Thoracoabdominal Interventions

  • Filip Banovac
  • Jill Bruno
  • Jason Wright
  • Kevin Cleary

This chapter introduces the application of image-guided intervention to the internal organs of the thorax and abdomen. In the strict sense, image-guided therapy is any therapy that uses fluoroscopy, ultrasound, computed tomography, or magnetic resonance imaging to assist the physician in placing an instrument to a desired target in the body. In this chapter, the concept of image-guided surgery and intervention applies to more recent concepts that rely on computer-assisted guidance. This new paradigm still uses the conventional imaging modalities listed above, but also adds a tracking system and probe position sensors to couple the images with the anatomic space of interest. Therefore, the concepts of visualization, threedimensional (3D) image reconstruction, segmentation, and registration discussed in earlier chapters are intimately tied to the procedures performed with these systems. Some of the challenges with visualization and registration related to patient motion and respiration become particularly apparent when working in the thoracoabdominal regions of the body. This chapter surveys the work performed in animal tests and early human trials, but omits most of the benchtop testing in phantoms. It is therefore a brief review of clinical applications that have been investigated using these emerging guidance systems.


Laparoscopic Ultrasound Target Registration Error Electromagnetic Tracking Laser Range Scanner Electromagnetic Navigation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banovac F., Tang J., Xu S., Lindisch D., Chung H. Y., Levy E. B., Chang T., McCullough M. F., Yaniv Z., Wood B. J., and Cleary K. (2005). Precision targeting of liver lesions using a novel electromagnetic navigation device in physiologic phantom and swine. Med. Phys., 32(8), 2698-2705CrossRefGoogle Scholar
  2. Banovac F., Wilson E., Zhang H., and Cleary K. (2006). Needle biopsy of ana-tomically unfavorable liver lesions with an electromagnetic navigation assist device in a computed tomography environment. J. Vasc. Interv. Radiol., 17(10), 1671-1675CrossRefGoogle Scholar
  3. Bao P., Sinha T. K., Chen C. C., Warmath J. R., Galloway R. L., and Herline A. J. (2007). A prototype ultrasound-guided laparoscopic radiofrequency ablation system. Surg. Endosc., 21(1), 74-79CrossRefGoogle Scholar
  4. Becker H., Herth F., Ernst A., and Schwarz Y. (2005). Bronchoscopic biopsy of peripheral lung lesions under electromagnetic guidance: A pilot study. J. Bronchol., 12(1), 9-13CrossRefGoogle Scholar
  5. Birth M., Iblher P., Hildebrand P., Nolde J., and Bruch H. P. (2003). Ultrasound-guided interventions using magnetic field navigation: First experiences with Ultra-Guide 2000 under operative conditions. Ultraschall. Med., (2), 90-95Google Scholar
  6. Clifford M. A., Banovac F., Levy E., and Cleary K. (2002). Assessment of hepatic motion secondary to respiration for computer assisted interventions. Comput. Aided Surg., 7(5), 291-299CrossRefGoogle Scholar
  7. Ellsmere J., Stoll J., Wells W., Kikinis R., Vosburgh K., Kane R., Brooks D., and Rattner D. (2004). A new visualization technique for laparoscopic ultra-sonography. Surgery, 136(1), 84-92CrossRefGoogle Scholar
  8. Hautmann H., Schneider A., Pinkau T., Peltz F., and Feussner H. (2005). Electro-magnetic catheter navigation during bronchoscopy: validation of a novel method by conventional fluoroscopy. Chest, 128(1), 382-387CrossRefGoogle Scholar
  9. Howard M. H., Nelson R. C., Paulson E. K., Kliewer M. A., and Sheafor D. H. (2001). An electronic device for needle placement during sonographically guided percutaneous intervention. Radiology, 218(3), 905-911Google Scholar
  10. Krombach G. A., Mahnken A., Tacke J., Staatz G., Haller S., Nolte-Ernsting C. C. A., Meyer J., Haage P., and Gunther R. W. (2001). US-guided nephrostomy with the aid of a magnetic field-based navigation device in the porcine pelvicaliceal system. J. Vasc. Interv. Radiol., 12(5), 623-628CrossRefGoogle Scholar
  11. Krucker J., Viswanathan A., Borgert J., Glossop N., Yang Y., and Wood B. J. (2005). An electro-magnetically tracked laparoscopic ultrasound for multi-modality minimally invasive surgery. Int. Congr. Ser., 1281, 746-751CrossRefGoogle Scholar
  12. Levy E. B., Zhang H., Lindisch D., Wood B. J., and Cleary K. (2007). Electro-magnetic tracking-guided percutaneous intrahepatic portosystemic shunt creation in a swine model. J. Vasc. Interv. Radiol., 18(2), 303-307CrossRefGoogle Scholar
  13. Rauth T. P., Bao P. Q., Galloway R. L., Bieszczad J., Friets E. M., Knaus D. A., Kynor D. B., and Herline A. J. (2007). Laparoscopic surface scanning and subsurface targeting: implications for image-guided laparoscopic liver surgery. Surgery, 142(2), 207-214CrossRefGoogle Scholar
  14. Schwarz Y., Greif J., Becker H. D., Ernst A., and Mehta A. (2006). Real-time electromagnetic navigation bronchoscopy to peripheral lung lesions using overlaid CT images: the first human study. Chest, 129(4), 988-994CrossRefGoogle Scholar
  15. Schwarz Y., Mehta A. C., Ernst A., Herth F., Engel A., Besser D., and Becker H. D. (2003). Electromagnetic navigation during flexible bronchoscopy. Respi-ration, 70(5), 516-522Google Scholar
  16. Solomon S. B., Magee C., Acker D. E., and Venbrux A. C. (1999). TIPS placement in swine, guided by electromagnetic real-time needle tip localization displayed on previously acquired 3D CT. Cardiovasc. Intervent. Radiol., 22(5), 411-414CrossRefGoogle Scholar
  17. Solomon S. B., White P., Jr., Acker D. E., Strandberg J., and Venbrux A. C. (1998). Real-time bronchoscope tip localization enables three-dimensional CT image guidance for transbronchial needle aspiration in swine. Chest, 114(5), 1405-1410CrossRefGoogle Scholar
  18. Solomon S. B., White P., Jr., Wiener C. M., Orens J. B., and Wang K. P. (2000). Three-dimensional CT-guided bronchoscopy with a real-time electromagnetic position sensor: a comparison of two image registration methods. Chest, 118(6), 1783-1787CrossRefGoogle Scholar
  19. Wallace M. J., Gupta S., and Hicks M. E. (2006). Out-of-plane computed-tomography-guided biopsy using a magnetic-field-based navigation system. Cardiovasc. Intervent. Radiol., 29(1), 108-113CrossRefGoogle Scholar
  20. Wood B. J., Locklin J. K., Viswanathan A., Kruecker J., Haemmerich D., Cebral J., Sofer A., Cheng R., McCreedy E., Cleary K., McAuliffe M. J., Glossop N., and Yanof J. (2007). Technologies for guidance of radiofrequency ablation in the multimodality interventional suite of the future. J. Vasc. Interv. Radiol., 18 (1, Part 1), 9-24CrossRefGoogle Scholar
  21. Wood B. J., Zhang H., Durrani A., Glossop N., Ranjan S., Lindisch D., Levy E., Banovac F., Borgert J., Krueger S., Kruecker J., Viswanathan A., and Cleary K. (2005). Navigation with electromagnetic tracking for interventional radio-logy procedures: a feasibility study. J. Vasc. Interv. Radiol., 16(4), 493-505Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Filip Banovac
    • 1
  • Jill Bruno
    • 1
  • Jason Wright
    • 1
  • Kevin Cleary
    • 2
  1. 1.Georgetown University Medical CenterWashingtonUSA
  2. 2.Radiology DepartmentImaging Science and Information Systems (ISIS) CenterWashingtonUSA

Personalised recommendations