Real-Time Interactive MRI for Guiding Cardiovascular Surgical Interventions

  • Michael Guttman
  • Keith Horvath
  • Robert Lederman
  • Elliot McVeigh

Real-time magnetic resonance imaging (rtMRI) is a compelling modality for guidance of surgical interventions. An effective toolkit for planning and guidance of surgery using rtMRI includes continuously updated images with excellent soft tissue contrast, devices that are visible in the images, interactively adjustable imaging parameters, simultaneous imaging and display of multiple intersecting oblique planes, and the ability to measure blood flow and perfusion. MRI has the benefit of not exposing the patient, physician, or staff to ionizing radiation from X-rays. This chapter describes the initial experience in the development of minimally invasive surgical implantation of an aortic valve in the beating heart, using continuously updated rtMRI. The potential benefits of this approach include reduction of patient trauma from open heart surgery using cardiopulmonary bypass, and the ability to implant a more robust device than can be delivered by catheter-based methods. Since the heart is a moving target, the surgeon is guided by continuously updated images, rather than those previously acquired as in stereotactic procedures.


Aortic Valve Magn Reson Image Aortic Valve Annulus Device Trajectory Bioprosthetic Aortic Valve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aksit P, Derbyshire JA, Serfaty JM, and Atalar E. (2002). Multiple field of view MR fluoroscopy. Magn Reson Med, 47(1), 53-60CrossRefGoogle Scholar
  2. Atalar E, Kraitchman DL, Carkhuff B, Lesho J, Ocali O, Solaiyappan M, Guttman MA, and Charles HK, Jr. (1998). Catheter-tracking FOV MR fluoroscopy. Magn Reson Med, 40(6), 865-872CrossRefGoogle Scholar
  3. Babaliaros V, Cribier A, and Agatiello C. (2006). Surgery insight: Current advances in percutaneous heart valve replacement and repair. Nat Clin Pract Cardiovasc Med, 3(5), 256-264CrossRefGoogle Scholar
  4. Blanco RT, Ojala R, Kariniemi J, Perala J, Niinimaki J, and Tervonen O. (2005). Interventional and intraoperative MRI at low field scanner - A review. Eur J Radiol, 56(2), 130-142CrossRefGoogle Scholar
  5. Boudjemline Y, Agnoletti G, Bonnet D, Sidi D, and Bonhoeffer P. (2004). Per-cutaneous pulmonary valve replacement in a large right ventricular outflow tract: An experimental study. J Am Coll Cardiol, 43(6), 1082-1087CrossRefGoogle Scholar
  6. Boudjemline Y, Pineau E, Borenstein N, Behr L, and Bonhoeffer P. (2005). New insights in minimally invasive valve replacement: Description of a cooperative approach for the off-pump replacement of mitral valves. Eur Heart J, 26(19), 2013-2017CrossRefGoogle Scholar
  7. Buchbinder BR and Cosgrove GR. (1998). Cortical activation MR studies in brain disorders. Magn Reson Imaging Clin N Am, 6(1), 67-93Google Scholar
  8. Derbyshire JA, Herzka DA, and McVeigh ER. (2005). S5FP: Spectrally selec-tive suppression with steady state free precession. Magn Reson Med, 54(4), 918-928CrossRefGoogle Scholar
  9. Dick AJ, Guttman MA, Raman VK, Peters DC, Pessanha BS, Hill JM, Smith S, Scott G, McVeigh ER, and Lederman RJ. (2003). Magnetic resonance fluoro-scopy allows targeted delivery of mesenchymal stem cells to infarct borders in Swine. Circulation, 108(23), 2899-2904CrossRefGoogle Scholar
  10. Dick AJ, Raman VK, Raval AN, Guttman MA, Thompson RB, Ozturk C, Peters DC, Stine AM, Wright VJ, Schenke WH, and Lederman RJ. (2005). Invasive human magnetic resonance imaging: Feasibility during revascularization in a combined XMR suite. Catheter Cardiovasc Interv, 64(3), 265-274CrossRefGoogle Scholar
  11. Doty DB, Flores JH, and Doty JR. (2000). Cardiac valve operations using a partial sternotomy (lower half) technique. J Card Surg, 15(1), 35-42CrossRefGoogle Scholar
  12. Elgort DR, Hillenbrand CM, Zhang S, Wong EY, Rafie S, Lewin JS, and Duerk JL. (2006). Image-guided and -monitored renal artery stenting using only MRI. J Magn Reson Imaging, 23(5), 619-627CrossRefGoogle Scholar
  13. Elgort DR, Wong EY, Hillenbrand CM, Wacker FK, Lewin JS, and Duerk JL. (2003). Real-time catheter tracking and adaptive imaging. J Magn Reson Imaging, 18(5), 621-626CrossRefGoogle Scholar
  14. Feng L, Dumoulin CL, Dashnaw S, Darrow RD, Guhde R, Delapaz RL, Bishop PL, and Pile-Spellman J. (2005). Transfemoral catheterization of carotid arteries with real-time MR imaging guidance in pigs. Radiology, 234(2), 551-557CrossRefGoogle Scholar
  15. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, and Haase A. (2002). Generalized autocalibrating partially parallel acquisi-tions (GRAPPA). Magn Reson Med, 47(6), 1202-1210CrossRefGoogle Scholar
  16. Guttman MA, Kellman P, Dick AJ, Lederman RJ, and McVeigh ER. (2003a). Real-time accelerated interactive MRI with adaptive TSENSE and UNFOLD. Magn Reson Med, 50(2), 315-321CrossRefGoogle Scholar
  17. Guttman MA, Lederman RJ, and McVeigh ER. (2003b). The cardiovascular inter-ventional MRI suite: Design considerations. in Cardiovascular Magnetic Resonance: Established and Emerging Applications, ed. by Lardo A, Fayad ZA, Fuster V, and Chronos N, (Martin Dunitz, London)Google Scholar
  18. Guttman MA, Lederman RJ, Sorger JM, and McVeigh ER. (2002). Real-time volume rendered MRI for interventional guidance. J Cardiovasc Magn Reson, 4 (4), 431-442CrossRefGoogle Scholar
  19. Hardy CJ, Darrow RD, Nieters EJ, Roemer PB, Watkins RD, Adams WJ, Hattes NR, and Maier JK. (1993). Real-time acquisition, display, and interactive graphic control of NMR cardiac profiles and images. Magn Reson Med, 29(5), 667-673CrossRefGoogle Scholar
  20. Henk CB, Higgins CB, and Saeed M. (2005). Endovascular interventional MRI. J Magn Reson Imaging, 22(4), 451-460CrossRefGoogle Scholar
  21. Hillenbrand CM, Elgort DR, Wong EY, Reykowski A, Wacker FK, Lewin JS, and Duerk JL. (2004). Active device tracking and high-resolution intravascular MRI using a novel catheter-based, opposed-solenoid phased array coil. Magn Reson Med, 51(4), 668-675CrossRefGoogle Scholar
  22. Holsinger AE, Wright RC, Riederer SJ, Farzaneh F, Grimm RC, and Maier JK. (1990). Real-time interactive magnetic resonance imaging. Magn Reson Med, 14 (3), 547-553CrossRefGoogle Scholar
  23. Horvath KA, Guttman M, Li M, Lederman RJ, Mazilu D, Kocaturk O, Karmarkar PV, Parag V, Hunt T, Kozlov S, and McVeigh ER. (2007). Beating heart aortic valve replacement using real-time MRI guidance. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery. 2(2): 51-55CrossRefGoogle Scholar
  24. Kellman P, Epstein FH, and McVeigh ER. (2001). Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Reson Med, 45(5), 846-852CrossRefGoogle Scholar
  25. Kerr AB, Pauly JM, Hu BS, Li KC, Hardy CJ, Meyer CH, Macovski A, and Nishimura DG. (1997). Real-time interactive MRI on a conventional scanner. Magn Reson Med, 38(3), 355-367CrossRefGoogle Scholar
  26. Kraitchman DL, Heldman AW, Atalar E, Amado LC, Martin BJ, Pittenger MF, Hare JM, and Bulte JW. (2003). In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation, 107(18), 2290-2293CrossRefGoogle Scholar
  27. Kuehne T, Yilmaz S, Meinus C, Moore P, Saeed M, Weber O, Higgins CB, Blank T, Elsaesser E, Schnackenburg B, Ewert P, Lange PE, and Nagel E. (2004). Magnetic resonance imaging-guided transcatheter implantation of a prosthetic valve in aortic valve position: Feasibility study in swine. J Am Coll Cardiol, 44 (11), 2247-2249CrossRefGoogle Scholar
  28. Lederman RJ. (2005). Cardiovascular interventional magnetic resonance imaging. Circulation, 112(19), 3009-3017Google Scholar
  29. Lederman RJ, Guttman MA, Peters DC, Thompson RB, Sorger JM, Dick AJ, Raman VK, and McVeigh ER. (2002). Catheter-based endomyocardial in-jection with real-time magnetic resonance imaging. Circulation, 105 (11), 1282-1284Google Scholar
  30. Lorenz CH, Kirchberg KJ, Zuehlsdorff S, Speier P, Caylus M, Borys W, Moeller T, and Guttman MA. (2005). Interactive Frontend (IFE): A Platform for Graphical MR Scanner Control and Scan Automation. ISMRM, Miami, 7-13 MayGoogle Scholar
  31. Lutter G, Ardehali R, Cremer J, and Bonhoeffer P. (2004). Percutaneous valve replacement: Current state and future prospects. Ann Thorac Surg, 78(6), 2199-2206CrossRefGoogle Scholar
  32. Madore B, Glover GH, and Pelc NJ. (1999). Unaliasing by fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn Reson Med, 42(5), 813-828CrossRefGoogle Scholar
  33. McVeigh ER, Guttman MA, Lederman RJ, Li M, Kocaturk O, Hunt T, Kozlov S, and Horvath KA. (2006). Real-time interactive MRI guided cardiac surgery: aortic valve replacement using a direct apical approach. Magn Reson Med, 56 (5), 958-964CrossRefGoogle Scholar
  34. Mihaljevic T, Cohn LH, Unic D, Aranki SF, Couper GS, and Byrne JG. (2004). One thousand minimally invasive valve operations: Early and late results. Ann Surg, 240 (3), 529-534CrossRefGoogle Scholar
  35. Morton RE, Bonas R, Minford J, Kerr A, and Ellis RE. (1997). Feeding ability in Rett syndrome. Dev Med Child Neurol. 39(5), 331-335CrossRefGoogle Scholar
  36. Nayak KS, Pauly JM, Nishimura DG, and Hu BS. (2001). Rapid ventricular assessment using real-time interactive multislice MRI. Magn Reson Med, 45(3), 371-375CrossRefGoogle Scholar
  37. Noll DC, Nishimura DG, and Macovski A. (1991). Homodyne detection in magnetic resonance imaging. IEEE Trans Med Imag, 10(2), 154-163CrossRefGoogle Scholar
  38. Ocali O and Atalar E. (1997). Intravascular magnetic resonance imaging using a loopless catheter antenna. Magn Reson Med, 37(1), 112-118CrossRefGoogle Scholar
  39. Oppelt A, Graumann R, Barfuß H, Fischer H, Hartl W, and Scajor W. (1986). FISP - A new fast MRI sequence. Electromedica, 54(1), 15-18Google Scholar
  40. Peters DC, Lederman RJ, Dick AJ, Raman VK, Guttman MA, Derbyshire JA, and McVeigh ER. (2003). Undersampled projection reconstruction for active catheter imaging with adaptable temporal resolution and catheter-only views. Magn Reson Med, 49(2), 216-222CrossRefGoogle Scholar
  41. Pruessmann KP, Weiger M, Scheidegger MB, and Boesiger P. (1999). SENSE: sensitivity encoding for fast MRI. Magn Reson Med, 42(5), 952-962CrossRefGoogle Scholar
  42. Quick HH, Kuehl H, Kaiser G, Hornscheidt D, Mikolajczyk KP, Aker S, Debatin JF, and Ladd ME. (2003). Interventional MRA using actively visualized catheters, TrueFISP, and real-time image fusion. Magn Reson Med, 49(1), 129-137CrossRefGoogle Scholar
  43. Raman VK, Karmarkar PV, Guttman MA, Dick AJ, Peters DC, Ozturk C, Pessanha BS, Thompson RB, Raval AN, DeSilva R, Aviles RJ, Atalar E, McVeigh ER, and Lederman RJ. (2005). Real-time magnetic resonance-guided endovascular repair of experimental abdominal aortic aneurysm in swine. J Am Coll Cardiol, 45 (12), 2069-2077CrossRefGoogle Scholar
  44. Raval AN, Karmarkar PV, Guttman MA, Ozturk C, Desilva R, Aviles RJ, Wright VJ, Schenke WH, Atalar E, McVeigh ER, and Lederman RJ. (2006a). Real-time MRI guided atrial septal puncture and balloon septostomy in swine. Catheter Cardiovasc Interv, 67(4), 637-643CrossRefGoogle Scholar
  45. Raval AN, Karmarkar PV, Guttman MA, Ozturk C, Sampath S, DeSilva R, Aviles RJ, Xu M, Wright VJ, Schenke WH, Kocaturk O, Dick AJ, Raman VK, Atalar E, McVeigh ER, and Lederman RJ. (2006b). Real-time magnetic resonance imaging-guided endovascular recanalization of chronic total arterial occlusion in a swine model. Circulation, 113(8), 1101-1107CrossRefGoogle Scholar
  46. Raval AN, Telep JD, Guttman MA, Ozturk C, Jones M, Thompson RB, Wright VJ, Schenke WH, DeSilva R, Aviles RJ, Raman VK, Slack MC, and Lederman RJ. (2005). Real-time magnetic resonance imaging-guided stenting of aortic coarctation with commercially available catheter devices in Swine. Circulation, 112 (5), 699-706CrossRefGoogle Scholar
  47. Santos JM, Hargreaves BA, Nayak KS, and Pauly JM. (2003). Real-Time Fat Supressed SSFP Proc 11th ISMRM, Toronto, p. 982Google Scholar
  48. Scheffler K, Heid O, and Hennig J. (2001). Magnetization preparation during the steady state: Fat-saturated 3D TrueFISP. Magn Reson Med, 45(6), 1075-1080CrossRefGoogle Scholar
  49. Schulz T, Puccini S, Schneider JP, and Kahn T. (2004). Interventional and intraoperative MR: Review and update of techniques and clinical experience. Eur Radiol, 14(12), 2212-2227CrossRefGoogle Scholar
  50. Serfaty JM, Yang X, Aksit P, Quick HH, Solaiyappan M, and Atalar E. (2000). Toward MRI-guided coronary catheterization: visualization of guiding cathe-ters, guidewires, and anatomy in real time. J Magn Reson Imaging, 12(4), 590-594CrossRefGoogle Scholar
  51. Sodickson DK and Manning WJ. (1997). Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays. Magn Reson Med, 38(4), 591-603CrossRefGoogle Scholar
  52. Tsao J, Boesiger P, and Pruessmann KP. (2003). k-t BLAST and k-t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med, 50(5), 1031-1042Google Scholar
  53. Vassiliades TA, Jr., Block PC, Cohn LH, Adams DH, Borer JS, Feldman T, Holmes DR, Laskey WK, Lytle BW, Mack MJ, and Williams DO. (2005). The clinical development of percutaneous heart valve technology. J Thorac Cardiovasc Surg, 129(5), 970-976CrossRefGoogle Scholar
  54. Zuehlsdorff S, Umathum R, Volz S, Hallscheidt P, Fink C, Semmler W, and Bock M. (2004). MR coil design for simultaneous tip tracking and curvature delineation of a catheter. Magn Reson Med, 52(1), 214-218CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Michael Guttman
    • 1
  • Keith Horvath
    • 2
  • Robert Lederman
    • 2
  • Elliot McVeigh
    • 3
  1. 1.Department of Health and Human ServicesNational Institutes of Health, National Heart, Lung and Blood InstituteBethesdaUSA
  2. 2.National Institutes of HealthBethesdaUSA
  3. 3.Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations