Neurosurgical Applications

  • Terry Peters
  • Kirk Finnis
  • Ting Guo
  • Andrew Parrent

This chapter demonstrates a particular application of stereotactic neurosurgery, used in conjunction with deep brain atlases and an electrophysiological database, to guide the implantation of lesioning devices and stimulation electrodes to alleviate the symptoms of Parkinson’s disease and other diseases of the motor system. Central to this work is the nonrigid mapping of individual patients’ brains to a standard anatomical brain template. This operation not only maps the structure in the deep brain of individual patients to match the template, but also creates a warping matrix that allows the location of data collected from individual patients to be mapped to the database. This database may in turn be mapped to new patients to indicate the probable locations of stimuli and responses. This information can be employed to assist the surgeon in making an initial estimate of the electrode positioning, and reduce the exploration needed to finalize the target position in which to create a lesion or place a stimulator.


Deep Brain Stimulation Essential Tremor Subthalamic Nucleus Nonrigid Registration Surgical Target 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alterman RL, Sterio D, Beric A, and Kelly PJ. (1999). “Microelectrode recording during posteroventral pallidotomy: Impact on target selection and compli-cations.” Neurosurgery, 44, 315-323.CrossRefGoogle Scholar
  2. Bertrand G, Oliver A, and Thompson CJ. (1973). “The computerized brain atlas: Its use in stereotaxic surgery.” Trans Am Neurol Assoc, 98, 233-237.Google Scholar
  3. Chakravarty MM, Sadikot AF, Mognia S, Bertrand G, and Collins DL. (2006). “Towards a multi-modal atlas for neurosurgical planning.” MICCAI Pro-ceedings II, Springer, Copenhagen, Denmark, 389-396.Google Scholar
  4. Collins DL, Holmes CJ, Peters TM, and Evans AC. (1995). “Automatic 3-D model-based neuroanatomical segmentation.” Hum Brain Mapp, 3, 190-208.CrossRefGoogle Scholar
  5. Cuny E, Guehl D, Burbaud P, Gross C, Dousset V, and Rougier A. (2002). “Lack of agreement between direct magnetic resonance imaging and statistical deter-mination of a subthalamic target: The role of electrophysiological guidance.” J Neurosurg, 97(3), 591-597.CrossRefGoogle Scholar
  6. D’Haese PF, Cetinkaya E, Konrad PE, Kao C, and Dawant BM. (2005a). “Computer-aided placement of deep brain stimulators: From planning to intraoperative guidance.” IEEE Trans Med Imag, 24(11), 1469-1478.CrossRefGoogle Scholar
  7. D’Haese PF, Pallavaram S, Niermann K, Spooner J, Kao C, Konrad PE, and Dawant BM. (2005b). “Automatic selection of DBS target points using multiple electrophysiological atlases.” MICCAI, 8 (Pt 2), 427-434.Google Scholar
  8. Dawant BM, Hartmann SL, Pan S, and Gadamsetty S. (2002). “Brain atlas de-formation in the presence of small and large space-occupying tumors.” Comput Aided Surg, 7(1), 1-10.CrossRefGoogle Scholar
  9. Evans AC, Kamber M, Collins DL, MacDonald D, Shorvan SD, et al. (1994). “An MRI based probabilistic atlas of neuroanatomy.” Magnetic Resonance Scan-ning and Epilepsy, Plenum Press, New York, 263-274.Google Scholar
  10. Finnis KW, Starreveld YP, Parrent AG, Sadikot AF, and Peters TM. (2003). “Three-dimensional database of subcortical electrophysiology for image-guided stereotactic functional neurosurgery.” IEEE Trans Med Imag, 22(1), 93-104.CrossRefGoogle Scholar
  11. Ganser KA, Dickhaus H, Metzner R, and Wirtz CR. (2004). “A deformable digital brain atlas system according to Talairach and Tournoux.” Med Image Anal, 8 (1), 3-22.CrossRefGoogle Scholar
  12. Giorgi C, Cerchiari U, Broggi G, Birk P, and Struppeler A. (1985). “Digital image processing to handle neuroanatomical information and neurophysiological data.” Appl Neurophysiol, 48, 30-33.Google Scholar
  13. Guo T, Finnis KW, Parrent AG, and Peters TM. (2005). “Development and application of functional databases for planning deep-brain neurosurgical procedures.” MICCAI, 8(Pt 1), 835-842.Google Scholar
  14. Guo T, Finnis KW, Parrent AG, and Peters TM. (2006). “Visualization and navigation system development and application for stereotactic deep-brain neurosurgeries.” Comput Aided Surg, 11(5), 231-239.CrossRefGoogle Scholar
  15. Guo T, Parrent AG, Peters TM. (2007). “Surgical targeting accuracy analysis of six methods for subthalamic nucleus deep brain stimulation”. Comput Assist Surg, 12 (6): 325-334.CrossRefGoogle Scholar
  16. Guridi J, Gorospe A, Ramos E, Linazasoro G, Rodriguez MC, and Obeso JA. (1999). “Stereotactic targeting of the globus pallidus internus in Parkinson’s disease: Imaging versus electrophysiological mapping.” Neurosurgery, 45(2), 278-287; discussion 287-279.CrossRefGoogle Scholar
  17. Halpern C, Hurtig H, Jaggi J, Grossman M, Won M, and Baltuch G. (2007). “Deep brain stimulation in neurologic disorders.” Parkinsonism Relat Disord, 13(1), 1-16.CrossRefGoogle Scholar
  18. Hamani C, Richter E, Schwalb JM, and Lozano AM. (2005). “Bilateral subthalamic nucleus stimulation for Parkinson’s disease: A systematic review the clinical literature.” Neurosurgery, 56(6), 1313-1321.CrossRefGoogle Scholar
  19. Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, and Evans AC. (1998). “Enhancement of MR images using registration for signal averaging.” J Comput Assist Tomo, 22(2), 324-333.CrossRefGoogle Scholar
  20. Kall BA, Kelly PJ, Goerss SJ, and Frieder G. (1985). “Methodology and clinical experience with computed tomography and a computer-resident stereotactic atlas.” Neurosurgery, 17(3), 400-407.CrossRefGoogle Scholar
  21. Lehman RM, Zheng J, Hamilton JL, and Micheli-Tzanakou E. (2000). “Comparison of 3-D stereoscopic MR imaging with pre and post lesion recording in pallidotomy.” Acta Neurochirurgica, 142, 319-328.CrossRefGoogle Scholar
  22. Machado A, Rezai AR, Kopell BH, Gross RE, Sharan AD, and Benabid AL. (2006). “Deep brain stimulation for Parkinson’s disease: Surgical technique and perioperative management.” Mov Disord, 21(14 Suppl), S247-S258.CrossRefGoogle Scholar
  23. Mark VH and Yakovlev PI. (1995). “A note on problems and methods in the preparation of a human stereotactic atlas.” Anat Rec, 121, 745-752.CrossRefGoogle Scholar
  24. Nowinski W, Yeo T, and Yang GL. (1997). “Atlas-based system for functional neurosurgery.” SPIE Medical Imaging - The International Society for Optical Engineering, Bellingham, WA, 92-103.Google Scholar
  25. Nowinski WL, Belov D, and Benabid AL. (2003). “An algorithm for rapid calculation of a probabilistic functional atlas of subcortical structures from electrophysiological data collected during functional neurosurgery procedures.” NeuroImage, 18(1), 143-155.CrossRefGoogle Scholar
  26. Nowinski WL, Belov D, Pollak P, and Benabid AL. (2005a). “Statistical analysis of 168 bilateral subthalamic nucleus implantations by means of the probabilistic functional atlas.” Neurosurgery, 57(4 Suppl.), 319-330; discussion 319-330.CrossRefGoogle Scholar
  27. Nowinski WL, Belov D, Thirunavuukarasuu A, and Benabid AL. (2005b). “A probabilistic functional atlas of the VIM nucleus constructed from pre-, intra-and postoperative electrophysiological and neuroimaging data acquired during the surgical treatment of Parkinson’s disease patients.” Stereotact Funct Neurosurg, 83(5-6), 190-196.CrossRefGoogle Scholar
  28. Nowinski WL, Fang A, Nguyen BT, Raphel JK, Jagannathan L, Raghavan R, Bryan RN, and Miller GA. (1998). “Multiple brain atlas database and atlas-based neuroimaging system.” Comput Aided Surg, 2, 42-66.CrossRefGoogle Scholar
  29. Perlmutter JS and Mink JW. (2006). “Deep brain stimulation.” Annu Rev Neurosci, 29, 229-257.CrossRefGoogle Scholar
  30. Rodriguez MC, Obeso JA, and Olanow CW. (1998). “Subthalamic nucleus- mediated excitotoxicity in Parkinson’s disease: A target for neuroprotection.” Ann Neurol, 44(3 Suppl. 1), 175-188.Google Scholar
  31. Schaltenbrand G and Wahren W. (1977). Atlas for Stereotaxy of the Human Brain, Thieme, Stuttgart.Google Scholar
  32. St-Jean P, Sadikot AF, Collins DL, Clonda D, Kasrai R, Evans AC, and Peters TM. (1998). “Automated atlas integration and interactive 3-dimensional visuali-zation tools for planning and guidance in functional neurosurgery.” IEEE Trans Med Imag, 17(5), 672-680.CrossRefGoogle Scholar
  33. Starr PA, Vitek JL, DeLong M, and Bakay RA. (1999). “Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus.” Neurosurgery, 44(2), 303-313.CrossRefGoogle Scholar
  34. Sterio D, Zonenshayn M, Mogilner A, Rezai AR, Kiprovski K, Kelly PJ, and Beric A. (2002). “Neurophysiological refinement of subthalamic nucleus targeting.” Neurosurgery, 50, 58-69.CrossRefGoogle Scholar
  35. Talairach J and Tourneau P. (1988). Co-planar Stereotaxic Atlas of the Human Brain, Georg Thieme Verlag, Stuttgart.Google Scholar
  36. Tasker RR, Organ LW, and Hawrylyshyn PA. (1982). The Thalamus and Midbrain of Man, Charles C. Thomas, Springfield.Google Scholar
  37. Thompson CJ, Hardy TL, and Bertrand G. (1977). “A system for anatomical and functional mapping of the human thalamus.” Comput Biomed Res, 10(1), 9-24.CrossRefGoogle Scholar
  38. Thompson PM, Toga AW, Brody W, and Zerhouni E. (2000). “Warping strategies for intersubject registration.” In: Handbook of Medical Imaging, Bronzino J, ed., Academic Press, San Diego, 659-601.Google Scholar
  39. Toga AW, Thompson PM, Mori S, Amunts K, and Zilles K. (2006). “Towards multimodal atlases of the human brain.” Nat Rev Neurosci, 7(12), 952-966.CrossRefGoogle Scholar
  40. van Buren J and Borke R. (1972). Variations and Connections of the Human Thalamus, Springer, Berlin Heidelburg New York.Google Scholar
  41. Yelnick J, Bardinet E, Dormont D, Malandain G, Ourselin S, Tande D, Karachi C, Ayache N, Cornu P, and Agid Y. (2007). “A three-dimensional, histological and deformable atlas of the human basal ganglia. I. Atlas construction based on immunohistochemical and MRI data.” NeuroImage, 34(2), 618-638.CrossRefGoogle Scholar
  42. Yoshida M. (1987). “Creation of a three-dimensional atlas by interpolation from Schaltenbrand-Bailey’s atlas.” Appl Neurophysiol, 50(45), 48.Google Scholar
  43. Yoshida M, Okada K, Nagase A, Kuga S, Shirahama M, Watanabe M, and Kuramoto S. (1982). “Neurophysiological atlas of the human thalamus and adjacent structures.” Appl Neurophysiol, 45, 406-409.Google Scholar
  44. Zonenshayn M, Rezai AR, Mogilner AY, Beric A, Sterio D, and Kelly PJ. (2000). “Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting.” Neurosurgery, 47(2), 282-294.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Terry Peters
    • 1
  • Kirk Finnis
  • Ting Guo
    • 2
  • Andrew Parrent
    • 2
  1. 1.Robarts Research InstituteUniversity of Western OntarioLondonCanada
  2. 2.University of Western OntarioLondonCanada

Personalised recommendations