Skip to main content

Real-Time Interactive MRI for Guiding Cardiovascular Surgical Interventions

  • Chapter
Image-Guided Interventions

Real-time magnetic resonance imaging (rtMRI) is a compelling modality for guidance of surgical interventions. An effective toolkit for planning and guidance of surgery using rtMRI includes continuously updated images with excellent soft tissue contrast, devices that are visible in the images, interactively adjustable imaging parameters, simultaneous imaging and display of multiple intersecting oblique planes, and the ability to measure blood flow and perfusion. MRI has the benefit of not exposing the patient, physician, or staff to ionizing radiation from X-rays. This chapter describes the initial experience in the development of minimally invasive surgical implantation of an aortic valve in the beating heart, using continuously updated rtMRI. The potential benefits of this approach include reduction of patient trauma from open heart surgery using cardiopulmonary bypass, and the ability to implant a more robust device than can be delivered by catheter-based methods. Since the heart is a moving target, the surgeon is guided by continuously updated images, rather than those previously acquired as in stereotactic procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aksit P, Derbyshire JA, Serfaty JM, and Atalar E. (2002). Multiple field of view MR fluoroscopy. Magn Reson Med, 47(1), 53-60

    Article  Google Scholar 

  • Atalar E, Kraitchman DL, Carkhuff B, Lesho J, Ocali O, Solaiyappan M, Guttman MA, and Charles HK, Jr. (1998). Catheter-tracking FOV MR fluoroscopy. Magn Reson Med, 40(6), 865-872

    Article  Google Scholar 

  • Babaliaros V, Cribier A, and Agatiello C. (2006). Surgery insight: Current advances in percutaneous heart valve replacement and repair. Nat Clin Pract Cardiovasc Med, 3(5), 256-264

    Article  Google Scholar 

  • Blanco RT, Ojala R, Kariniemi J, Perala J, Niinimaki J, and Tervonen O. (2005). Interventional and intraoperative MRI at low field scanner - A review. Eur J Radiol, 56(2), 130-142

    Article  Google Scholar 

  • Boudjemline Y, Agnoletti G, Bonnet D, Sidi D, and Bonhoeffer P. (2004). Per-cutaneous pulmonary valve replacement in a large right ventricular outflow tract: An experimental study. J Am Coll Cardiol, 43(6), 1082-1087

    Article  Google Scholar 

  • Boudjemline Y, Pineau E, Borenstein N, Behr L, and Bonhoeffer P. (2005). New insights in minimally invasive valve replacement: Description of a cooperative approach for the off-pump replacement of mitral valves. Eur Heart J, 26(19), 2013-2017

    Article  Google Scholar 

  • Buchbinder BR and Cosgrove GR. (1998). Cortical activation MR studies in brain disorders. Magn Reson Imaging Clin N Am, 6(1), 67-93

    Google Scholar 

  • Derbyshire JA, Herzka DA, and McVeigh ER. (2005). S5FP: Spectrally selec-tive suppression with steady state free precession. Magn Reson Med, 54(4), 918-928

    Article  Google Scholar 

  • Dick AJ, Guttman MA, Raman VK, Peters DC, Pessanha BS, Hill JM, Smith S, Scott G, McVeigh ER, and Lederman RJ. (2003). Magnetic resonance fluoro-scopy allows targeted delivery of mesenchymal stem cells to infarct borders in Swine. Circulation, 108(23), 2899-2904

    Article  Google Scholar 

  • Dick AJ, Raman VK, Raval AN, Guttman MA, Thompson RB, Ozturk C, Peters DC, Stine AM, Wright VJ, Schenke WH, and Lederman RJ. (2005). Invasive human magnetic resonance imaging: Feasibility during revascularization in a combined XMR suite. Catheter Cardiovasc Interv, 64(3), 265-274

    Article  Google Scholar 

  • Doty DB, Flores JH, and Doty JR. (2000). Cardiac valve operations using a partial sternotomy (lower half) technique. J Card Surg, 15(1), 35-42

    Article  Google Scholar 

  • Elgort DR, Hillenbrand CM, Zhang S, Wong EY, Rafie S, Lewin JS, and Duerk JL. (2006). Image-guided and -monitored renal artery stenting using only MRI. J Magn Reson Imaging, 23(5), 619-627

    Article  Google Scholar 

  • Elgort DR, Wong EY, Hillenbrand CM, Wacker FK, Lewin JS, and Duerk JL. (2003). Real-time catheter tracking and adaptive imaging. J Magn Reson Imaging, 18(5), 621-626

    Article  Google Scholar 

  • Feng L, Dumoulin CL, Dashnaw S, Darrow RD, Guhde R, Delapaz RL, Bishop PL, and Pile-Spellman J. (2005). Transfemoral catheterization of carotid arteries with real-time MR imaging guidance in pigs. Radiology, 234(2), 551-557

    Article  Google Scholar 

  • Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, and Haase A. (2002). Generalized autocalibrating partially parallel acquisi-tions (GRAPPA). Magn Reson Med, 47(6), 1202-1210

    Article  Google Scholar 

  • Guttman MA, Kellman P, Dick AJ, Lederman RJ, and McVeigh ER. (2003a). Real-time accelerated interactive MRI with adaptive TSENSE and UNFOLD. Magn Reson Med, 50(2), 315-321

    Article  Google Scholar 

  • Guttman MA, Lederman RJ, and McVeigh ER. (2003b). The cardiovascular inter-ventional MRI suite: Design considerations. in Cardiovascular Magnetic Resonance: Established and Emerging Applications, ed. by Lardo A, Fayad ZA, Fuster V, and Chronos N, (Martin Dunitz, London)

    Google Scholar 

  • Guttman MA, Lederman RJ, Sorger JM, and McVeigh ER. (2002). Real-time volume rendered MRI for interventional guidance. J Cardiovasc Magn Reson, 4 (4), 431-442

    Article  Google Scholar 

  • Hardy CJ, Darrow RD, Nieters EJ, Roemer PB, Watkins RD, Adams WJ, Hattes NR, and Maier JK. (1993). Real-time acquisition, display, and interactive graphic control of NMR cardiac profiles and images. Magn Reson Med, 29(5), 667-673

    Article  Google Scholar 

  • Henk CB, Higgins CB, and Saeed M. (2005). Endovascular interventional MRI. J Magn Reson Imaging, 22(4), 451-460

    Article  Google Scholar 

  • Hillenbrand CM, Elgort DR, Wong EY, Reykowski A, Wacker FK, Lewin JS, and Duerk JL. (2004). Active device tracking and high-resolution intravascular MRI using a novel catheter-based, opposed-solenoid phased array coil. Magn Reson Med, 51(4), 668-675

    Article  Google Scholar 

  • Holsinger AE, Wright RC, Riederer SJ, Farzaneh F, Grimm RC, and Maier JK. (1990). Real-time interactive magnetic resonance imaging. Magn Reson Med, 14 (3), 547-553

    Article  Google Scholar 

  • Horvath KA, Guttman M, Li M, Lederman RJ, Mazilu D, Kocaturk O, Karmarkar PV, Parag V, Hunt T, Kozlov S, and McVeigh ER. (2007). Beating heart aortic valve replacement using real-time MRI guidance. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery. 2(2): 51-55

    Article  Google Scholar 

  • Kellman P, Epstein FH, and McVeigh ER. (2001). Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Reson Med, 45(5), 846-852

    Article  Google Scholar 

  • Kerr AB, Pauly JM, Hu BS, Li KC, Hardy CJ, Meyer CH, Macovski A, and Nishimura DG. (1997). Real-time interactive MRI on a conventional scanner. Magn Reson Med, 38(3), 355-367

    Article  Google Scholar 

  • Kraitchman DL, Heldman AW, Atalar E, Amado LC, Martin BJ, Pittenger MF, Hare JM, and Bulte JW. (2003). In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation, 107(18), 2290-2293

