technology, applications, and future directions. Neurosurg Clin N Am, 10(2), 181-202Google Scholar
  45. Yousefi S, Collins BT, Reichner CA, Anderson ED, Jamis-Dow C, Gagnon G, Malik S, Marshall B, Chang T, and Banovac F. (2007). Complications of thoracic computed tomography-guided fiducial placement for the purpose of stereotactic body radiation therapy. Clin Lung Cancer, 8(4), 252-256CrossRefGoogle Scholar
  46. Yu C, Main W, Taylor D, Kuduvalli G, Apuzzo ML, and Adler JR, Jr. (2004). An anthropomorphic phantom study of the accuracy of cyberknife spinal radiosurgery. Neurosurgery, 55(5), 1138-1149CrossRefGoogle Scholar
  47. Zhou T, Tang J, Dieterich S, and Cleary K. (2004). A robotic 3D motion simulator for enhanced accuracy in cyberknife stereotactic radiosurgery. In: Computer Aided Radiology and Surgery, (Elsevier, London, UK), pp. 323-328Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sonja Dieterich
    • 1
  • James Rodgers
    • 2
  • Rosanna Chan
    • 3
  1. 1.Radiation Physics DivisionStanford University Medical CenterStanfordUSA
  2. 2.Georgetown University HospitalWashingtonUSA
  3. 3.Washington Hospital CenterWashingtonUSA

Personalised recommendations