MRI-Guided FUS and its Clinical Applications

  • Ferenc Jolesz
  • Nathan McDannold
  • Greg Clement
  • Manabu Kinoshita
  • Fiona Fennessy
  • Clare Tempany

Focused ultrasound offers a completely noninvasive means to deliver energy to targeted locations deep within the body. It is actively being investigated for thermal ablation to offer a noninvasive alternative to surgical resection, and for altering tissue or cell membrane properties as a means to enhance or enable the delivery of drugs at targeted locations. Although focused ultrasound technology has been investigated for more than 60 years, it has not found widespread use because of the difficulty of guiding and monitoring the procedure. One needs to accurately identify the target tissue, confirm that the focal point is correctly targeted before high energies are employed, ensure that sufficient energy is delivered safely to the entire target, and evaluate the outcome after the treatment. Combining focused ultrasound with MRI overcomes all of these problems through MRI’s abilities to create high quality anatomical images and to quantify temperature changes. This chapter provides an overview of the marriage of these two technologies. We describe the basics of focused ultrasound technology and MRI methods to guide thermal therapies. This chapter also describes how this technology is currently being used in the clinic, and overviews some new opportunities that are being developed, such as targeted drug delivery in the brain.


Magn Reson Image Thermal Ablation Uterine Fibroid Focus Ultrasound High Intensity Focus Ultrasound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott NJ and Romero IA. (1996). “Transporting therapeutics across the blood-brain barrier.” Mol Med Today, 2(3), 106-113.Google Scholar
  2. Arora D, Cooley D, Perry T, Guo J, Richardson A, Moellmer J, Hadley R, Parker D, Skliar M, and Roemer RB. (2006a). “MR thermometry-based feedback control of efficacy and safety in minimum-time thermal therapies: Phantom and in vivo evaluations.” Int J Hyperthermia, 22(1), 29-42.Google Scholar
  3. Arora D, Cooley D, Perry T, Skliar M, and Roemer RB. (2005). “Direct thermal dose control of constrained focused ultrasound treatments: Phantom and in vivo evaluation.” Phys Med Biol, 50(8), 1919-1935.Google Scholar
  4. Arora D, Minor MA, Skliar M, and Roemer RB. (2006b). “Control of thermal therapies with moving power deposition field.” Phys Med Biol, 51(5).Google Scholar
  5. Aubry JF, Tanter M, Pernot M, Thomas JL, and Fink M. (2003). “Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans.” J Acoust Soc Am, 113(1), 84-93.Google Scholar
  6. Bankson JA, Stafford RJ, and Hazle JD. (2005). “Partially parallel imaging with phase-sensitive data: Increased temporal resolution for magnetic resonance temperature imaging.” Magn Reson Med, 53(3), 658-665.Google Scholar
  7. Bednarski MD, Lee JW, Callstrom MR, and Li KC. (1997). “In vivo target-specific delivery of macromolecular agents with MR-guided focused ultrasound.” Radiology, 204(1), 263-268.Google Scholar
  8. Behnia B, Suthar M, and Webb A. (2002). “Closed-loop feedback control of phased-array microwave heating using thermal measurements from magnetic resonance imaging.” Concepts Magn Reson, 15(1), 101-110.Google Scholar
  9. Bendell JC, Domchek SM, Burstein HJ, Harris L, Younger J, Kuter I, Bunnell C, Rue M, Gelman R, and Winer E. (2003). “Central nervous system metastases in women who receive trastuzumab-based therapy for metastatic breast carcinoma.” Cancer, 97(12), 2972-2977.Google Scholar
  10. Billard BE, Hynynen K, and Roemer RB. (1990). “Effects of physical parameters on high temperature ultrasound hyperthermia.” Ultrasound Med Biol, 16(4), 409-420.Google Scholar
  11. Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, and Oldfield EH. (1994). “Convection-enhanced delivery of macromolecules in the brain.” Proc Natl Acad Sci USA, 91(6), 2076-2080.Google Scholar
  12. Cain C and Umemura S. (1986). “Concentricring and sector-vortex phased-array applicators for ultrasound hyperthermia.” IEEE Trans Microw Theory Tech, 34 (5), 542-551.Google Scholar
  13. Catane R, Beck A, Inbar Y, Rabin T, Shabshin N, Hengst S, Pfeffer RM, Hanannel A, Dogadkin O, Liberman B, and Kopelman D. (2007). “MR-guided focused ultrasound surgery (MRgFUS) for the palliation of pain in patients with bone metastases - preliminary clinical experience.” Ann Oncol, 18(1), 163-167.Google Scholar
  14. Chopra R, Burtnyk M, Haider MA, and Bronskill MJ. (2005). “Method for MRI-guided conformal thermal therapy of prostate with planar transurethral ultrasound heating applicators.” Phys Med Biol, 50(21), 4957-4975.Google Scholar
  15. Chopra R, Wachsmuth J, Burtnyk M, Haider MA, and Bronskill MJ. (2006). “Analysis of factors important for transurethral ultrasound prostate heating using MR temperature feedback.” Phys Med Biol, 51(4), 827-844.Google Scholar
  16. Chung AH, Hynynen K, Colucci V, Oshio K, Cline HE, and Jolesz FA. (1996). “Optimization of spoiled gradient-echo phase imaging for in vivo localization of a focused ultrasound beam.” Magn Reson Med, 36(5), 745-752.Google Scholar
  17. Chung AH, Jolesz FA, and Hynynen K. (1999). “Thermal dosimetry of a focused ultrasound beam in vivo by magnetic resonance imaging.” Med Phys, 26(9), 2017-2026.Google Scholar
  18. Clement GT and Hynynen K. (2002). “A non-invasive method for focusing ultra-sound through the human skull.” Phys Med Biol, 47(8), 1219-1236.Google Scholar
  19. Clement GT and Hynynen K. (2003). “Forward planar projection through layered media.” IEEE Trans Ultrason Ferroelectr Freq Control, 50(12), 1689-1698.Google Scholar
  20. Cline HE, Schenck JF, Watkins RD, Hynynen K, and Jolesz FA. (1993). “Magnetic resonance-guided thermal surgery.” Magn Reson Med, 30(1), 98-106.Google Scholar
  21. Cummings J and McArdle CS. (1986). “Studies on the in vivo disposition of adriamycin in human tumours which exhibit different responses to the drug.” Br J Cancer, 53(6), 835-838.Google Scholar
  22. Damianou C and Hynynen K. (1993). “Focal spacing and near-field heating during pulsed high temperature ultrasound therapy.” Ultrasound Med Biol, 19 (9), 777-787.Google Scholar
  23. Damianou C, Hynynen K, and Fan X. (1993). “Application of the thermal dose concept for predicting the necrosed tissue volume during ultrasound surgery.” Proc Ultrason Symp, 2, 1199-1202.Google Scholar
  24. Daniel B and Butts K. (2000). “Deformation of breast tissue during heating; MRI observations of ex vivo radio frequency ablation.” Proceedings of the Eighth Meeting of the International Society for Magnetic Resonance in Medicine, 1341.Google Scholar
  25. Daum DR, Buchanan M, Fjield T, and Hynynen K. (1998). “Design and evaluation of a feedback based phased array system for ultrasound surgery.” IEEE Trans Ultrason Ferroelectr Freq Contr, 45(2), 431-438.Google Scholar
  26. Daum DR and Hynynen K. (1998). “Thermal dose optimization via temporal switching in ultrasound surgery.” IEEE Trans Ultrason Ferroelectr Freq Control, 45(1), 208-215.Google Scholar
  27. Daum DR and Hynynen K. (1999). “A 256 element ultrasonic phased array system for treatment of large volumes of deep seated tissue.” IEEE Trans Ultrason Ferroelectr Freq Control, 46(5), 1254-1268.Google Scholar
  28. Daum DR, Smith NB, King R, and Hynynen K. (1999). “In vivo demonstration of noninvasive thermal surgery of the liver and kidney using an ultrasonic phased array.” Ultrasound Med Biol, 25(7), 1087-1098.Google Scholar
  29. De Poorter J. (1995). “Non-invasive MRI thermometry with the proton resonance frequency method: Study of susceptibility effects.” Magn Reson Med, 34(3), 359-367.Google Scholar
  30. de Zwart J, Vimeux F, Palussiere J, Salomir R, Quesson B, Delalande C, and Moonen C. (2001). “On-line correction and visualization of motion during MRI-controlled hyperthermia.” Magn Reson Med, 45(1), 128-137.Google Scholar
  31. de Zwart JA, Vimeux FC, Delalande C, Canioni P, and Moonen CT. (1999). “Fast lipid-suppressed MR temperature mapping with echo-shifted gradient-echo imaging and spectral-spatial excitation.” Magn Reson Med, 42(1), 53-59.Google Scholar
  32. Deng CX, Sieling F, Pan H, and Cui J. (2004). “Ultrasound-induced cell membrane porosity.” Ultrasound Med Biol, 30(4), 519-526.Google Scholar
  33. Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, and Hoopes PJ. (2003). “Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia.” Int J Hyperthermia, 19(3), 267-294.Google Scholar
  34. Doolittle ND, Miner ME, Hall WA, Siegal T, Jerome E, Osztie E, McAllister LD, Bubalo JS, Kraemer DF, Fortin D, Nixon R, Muldoon LL, and Neuwelt EA. (2000). “Safety and efficacy of a multicenter study using intraarterial chemo-therapy in conjunction with osmotic opening of the blood-brain barrier for the treatment of patients with malignant brain tumors.” Cancer, 88(3), 637-647.Google Scholar
  35. Fan X and Hynynen K. (1996a). “A study of various parameters of spherically curved phased arrays for noninvasive ultrasound surgery.” Phys Med Biol, 41 (4), 591-608.Google Scholar
  36. Fan X and Hynynen K. (1996b). “Ultrasound surgery using multiple sonications -treatment time considerations.” Ultrasound Med Biol, 22(4), 471-482.Google Scholar
  37. Fennessy FM and Tempany CM. (2005). “MRI-guided focused ultrasound surgery of uterine leiomyomas.” Acad Radiol, 12(9), 1158-1166.Google Scholar
  38. Fennessy FM, Tempany CM, McDannold NJ, So MJ, Hesley G, Gostout B, Kim HS, Holland GA, Sarti DA, Hynynen K, Jolesz FA, and Stewart EA. (2007). “Uterine leiomyomas: MR imaging-guided focused ultrasound surgery-results of different treatment protocols.” Radiology, 243(3), 885-893.Google Scholar
  39. Fjield T, Fan X, and Hynynen K. (1996). “A parametric study of the concentric-ring transducer design for MRI guided ultrasound surgery.” J Acoust Soc Am, 100 (2 Pt 1), 1220-1230.Google Scholar
  40. Fry WJ, Barnard JW, Fry EJ, Krumins RF, and Brennan JF. (1955). “Ultrasonic lesions in the mammalian central nervous system.” Science, 122(3168), 517-518.Google Scholar
  41. Fry WJ and Fry FJ. (1960). “Fundamental neurological research and human neuro- surgery using intense ultrasound.” IRE Trans Med Electron, ME-7, 166-181.Google Scholar
  42. Furusawa H, Namba K, Thomsen S, Akiyama F, Bendet A, Tanaka C, Yasuda Y, and Nakahara H. (2006). “Magnetic resonance-guided focused ultrasound surgery of breast cancer: Reliability and effectiveness.” J Am Coll Surg, 203 (1), 54-63.Google Scholar
  43. Gianduzzo TR, Eden CG, and Moon DA. (2006). “Treatment of localised prostate cancer using high-intensity focused ultrasound.” BJU Int, 97(4), 867-868.Google Scholar
  44. Gianfelice D, Khiat A, Amara M, Belblidia A, and Boulanger Y. (2003a). “MR imaging-guided focused ultrasound surgery of breast cancer: Correlation of dynamic contrast-enhanced MRI with histopathologic findings.” Breast Cancer Res Treat, 82(2), 93-101.Google Scholar
  45. Gianfelice D, Khiat A, Amara M, Belblidia A, and Boulanger Y. (2003b). “MR imaging-guided focused US ablation of breast cancer: Histopathologic assess-ment of effectiveness - initial experience.” Radiology, 227(3), 849-855.Google Scholar
  46. Gianfelice D, Khiat A, Boulanger Y, Amara M, and Belblidia A. (2003c). “Feasi-bility of magnetic resonance imaging-guided focused ultrasound surgery as an adjunct to tamoxifen therapy in high-risk surgical patients with breast carcinoma.” J Vasc Interv Radiol, 14(10), 1275-1282.Google Scholar
  47. Gombos EC, Kacher DF, Furusawa H, Namba K. (2006). “Breast focused ultrasound surgery with magnetic resonance guidance.” Top Magn Reson Imaging , 17 (3), 181-8.Google Scholar
  48. Greenleaf WJ, Bolander ME, Sarkar G, Goldring MB, and Greenleaf JF. (1998). “Artificial cavitation nuclei significantly enhance acoustically induced cell transfection.” Ultrasound Med Biol, 24(4), 587-595.Google Scholar
  49. Guerin C, Olivi A, Weingart JD, Lawson HC, and Brem H. (2004). “Recent advances in brain tumor therapy: Local intracerebral drug delivery by polymers.” Invest New Drugs, 22(1), 27-37.Google Scholar
  50. Guo JY, Kholmovski EG, Zhang L, Jeong EK, and Parker DL. (2006). “k-space inherited parallel acquisition (KIPA): Application on dynamic magnetic resonance imaging thermometry.” Magn Reson Imaging, 24(7), 903-915.Google Scholar
  51. Guzman HR, McNamara AJ, Nguyen DX, and Prausnitz MR. (2003). “Bioeffects caused by changes in acoustic cavitation bubble density and cell concen-tration: A unified explanation based on cell-to-bubble ratio and blast radius.” Ultrasound Med Biol, 29(8), 1211-1222.Google Scholar
  52. Guzman HR, Nguyen DX, McNamara AJ, and Prausnitz MR. (2002). “Equilibrium loading of cells with macromolecules by ultrasound: effects of molecular size and acoustic energy.” J Pharm Sci, 91(7), 1693-1701.Google Scholar
  53. Gwyther SJ. (2005). “New imaging techniques in cancer management.” Ann Oncol, 16(Suppl 2), 63-70.Google Scholar
  54. Hindley J, Gedroyc W, Regan L, Stewart EA, Tempany CM, Hynynen K, McDannold NJ, Inbar Y, Itzchak Y, Rabinovici J, Kim K, Geschwind J, Hesley G, Giostout B, Ehrenstein T, Hengst S, Sklair-Levy M, Shushan A, and Jolesz FA. (2004). “MRI guidance of focused ultrasound therapy of uterine fibroids: Early results.” AJR Am J Roentgenol, 183(6), 1713-1719.Google Scholar
  55. Hindley J, Law P, Hickey M, Smith S, Lamping D, Gedroyc W, and Regan L. (2002). “Clinical outcomes following percutaneous magnetic resonance image guided laser ablation of symptomatic uterine fibroids.” Human Reproduction, 17 (10), 2737-2741.Google Scholar
  56. Hindman J. (1966). “Proton resonance shift of water in the gas and liquid states.” J Chem Phys, 44(12), 4582-4592.Google Scholar
  57. Holt RG and Roy RA. (2001). “Measurements of bubble-enhanced heating from focused, MHz-frequency ultrasound in a tissue-mimicking material.” Ultra-sound Med Biol, 27(10), 1399-1412.Google Scholar
  58. Huber PE, Jenne JW, Rastert R, Simiantonakis I, Sinn HP, Strittmatter HJ, von Fournier D, Wannenmacher MF, and Debus J. (2001). “A new noninvasive approach in breast cancer therapy using magnetic resonance imaging-guided focused ultrasound surgery.” Cancer Res, 61(23), 8441-8447.Google Scholar
  59. Hutchinson E, Dahleh M, and Hynynen K. (1998). “The feasibility of MRI feed-back control for intracavitary phased array hyperthermia treatments.” Int J Hyperthermia, 14(1), 39-56.Google Scholar
  60. Hutchinson EB and Hynynen K. (1998). “Intracavitary ultrasound phased arrays for prostate thermal therapies: MRI compatibility and in vivo testing.” Med Phys, 25 (12), 2392-2399.Google Scholar
  61. Hynynen K. (1991). “The role of nonlinear ultrasound propagation during hyper-thermia treatments.” Med Phys, 18(6), 1156-1163.Google Scholar
  62. Hynynen K, Chung AH, Fjield T, Buchanan M, Daum DR, Colucci V, Lopath P, and Jolesz FA. (1996a). “Feasibility of using ultrasound phased arrays for MRI monitored noninvasive surgery.” IEEE Trans Ultrason Ferroelectr Freq Contr, 43(6), 1043.Google Scholar
  63. Hynynen K, Clement GT, McDannold N, Vykhodtseva N, King R, White PJ, Vitek S, and Jolesz FA. (2004). “500-element ultrasound phased array system for noninvasive focal surgery of the brain: A preliminary rabbit study with ex vivo human skulls.” Magn Reson Med, 52(1), 100-107.Google Scholar
  64. Hynynen K, Damianou C, Darkazanli A, Unger E, and Schenck JF. (1993a). “The feasibility of using MRI to monitor and guide noninvasive ultrasound surgery.” Ultrasound Med Biol, 19(1), 91-92.Google Scholar
  65. Hynynen K, Darkazanli A, Unger E, and Schenck JF. (1993b). “MRI-guided non-invasive ultrasound surgery.” Med Phys, 20(1), 107-115.Google Scholar
  66. Hynynen K, Freund WR, Cline HE, Chung AH, Watkins RD, Vetro JP, and Jolesz FA. (1996b). “A clinical, noninvasive, MR imaging-monitored ultra-sound surgery method.” Radiographics, 16(1), 185-195.Google Scholar
  67. Hynynen K and Jolesz FA. (1998). “Demonstration of potential noninvasive ultra-sound brain therapy through an intact skull.” Ultrasound Med Biol, 24(2), 275-283.Google Scholar
  68. Hynynen K, McDannold N, Sheikov NA, Jolesz FA, and Vykhodtseva N. (2005). “Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications.” Neuroimage, 24(1), 12-20.Google Scholar
  69. Hynynen K, McDannold N, Vykhodtseva N, and Jolesz FA. (2001a). “Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits.” Radiology, 220(3), 640-646.Google Scholar
  70. Hynynen K, McDannold N, Vykhodtseva N, Raymond S, Weissleder R, Jolesz FA, and Sheikov N. (2006). “Focal disruption of the blood-brain barrier due to 260-kHz ultrasound bursts: A method for molecular imaging and targeted drug delivery.” J Neurosurg, 105(3), 445-454.Google Scholar
  71. Hynynen K, Pomeroy O, Smith DN, Huber PE, McDannold NJ, Kettenbach J, Baum J, Singer S, and Jolesz FA. (2001b). “MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: A feasibility study.” Radiology, 219(1), 176-185.Google Scholar
  72. Hynynen K, Vykhodtseva NI, Chung AH, Sorrentino V, Colucci V, and Jolesz FA. (1997). “Thermal effects of focused ultrasound on the brain: Determination with MR imaging.” Radiology, 204(1), 247-253.Google Scholar
  73. Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, and Suzuki Y. (1995). “A precise and fast temperature mapping using water proton chemical shift.” Magn Reson Med, 34(6), 814-823.Google Scholar
  74. Jolesz FA and Hynynen K. (2002). “Magnetic resonance image-guided focused ultrasound surgery.” Cancer J, 8(Suppl 1), S100-112.Google Scholar
  75. Jolesz FA, Hynynen K, McDannold N, Freundlich D, and Kopelman D. (2004). “Non-invasive thermal ablation of hepatocellular carcinoma by using magnetic reso-nance imaging-guided focused ultrasound.” Gastroenterology, 127(5, Suppl 1), S242-247.Google Scholar
  76. Jolesz FA, Hynynen K, McDannold N, and Tempany C. (2005). “MR imaging-controlled focused ultrasound ablation: A noninvasive image-guided surgery.” Magn Reson Imaging Clin N Am, 13(3), 545-560.Google Scholar
  77. Kennedy JE. (2005). “High-intensity focused ultrasound in the treatment of solid tumours.” Nat Rev Cancer, 5(4), 321-327.Google Scholar
  78. Kennedy JE, Ter Haar GR, and Cranston D. (2003). “High intensity focused ultra-sound: Surgery of the future?” Br J Radiol, 76(909), 590-599.Google Scholar
  79. Kennedy JE, Wu F, ter Haar GR, Gleeson FV, Phillips RR, Middleton MR, and Cranston D. (2004). “High-intensity focused ultrasound for the treatment of liver tumours.” Ultrasonics, 42(1-9), 931-935.Google Scholar
  80. Khiat A, Gianfelice D, Amara M, and Boulanger Y. (2006). “Influence of post-treatment delay on the evaluation of the response to focused ultrasound surgery of breast cancer by dynamic contrast enhanced MRI.” Br J Radiol, 79 (940), 308-314.Google Scholar
  81. Kinoshita M and Hynynen K. (2005a). “Intracellular delivery of Bak BH3 peptide by microbubble-enhanced ultrasound.” Pharm Res, 22(5), 716-720.Google Scholar
  82. Kinoshita M and Hynynen K. (2005b). “A novel method for the intracellular delivery of siRNA using microbubble-enhanced focused ultrasound.” Biochem Biophys Res Commun, 335(2), 393-399.Google Scholar
  83. Kinoshita M, McDannold N, Jolesz FA, and Hynynen K. (2006a). “Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption.” Proc Natl Acad Sci USA, 103 (31), 11719-11723.Google Scholar
  84. Kinoshita M, McDannold N, Jolesz FA, and Hynynen K. (2006b). “Targeted delivery of antibodies through the blood-brain barrier by MRI-guided focused ultrasound.” Biochem Biophys Res Commun, 340(4), 1085-1090.Google Scholar
  85. Kinoshita M and Hynynen K. (2007). “Key factors that affect sonoporation efficiency in in vitro settings: The importance of standing wave in sonoporation.” Biochem Biophys Res Commun, 359(4), 860-865.Google Scholar
  86. Klibanov AL. (2006). “Microbubble contrast agents: Targeted ultrasound imaging and ultrasound-assisted drug-delivery applications.” Invest Radiol, 41(3), 354-362.MathSciNetGoogle Scholar
  87. Kowalski ME, Behnia B, Webb AG, and Jin JM. (2002). “Optimization of electro-magnetic phased-arrays for hyperthermia via magnetic resonance temperature estimation.” IEEE Trans Biomed Eng, 49(11), 1229-1241.Google Scholar
  88. Kroll RA and Neuwelt EA. (1998). “Outwitting the blood-brain barrier for therapeutic purposes: Osmotic opening and other means.” Neurosurgery, 42(5), 1083-1099.Google Scholar
  89. Kuroda K, Chung AH, Hynynen K, and Jolesz FA. (1998). “Calibration of water proton chemical shift with temperature for noninvasive temperature imaging during focused ultrasound surgery.” J Magn Reson Imaging, 8(1), 175-181.Google Scholar
  90. Kuroda K, Takei N, Mulkern RV, Oshio K, Nakai T, Okada T, Matsumura A, Yanaka K, Hynynen K, and Jolesz FA. (2003). “Feasibility of internally referenced brain temperature imaging with a metabolite signal.” Magn Reson Med Sci, 2(1), 17-22.Google Scholar
  91. Leighton T. (1994). The Acoustic Bubble, Academic Press, San Diego, USA.Google Scholar
  92. Lele PP. (1962). “A simple method for production of trackless focal lesions with focused ultrasound: Physical factors.” J Physiol, 160, 494-512.Google Scholar
  93. Lele PP. (1967). “Production of deep focal lesions by focused ultrasound-current status.” Ultrasonics, 5, 105-112.Google Scholar
  94. Leon-Villapalos J, Kaniorou-Larai M, and Dziewulski P. (2005). “Full thickness abdominal burn following magnetic resonance guided focused ultrasound therapy.” Burns, 31(8), 1054-1055.Google Scholar
  95. Li T, Tachibana K, Kuroki M, and Kuroki M. (2003). “Gene transfer with echo-enhanced contrast agents: Comparison between Albunex, Optison, and Levovist in mice - initial results.” Radiology, 229(2), 423-428.Google Scholar
  96. Lin WL, Roemer RB, and Hynynen K. (1990). “Theoretical and experimental evaluation of a temperature controller for scanned focused ultrasound hyper-thermia.” Med Phys, 17(4), 615-625.Google Scholar
  97. Lynn JG, Zwemer RL, and Chick AJ. (1942). “New method for the generation and use of focused ultrasound in experimental biology.” J Gen Physiology, 26, 179-193.Google Scholar
  98. Madersbacher S and Marberger M. (2003). “High-energy shockwaves and extra-corporeal high-intensity focused ultrasound.” J Endourol, 17(8), 667-672.Google Scholar
  99. Madersbacher S, Pedevilla M, Vingers L, Susani M, and Marberger M. (1995). “Effect of high-intensity focused ultrasound on human prostate cancer in vivo.” Cancer Res, 55(15), 3346-3351.Google Scholar
  100. Malinen M, Huttunen T, Kaipio JP, and Hynynen K. (2005). “Scanning path optimization for ultrasound surgery.” Phys Med Biol, 50(15), 3473-3490.Google Scholar
  101. McDannold, Hynynen K, Wolf D, Wolf G, and Jolesz F. (1998). “MRI evaluation of thermal ablation of tumors with focused ultrasound.” J Magn Reson Imaging, 8(1), 91-100.Google Scholar
  102. McDannold N. (2005). “Quantitative MRI-based temperature mapping based on the proton resonant frequency shift: review of validation studies.” Int J Hyper-thermia, 21(6), 533-546.Google Scholar
  103. McDannold N and Hynynen K. (2006). “Quality assurance and system stability of a clinical MRI-guided focused ultrasound system: Four-year experience.” Med Phys, 33(11), 4307-4313.Google Scholar
  104. McDannold N, Hynynen K, and Jolesz F. (2001). “MRI monitoring of the thermal ablation of tissue: Effects of long exposure times.” J Magn Reson Imaging, 13 (3), 421-427.Google Scholar
  105. McDannold N, King RL, Jolesz FA, and Hynynen K. (2002). “The use of quanti-tative temperature images to predict the optimal power for focused ultrasound surgery: In vivo verification in rabbit muscle and brain.” Med Phys, 29(3), 356-365.Google Scholar
  106. McDannold N, Vykhodtseva N, and Hynynen K. (2005a). “Targeted disruption of the blood-brain barrier with focused ultrasound: Association with Inertial Cavitation.” Proc Ultrason Symp, 2, 1249-1252.Google Scholar
  107. McDannold N, Vykhodtseva N, Raymond S, Jolesz FA, and Hynynen K. (2005b). “MRI-guided targeted blood-brain barrier disruption with focused ultrasound: histological findings in rabbits.” Ultrasound Med Biol, 31(11), 1527-1537.Google Scholar
  108. McNichols RJ, Gowda A, Kangasniemi M, Bankson JA, Price RE, and Hazle JD. (2004). “MR thermometry-based feedback control of laser interstitial thermal therapy at 980 nm.” Lasers Surg Med, 34(1), 48-55.Google Scholar
  109. Meshorer A, Prionas SD, Fajardo LF, Meyer JL, Hahn GM, and Martinez AA. (1983). “The effects of hyperthermia on normal mesenchymal tissues. Appli-cation of a histologic grading system.” Arch Pathol Lab Med, 107(6), 328-334.Google Scholar
  110. Miller AP and Nanda NC. (2004). “Contrast echocardiography: New agents.” Ultrasound Med Biol, 30(4), 425-434.Google Scholar
  111. Miller DL. (1988). “Particle gathering and microstreaming near ultrasonically activated gas-filled micropores.” J Acoust Soc Am, 84(4), 1378-1387.Google Scholar
  112. Miller DL and Quddus J. (2000). “Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice.” Proc Natl Acad Sci USA, 97(18), 10179-10184.Google Scholar
  113. Mitragotri S, Blankschtein D, and Langer R. (1995). “Ultrasound-mediated trans-dermal protein delivery.” Science, 269(5225), 850-853.Google Scholar
  114. Moonen CT, Quesson B, Salomir R, Vimeux FC, de Zwart JA, van Vaals JJ, Grenier N, and Palussiere J. (2001). “Thermal therapies in interventional MR imaging. focused ultrasound.” Neuroimaging Clin N Am, 11(4), 737-747.Google Scholar
  115. Mougenot C, Salomir R, Palussiere J, Grenier N, and Moonen CT. (2004). “Auto-matic spatial and temporal temperature control for MR-guided focused ultrasound using fast 3D MR thermometry and multispiral trajectory of the focal point.” Magn Reson Med, 52(5), 1005-1015.Google Scholar
  116. Nyborg W, Carson P, Carstensen E, Dunn F, Miller DL, and Miller M. (2002). “Exposure criteria for medical diagnostic ultrasound: II. Criteria based on all known mechanisms.” NCRP Report No. 140, National Council on Radiation Protection and Measurements, Bethesda, Maryland, USA.Google Scholar
  117. Palussiere J, Salomir R, Le Bail B, Fawaz R, Quesson B, Grenier N, and Moonen CT. (2003). “Feasibility of MR-guided focused ultrasound with realtime temperature mapping and continuous sonication for ablation of VX2 carcinoma in rabbit thigh.” Magn Reson Med, 49(1), 89-98.Google Scholar
  118. Pardridge WM. (2002a). “Drug and gene delivery to the brain: The vascular route.” Neuron, 36(4), 555-558.Google Scholar
  119. Pardridge WM. (2002b). “Drug and gene targeting to the brain with molecular Trojan horses.” Nat Rev Drug Discov, 1(2), 131-139.Google Scholar
  120. Pardridge WM. (2003). “Blood-brain barrier genomics and the use of endogenous transporters to cause drug penetration into the brain.” Curr Opin Drug Discov Devel, 6(5), 683-691.Google Scholar
  121. Peters RD and Henkelman RM. (2000). “Proton-resonance frequency shift MR thermometry is affected by changes in the electrical conductivity of tissue.” Magn Reson Med, 43(1), 62-71.Google Scholar
  122. Peters RD, Hinks RS, and Henkelman RM. (1999). “Heat-source orientation and geometry dependence in proton-resonance frequency shift magnetic resonance thermometry.” Magn Reson Med, 41(5), 909-918.Google Scholar
  123. Poissonnier L, Chapelon JY, Rouviere O, Curiel L, Bouvier R, Martin X, Dubernard JM, and Gelet A. (2007). “Control of prostate cancer by transrectal HIFU in 227 patients.” Eur Urol, 51(2), 381-387.Google Scholar
  124. Poissonnier L, Gelet A, Chapelon JY, Bouvier R, Rouviere O, Pangaud C, Lyonnet D, and Dubernard JM. (2003). “[Results of transrectal focused ultrasound for the treatment of localized prostate cancer (120 patients with PSA < or + 10 ng/ml)].” Prog Urol, 13(1), 60-72.Google Scholar
  125. Price RJ, Skyba D, Kaul S, and Skalak T. (1998). “Delivery of colloidal particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound.” Circulation, 98, 1264-1267.Google Scholar
  126. Raymond SB, Skoch J, Hynynen K, and Bacskai BJ. (2007). “Multiphoton imaging of ultrasound/optison mediated cerebrovascular effects in vivo.” J Cereb Blood Flow Metab, 27(2), 393-403.Google Scholar
  127. Rieke V, Vigen KK, Sommer G, Daniel BL, Pauly JM, and Butts K. (2004). “Referenceless PRF shift thermometry.” Magn Reson Med, 51(6), 1223-1231.Google Scholar
  128. Salomir R, Palussiere J, Vimeux FC, de Zwart JA, Quesson B, Gauchet M, Lelong P, Pergrale J, Grenier N, and Moonen CT. (2000a). “Local hyper-thermia with MR-guided focused ultrasound: spiral trajectory of the focal point optimized for temperature uniformity in the target region.” J Magn Reson Imaging, 12(4), 571-583.Google Scholar
  129. Salomir R, Vimeux FC, de Zwart JA, Grenier N, and Moonen CT. (2000b). “Hyper-thermia by MR-guided focused ultrasound: Accurate temperature control based on fast MRI and a physical model of local energy deposition and heat conduction.” Magn Reson Med, 43(3), 342-347.Google Scholar
  130. Sapareto SA and Dewey WC. (1984). “Thermal dose determination in cancer therapy.” Int J Radiat Oncol Biol Phys, 10(6), 787-800.Google Scholar
  131. Sheikov N, McDannold N, Jolesz F, Zhang YZ, Tam K, and Hynynen K. (2006). “Brain arterioles show more active vesicular transport of blood-borne tracer molecules than capillaries and venules after focused ultrasound-evoked opening of the blood-brain barrier.” Ultrasound Med Biol, 32(9), 1399-1409.Google Scholar
  132. Sheikov N, McDannold N, Vykhodtseva N, Jolesz F, and Hynynen K. (2004). “Cellular mechanisms of the blood-brain barrier opening induced by ultra-sound in presence of microbubbles.” Ultrasound Med Biol, 30(7), 979-989.Google Scholar
  133. Shohet R, Chen S, Zhou Y-T, Wang Z, Meidell R, Unger R, and Grayburn P. (2001). “Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium.” Circulation, 101, 2554.Google Scholar
  134. Skyba D, Price RJ, Linka A, Skalak T, and Kaul S. (1998). “Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue.” Circulation, 98(4), 290-293.Google Scholar
  135. Smith NB, Merrilees NK, Dahleh M, and Hynynen K. (2001). “Control system for an MRI compatible intracavitary ultrasound array for thermal treatment of prostate disease.” Int J Hyperthermia, 17(3), 271-282.Google Scholar
  136. Sokka SD, King R, and Hynynen K. (2003). “MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh.” Phys Med Biol, 48(2), 223-241.Google Scholar
  137. Sokka SD, King R, McDannold N, and Hynynen K. (1999). “Design and evaluation of a linear intracavitary ultrasound phased array for MRI-guided prostate ablative therapies.” IEEE Ultrason Symp, 1435-1438.Google Scholar
  138. Song CW. (1984). “Effect of local hyperthermia on blood flow and microenviron-ment: A review.” Cancer Res, 44(10, Suppl), S4721-S4730.Google Scholar
  139. Stafford RJ, Hazle JD, and Glover GH. (2000). “Monitoring of high-intensity focused ultrasound-induced temperature changes in vitro using an interleaved spiral acquisition.” Magn Reson Med, 43(6), 909-912.Google Scholar
  140. Stafford RJ, Price RE, Diederich C, Kangasniemi M, Olsson L, and Hazle JD. (2004). “Interleaved echo-planar imaging for fast multiplanar magnetic resonance temperature imaging of ultrasound thermal ablation therapy. “ J Magn Reson Imaging, 20(4), 706-714.Google Scholar
  141. Stewart EA, Gedroyc WM, Tempany CM, Quade BJ, Inbar Y, Ehrenstein T, Shushan A, Hindley JT, Goldin RD, David M, Sklair M, and Rabinovici J. (2003). “Focused ultrasound treatment of uterine fibroid tumors: Safety and feasibility of a noninvasive thermoablative technique.” Am J Obstet Gynecol, 189 (1), 48-54.Google Scholar
  142. Stollberger R, Ascher PW, Huber D, Renhart W, Radner H, and Ebner F. (1998). “Temperature monitoring of interstitial thermal tissue coagulation using MR phase images.” J Magn Reson Imaging, 8(1), 188-196.Google Scholar
  143. Tachibana K. (1992). “Transdermal delivery of insulin to alloxan-diabetic rabbits by ultrasound exposure.” Pharm Res, 9(7), 952-954.Google Scholar
  144. Tachibana K and Tachibana S. (1991). “Transdermal delivery of insulin by ultra-sonic vibration.” J Pharm Pharmacol, 43(4), 270-271.Google Scholar
  145. Taniyama Y, Tachibana K, Hiraoka K, Aoki M, Yamamoto S, Matsumoto K, Nakamura T, Ogihara T, Kaneda Y, and Morishita R. (2002a). “Development of safe and efficient novel nonviral gene transfer using ultrasound: Enhance-ment of transfection efficiency of naked plasmid DNA in skeletal muscle.” Gene Ther, 9(6), 372-380.Google Scholar
  146. Taniyama Y, Tachibana K, Hiraoka K, Namba T, Yamasaki K, Hashiya N, Aoki M, Ogihara T, Yasufumi K, and Morishita R. (2002b). “Local delivery of plasmid DNA into rat carotid artery using ultrasound.” Circulation, 105(10), 1233-1239.Google Scholar
  147. Tempany CM, Stewart EA, McDannold N, Quade BJ, Jolesz FA, and Hynynen K. (2003). “MR imaging-guided focused ultrasound surgery of uterine leiomyomas: A feasibility study.” Radiology, 226(3), 897-905.Google Scholar
  148. Ter Haar GR. (2001). “High intensity focused ultrasound for the treatment of tumors.” Echocardiography, 18(4), 317-322.Google Scholar
  149. Thomas JL and Fink M. (1996). “UItrasonic beam focusing through tissue inhomo-geneities with a time reversal mirror: Application to transskull therapy.” IEEE Trans Ultrason Ferroelectr Freq Control, 43(6), 1122-1129.Google Scholar
  150. Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, and Hynynen K. (2007). “Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound.” Int J Cancer, 121(4), 901-907.Google Scholar
  151. Unger EC, Hersh E, Vannan M, and McCreery T. (2001). “Gene delivery using ultrasound contrast agents.” Echocardiography, 18(4), 355-361.Google Scholar
  152. Unger EC, Matsunaga TO, McCreery T, Schumann P, Sweitzer R, and Quigley R. (2002). “Therapeutic applications of microbubbles.” Eur J Radiol, 42 (2), 160-168.Google Scholar
  153. Unger EC, McCreery TP, and Sweitzer RH. (1997). “Ultrasound enhances gene expression of liposomal transfection.” Invest Radiol, 32(12), 723-727.Google Scholar
  154. Unger EC, Porter T, Culp W, Labell R, Matsunaga T, and Zutshi R. (2004). “Therapeutic applications of lipid-coated microbubbles.” Adv Drug Deliv Rev, 56 (9), 1291-1314.Google Scholar
  155. Vannan M, McCreery T, Li P, Han Z, Unger E, Kuersten B, Nabel E, and Rajagopalan S. (2002). “Ultrasound-mediated transfection of canine myo-cardium by intravenous administration of cationic microbubble-linked plasmid DNA.” J Am Soc Echocardiogr, 15(3), 214-218.Google Scholar
  156. Vanne A and Hynynen K. (2003). “MRI feedback temperature control for focused ultrasound surgery.” Phys Med Biol, 48(1), 31-43.Google Scholar
  157. Vigen KK, Daniel BL, Pauly JM, and Butts K. (2003). “Triggered, navigated, multi-baseline method for proton resonance frequency temperature mapping with respiratory motion.” Magn Reson Med, 50(5), 1003-1010.Google Scholar
  158. Wu T and Felmlee JP. (2002). “A quality control program for MR-guided focused ultrasound ablation therapy.” J Appl Clin Med Phys, 3(2), 162-167.Google Scholar
  159. Yuh EL, Shulman SG, Mehta SA, Xie J, Chen L, Frenkel V, Bednarski MD, and Li KC. (2005). “Delivery of systemic chemotherapeutic agent to tumors by using focused ultrasound: study in a murine model.” Radiology, 234(2), 431-437.Google Scholar
  160. Zarnitsyn VG and Prausnitz MR. (2004). “Physical parameters influencing optimization of ultrasound-mediated DNA transfection.” Ultrasound Med Biol, 30(4), 527-538.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ferenc Jolesz
    • 1
  • Nathan McDannold
    • 1
  • Greg Clement
    • 1
  • Manabu Kinoshita
    • 1
  • Fiona Fennessy
    • 1
  • Clare Tempany
    • 1
  1. 1.Brigham & Women's HospitalBostonUSA

Personalised recommendations