    Article  Google Scholar 

  • Kuehne T, Yilmaz S, Meinus C, Moore P, Saeed M, Weber O, Higgins CB, Blank T, Elsaesser E, Schnackenburg B, Ewert P, Lange PE, and Nagel E. (2004). Magnetic resonance imaging-guided transcatheter implantation of a prosthetic valve in aortic valve position: Feasibility study in swine. J Am Coll Cardiol, 44 (11), 2247-2249

    Article  Google Scholar 

  • Lederman RJ. (2005). Cardiovascular interventional magnetic resonance imaging. Circulation, 112(19), 3009-3017

    Google Scholar 

  • Lederman RJ, Guttman MA, Peters DC, Thompson RB, Sorger JM, Dick AJ, Raman VK, and McVeigh ER. (2002). Catheter-based endomyocardial in-jection with real-time magnetic resonance imaging. Circulation, 105 (11), 1282-1284

    Google Scholar 

  • Lorenz CH, Kirchberg KJ, Zuehlsdorff S, Speier P, Caylus M, Borys W, Moeller T, and Guttman MA. (2005). Interactive Frontend (IFE): A Platform for Graphical MR Scanner Control and Scan Automation. ISMRM, Miami, 7-13 May

    Google Scholar 

  • Lutter G, Ardehali R, Cremer J, and Bonhoeffer P. (2004). Percutaneous valve replacement: Current state and future prospects. Ann Thorac Surg, 78(6), 2199-2206

    Article  Google Scholar 

  • Madore B, Glover GH, and Pelc NJ. (1999). Unaliasing by fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn Reson Med, 42(5), 813-828

    Article  Google Scholar 

  • McVeigh ER, Guttman MA, Lederman RJ, Li M, Kocaturk O, Hunt T, Kozlov S, and Horvath KA. (2006). Real-time interactive MRI guided cardiac surgery: aortic valve replacement using a direct apical approach. Magn Reson Med, 56 (5), 958-964

    Article  Google Scholar 

  • Mihaljevic T, Cohn LH, Unic D, Aranki SF, Couper GS, and Byrne JG. (2004). One thousand minimally invasive valve operations: Early and late results. Ann Surg, 240 (3), 529-534

    Article  Google Scholar 

  • Morton RE, Bonas R, Minford J, Kerr A, and Ellis RE. (1997). Feeding ability in Rett syndrome. Dev Med Child Neurol. 39(5), 331-335

    Article  Google Scholar 

  • Nayak KS, Pauly JM, Nishimura DG, and Hu BS. (2001). Rapid ventricular assessment using real-time interactive multislice MRI. Magn Reson Med, 45(3), 371-375

    Article  Google Scholar 

  • Noll DC, Nishimura DG, and Macovski A. (1991). Homodyne detection in magnetic resonance imaging. IEEE Trans Med Imag, 10(2), 154-163

    Article  Google Scholar 

  • Ocali O and Atalar E. (1997). Intravascular magnetic resonance imaging using a loopless catheter antenna. Magn Reson Med, 37(1), 112-118

    Article  Google Scholar 

  • Oppelt A, Graumann R, Barfuß H, Fischer H, Hartl W, and Scajor W. (1986). FISP - A new fast MRI sequence. Electromedica, 54(1), 15-18

    Google Scholar 

  • Peters DC, Lederman RJ, Dick AJ, Raman VK, Guttman MA, Derbyshire JA, and McVeigh ER. (2003). Undersampled projection reconstruction for active catheter imaging with adaptable temporal resolution and catheter-only views. Magn Reson Med, 49(2), 216-222

    Article  Google Scholar 

  • Pruessmann KP, Weiger M, Scheidegger MB, and Boesiger P. (1999). SENSE: sensitivity encoding for fast MRI. Magn Reson Med, 42(5), 952-962

    Article  Google Scholar 

  • Quick HH, Kuehl H, Kaiser G, Hornscheidt D, Mikolajczyk KP, Aker S, Debatin JF, and Ladd ME. (2003). Interventional MRA using actively visualized catheters, TrueFISP, and real-time image fusion. Magn Reson Med, 49(1), 129-137

    Article  Google Scholar 

  • Raman VK, Karmarkar PV, Guttman MA, Dick AJ, Peters DC, Ozturk C, Pessanha BS, Thompson RB, Raval AN, DeSilva R, Aviles RJ, Atalar E, McVeigh ER, and Lederman RJ. (2005). Real-time magnetic resonance-guided endovascular repair of experimental abdominal aortic aneurysm in swine. J Am Coll Cardiol, 45 (12), 2069-2077

    Article  Google Scholar 

  • Raval AN, Karmarkar PV, Guttman MA, Ozturk C, Desilva R, Aviles RJ, Wright VJ, Schenke WH, Atalar E, McVeigh ER, and Lederman RJ. (2006a). Real-time MRI guided atrial septal puncture and balloon septostomy in swine. Catheter Cardiovasc Interv, 67(4), 637-643

    Article  Google Scholar 

  • Raval AN, Karmarkar PV, Guttman MA, Ozturk C, Sampath S, DeSilva R, Aviles RJ, Xu M, Wright VJ, Schenke WH, Kocaturk O, Dick AJ, Raman VK, Atalar E, McVeigh ER, and Lederman RJ. (2006b). Real-time magnetic resonance imaging-guided endovascular recanalization of chronic total arterial occlusion in a swine model. Circulation, 113(8), 1101-1107

    Article  Google Scholar 

  • Raval AN, Telep JD, Guttman MA, Ozturk C, Jones M, Thompson RB, Wright VJ, Schenke WH, DeSilva R, Aviles RJ, Raman VK, Slack MC, and Lederman RJ. (2005). Real-time magnetic resonance imaging-guided stenting of aortic coarctation with commercially available catheter devices in Swine. Circulation, 112 (5), 699-706

    Article  Google Scholar 

  • Santos JM, Hargreaves BA, Nayak KS, and Pauly JM. (2003). Real-Time Fat Supressed SSFP Proc 11th ISMRM, Toronto, p. 982

    Google Scholar 

  • Scheffler K, Heid O, and Hennig J. (2001). Magnetization preparation during the steady state: Fat-saturated 3D TrueFISP. Magn Reson Med, 45(6), 1075-1080

    Article  Google Scholar 

  • Schulz T, Puccini S, Schneider JP, and Kahn T. (2004). Interventional and intraoperative MR: Review and update of techniques and clinical experience. Eur Radiol, 14(12), 2212-2227

    Article  Google Scholar 

  • Serfaty JM, Yang X, Aksit P, Quick HH, Solaiyappan M, and Atalar E. (2000). Toward MRI-guided coronary catheterization: visualization of guiding cathe-ters, guidewires, and anatomy in real time. J Magn Reson Imaging, 12(4), 590-594

    Article  Google Scholar 

  • Sodickson DK and Manning WJ. (1997). Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays. Magn Reson Med, 38(4), 591-603

    Article  Google Scholar 

  • Tsao J, Boesiger P, and Pruessmann KP. (2003). k-t BLAST and k-t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med, 50(5), 1031-1042

    Google Scholar 

  • Vassiliades TA, Jr., Block PC, Cohn LH, Adams DH, Borer JS, Feldman T, Holmes DR, Laskey WK, Lytle BW, Mack MJ, and Williams DO. (2005). The clinical development of percutaneous heart valve technology. J Thorac Cardiovasc Surg, 129(5), 970-976

    Article  Google Scholar 

  • Zuehlsdorff S, Umathum R, Volz S, Hallscheidt P, Fink C, Semmler W, and Bock M. (2004). MR coil design for simultaneous tip tracking and curvature delineation of a catheter. Magn Reson Med, 52(1), 214-218

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Guttman, M., Horvath, K., Lederman, R., McVeigh, E. (2008). Real-Time Interactive MRI for Guiding Cardiovascular Surgical Interventions. In: Peters, T., Cleary, K. (eds) Image-Guided Interventions. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73858-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-73858-1_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-73856-7

  • Online ISBN: 978-0-387-73858-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics