Overview and History of Image-Guided Interventions

  • Robert Galloway
  • Terry Peters

Although the routine use of image-guided intervention (IGI) is only about 20 years old, it grew out of stereotactic neurosurgical techniques that have a much longer history. This chapter introduces stereotactic techniques and discusses the evolution of image-guided surgical techniques enabled by the introduction of modern imaging modalities, computers, and tracking devices. Equally important in the evolution of this discipline were developments in three-dimensional (3D) image reconstruction, visualization, segmentation, and registration. This chapter discusses the role that each has played in the development of systems designed for IGI. Finally, a number of challenges are identified that currently are preventing IGI to progress.


Stereotactic Frame Stereotactic Surgery Laser Range Scanner Frameless Stereotaxy Fixed Emitter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams L, Krybus W, Meyerebrecht D, Rueger R, Gilsbach JM, Moesges R, and Schloendorff G. (1990). “Computer-assisted surgery.” IEEE Comput Graph Appl, 10(3), 43-51.CrossRefGoogle Scholar
  2. Arun KS, Huang TS, and Blostein SD. (1987). “Least-squares fitting of 2 3-D point sets.” IEEE Trans Pattern Anal Mach Intell, 9(5), 699-700.CrossRefGoogle Scholar
  3. Balanchandran R, Labadie R, and Fitzpatrick JM. (2006). “Validation of a Fiducial Frame System for Image-guided Otologic Surgery Utilizing Bahar Bone Screws.” ISBI 2006, Arlington, VA.Google Scholar
  4. Balter JM, Wright JN, Newell LJ, Friemel B, Dimmer S, Cheng Y, Wong J, Vertatschitsch E, and Mate TP. (2005). “Accuracy of a wireless localization system for radiotherapy.” Int J Radiat Oncol Biol Phys, 61(3), 933-937.Google Scholar
  5. Banovac F, Levy EB, Lindisch DJ, Pearce A, Onda S, and Clifford M. (2002). “Feasibility of percutaneous transabdominal portosystemic shunt creation.” Surg Radiol Anat, 24(3-4), 217-221.CrossRefGoogle Scholar
  6. Barillot C, Lachmann F, Gibaud B, and JM S. (1991). “Three-dimensional display of MRI data in neurosurgery: segmentation and rendering aspects.” SPIE Medical SPIE, Newport Beach, CA, 54-65.Google Scholar
  7. Barnett GH, Kormos DW, Steiner CP, and Weisenberger J. (1993). “Intraoperative localization using an armless, frameless stereotactic wand. Technical note.” J Neurosurg, 78(3), 510-514.CrossRefGoogle Scholar
  8. Benincasa A, Clements L, Herrell S, Chang S, Cookson M, and Galloway R. (2006). “Feasibility study for image guided kidney surgery: assessment of required intraoperative surface for accurate image to physical space regis-trations.” SPIE Medical Imaging SPIE, San Diego, CA, 554-562.Google Scholar
  9. Bergstrom M, and Greitz T. (1976). “Stereotaxic computed tomography.” AJR Am J Roentgenol, 127(1), 167-170.Google Scholar
  10. Besl PJ, and McKay ND. (1992). “A Method for Registration of 3-D Shapes.” IEEE Trans Pattern Anal Mach Intell, 14(2), 239-256.CrossRefGoogle Scholar
  11. Birkfellner W, Figl M, Huber K, Watzinger F, Wanschitz F, Hanel R, Wagner A, Rafolt D, Ewers R, and Bergmann H. (2000). “The varioscope AR - A head-mounted operating microscope for augmented reality.” Med Image Comput Comput Assist Interv, 1935, 869-877.Google Scholar
  12. Birkfellner W, Watzinger F, Wanschitz F, Enislidis G, Kollmann C, Rafolt D, Nowotny R, Ewers R, and Bergmann H. (1998a). “Systematic distortions in magnetic position digitizers.” Med Phys, 25(11), 2242-2248.CrossRefGoogle Scholar
  13. Birkfellner W, Watzinger F, Wanschitz F, Ewers R, and Bergmann H. (1998b). “Calibration of tracking systems in a surgical environment.” IEEE Trans Med Imaging, 17(5), 737-742.CrossRefGoogle Scholar
  14. Brown RA. (1979). “A computerized tomography-computer graphics approach to stereotaxic localization.” J Neurosurg, 50(6), 715-720.CrossRefGoogle Scholar
  15. Bucholz R, and Smith K. (1993). “A comparison of sonic digitizers versus light emitting diode-based localization.” In: Interactive Image-Guided Neurosurgery, Maciunas RJ, ed., American Association of Neurological Surgeons, pp. 179-200.Google Scholar
  16. Burrows E. (1986). Pioneers and Early Years: A History of British Radiology. Colophon Press, Alderney.Google Scholar
  17. Cash DM, Miga MI, Sinha TK, Galloway RL, and Chapman WC. (2005). “Com-pensating for intraoperative soft-tissue deformations using incomplete surface data and finite elements.” IEEE Trans Med Imaging, 24(11), 1479-1491.CrossRefGoogle Scholar
  18. Cleary K, Watson V, Lindisch D, Patriciu A, Mazilu D, and Stoianovici D. (2003). “Robotically assisted interventions: Clinical trial for spinal blocks.” Med Image Comput Comput Assist Interv, 2879(Pt 2), 963-964.Google Scholar
  19. Colchester ACF, Zhao J, Holton-Tainter KS, Henri CJ, Maitland N, Roberts PTE, Harris CG, and Evans RJ. (1996). “Development and preliminary evaluation of VISLAN, a surgical planning and guidance system using intra-operative video imaging.” Med Image Anal, 1, 73-90.CrossRefGoogle Scholar
  20. Collins DL, and Evans AC. (1997). “ANIMAL: Validation and applications of non-linear registration based segmentation.” Int J Pattern Recog Art Intel, 11(8), 1271-1294.CrossRefGoogle Scholar
  21. Collins DL, Neelin P, Peters TM, and Evans AC. (1994). “Automatic 3D inter-subject registration of MR volumetric data in standardized Talairach space.” J Comput Assist Tomogr, 18(2), 192-205.CrossRefGoogle Scholar
  22. Cox J, and Kirkpatrick RC. (1896). “The new photography with report of a case in which a bullet was photographed in the leg.” Montreal Medical Journal, 24, 661-665.Google Scholar
  23. Dandy W. (1918). “Ventriculography of the brain after injection of air into the cerebral ventricles.” Ann Surg,68, 5-11.CrossRefGoogle Scholar
  24. Dandy W. (1919). “Roentgenography of the brain after injection of air into the spinal canal.” Ann Surg, 70, 397-403.Google Scholar
  25. Davis DO, and Pressman BD. (1974). “Computerized tomography of the brain.” Radiol Clin North Am, 12(2), 297-313.Google Scholar
  26. Edwards PJ, Hawkes DJ, Hill DL, Jewell D, Spink R, Strong A, and Gleeson M. (1995). “Augmentation of reality using an operating microscope for otolaryngology and neurosurgical guidance.” J Image Guid Surg, 1(3), 172-178.CrossRefGoogle Scholar
  27. Fichtinger G, Deguet A, Fischer G, Iordachita I, Balogh E, Masamune K, Taylor RH, Fayad LM, de Oliveira M, and Zinreich SJ. (2005). “Image overlay for CT-guided needle insertions.” Comput Aided Surg, 10(4), 241-255.CrossRefGoogle Scholar
  28. Fitzpatrick J, and Galloway R. (2001). “Fiducial-based 3D image- and patient-space matching.” Automedica, 20(1-2), 36-47.Google Scholar
  29. Friets EM, Strohbehn JW, Hatch JF, and Roberts DW. (1989). “A frameless stereotaxic operating microscope for neurosurgery.” IEEE Trans Biomed Eng, 36 (6), 608-617.CrossRefGoogle Scholar
  30. Galloway R, Edwards C, Haden G, and Maciunas R. (1989). “An interactive, image-guided articulated arm for laser surgery.” Strategic Defense Initiative Organi-zation’s Fourth Annual Meeting on Medical Free-Electron Lasers, Dallas, TX.Google Scholar
  31. Galloway R, Edwards C, Lewis J, and Maciunas R. (1993). “Image display and surgical visualization in interactive image-guided neurosurgery.” Optical Engineer-ing., 32(8), 1955-1962.Google Scholar
  32. Galloway RL, Jr. (2001). “The process and development of image-guided pro-cedures.” Annu Rev Biomed Eng, 3, 83-108.CrossRefGoogle Scholar
  33. Gildenberg P, and Tasker R, eds. (1998). Textbook of Stereotactic and Functional Neurosurgery, McGraw-Hill, New York.Google Scholar
  34. Gildenberg PL. (1987). “Whatever happened to stereotactic surgery?” Neuro-surgery, 20(6), 983-987.Google Scholar
  35. Gildenberg PL, and Kaufman HH. (1982). “Direct calculation of stereotactic co-ordinates from CT scans.” Appl Neurophysiol, 45(4-5), 347-351.Google Scholar
  36. Grimson E, Leventon M, Ettinger G, Chabrerie A, Ozlen F, Nakajima S, Atsumi H, Kikinis R, and Black P. (1998). “Clinical experience with a high precision image-guided neurosurgery system.” MICCAI, Springer (LNCS), Boston, MA.Google Scholar
  37. Grimson WEL, Ettinger GJ, White SJ, LozanoPerez T, Wells WM, and Kikinis R. (1996). “An automatic registration method for frameless stereotaxy, image guided surgery, and enhanced reality visualization.” IEEE Trans Med Imaging, 15 (2), 129-140.CrossRefGoogle Scholar
  38. Guthrie BL, and Adler JR. (1992). “Computer-assisted preoperative planning, inter-active surgery, and frameless stereotaxy.” Clinical Neurosurgery, 38, 112-131.Google Scholar
  39. Henri CJ, Collins DL, and Peters TM. (1991a). “Multimodality image integration for stereotactic surgical planning.” Med Phys, 18(2), 167-177.CrossRefGoogle Scholar
  40. Henri CJ, Collins DL, Pike GB, Olivier A, and Peters TM. (1991b). “Clinical ex-perience with a stereoscopic image workstation.” SPIE - The International Society for Optical Engineering, Bellingham, WA, San Jose, CA, 306-317.Google Scholar
  41. Henri CJ, Peters TM, Lemieux L, and Olivier A. (1990). “Experience with a compu-terized stereoscopic workstation for neurosurgical planning.” IEEE Visualiza-tion in Biomedical Computing, IEEE Press, 450-457.Google Scholar
  42. Herring JL, Dawant BM, Maurer CR, Jr., Muratore DM, Galloway RL, and Fitzpatrick JM. (1998). “Surface-based registration of CT images to physical space for image-guided surgery of the spine: a sensitivity study.” IEEE Trans Med Imaging, 17(5), 743-752.CrossRefGoogle Scholar
  43. Hill D, Studholme C, and Hawkes D. (1994). “Voxel similarity measures for auto-mated image registration.” SPIE Medical Imaging, SPIE, Newport Beach, 205-216.Google Scholar
  44. Horn BKP. (1987). “Closed-form solution of absolute orientation using unit quaternions.” J Opt Soc Am a-Opt Image Sci Vis, 4(4), 629-642.CrossRefMathSciNetGoogle Scholar
  45. Horsley V, and Clark R. (1908). “The structure and functions of the cerebellum examined by a new method.” Brain 31(45-124).Google Scholar
  46. Hounsfield GN. (1973). “Computerized transverse axial scanning (tomography). 1. Description of system.” Br J Radiol, 46(552), 1016-1022.CrossRefGoogle Scholar
  47. Kall BA, Kelly PJ, Goerss S, and Frieder G. (1985). “Methodology and clinical experience with computed tomography and a computer-resident stereotactic atlas.” Neurosurgery, 17(3), 400-407.CrossRefGoogle Scholar
  48. Kelly PJ. (1986). “Applications and methodology for contemporary stereotactic surgery.” Neurol Res, 8(1), 2-12.Google Scholar
  49. Koivukangas J, Louhisalmi Y, Alakuijala J, and Oikarinen J. (1993). Neuronavigator-guided cerebral biopsy. Acta Neurochir Suppl., 58, 71-74.Google Scholar
  50. Kosugi Y, Watanabe E, Goto J, Watanabe T, Yoshimoto S, Takakura K, and Ikebe J. (1988). “An articulated neurosurgical navigation system using MRI and CT images.” IEEE Trans Biomed Eng, 35(2), 147-152.CrossRefGoogle Scholar
  51. Lavallee S, Merloz P, Stindel E, Kilian P, Troccaz J, Cinquin P, Langlotz F, and Nolte L. (2004). “Echomorphing: introducing an intraoperative imaging modality to reconstruct 3D bone surfaces for minimally invasive surgery.” 4th Annual Meeting of the International Society for Computer Assisted Orthopaedic Surgery (CAOS-International), Chicago, IL, 38-39.Google Scholar
  52. Leksell L. (1951). “The stereotaxic method and radiosurgery of the brain.” Acta Chir Scand, 102(4), 316-319.Google Scholar
  53. Leksell L. (1968). “Cerebral radiosurgery. I. Gammathalanotomy in two cases of intractable pain.” Acta Chir Scand, 134(8), 585-595.Google Scholar
  54. Leksell L. (1983). “Stereotactic radiosurgery.” J Neurol Neurosurg Psychiatry, 46(9), 797-803.CrossRefGoogle Scholar
  55. Leksell L, and Jernberg B. (1980). “Stereotaxis and tomography. A technical note.” Acta Neurochir (Wien), 52(1-2), 1-7.CrossRefGoogle Scholar
  56. Maciunas RJ, Galloway RL, Jr., Fitzpatrick JM, Mandava VR, Edwards CA, and Allen GS. (1992). “A universal system for interactive image-directed neuro-surgery.” Stereotact Funct Neurosurg, 58(1-4), 108-113.CrossRefGoogle Scholar
  57. Manwaring KH, Manwaring ML, and Moss SD. (1994). “Magnetic field guided endoscopic dissection through a burr hole may avoid more invasive cranio-tomies. A preliminary report.” Acta Neurochir Suppl, 61, 34-39.Google Scholar
  58. Maurer CR, Jr., Fitzpatrick JM, Wang MY, Galloway RL, Jr., Maciunas RJ, and Allen GS. (1997). “Registration of head volume images using implantable fiducial markers.” IEEE Trans Med Imaging, 16(4), 447-462.CrossRefGoogle Scholar
  59. Mundinger F. (1982). “CT stereotactic biopsy of brain tumors.” In: Tumors of the Central Nervous System in Infancy and Childhood, Voth D. Gutjahr P., and Langmaid C., eds., Springer, Berlin Heidelberg New York.Google Scholar
  60. Paulsen KD, Miga MI, Kennedy FE, Hoopes PJ, Hartov A, and Roberts DW. (1999). “A computational model for tracking subsurface tissue deformation during stereotactic neurosurgery.” IEEE Trans Biomed Eng, 46(2), 213-225.CrossRefGoogle Scholar
  61. Pelizzari CA, Chen GT, Spelbring DR, Weichselbaum RR, and Chen CT. (1989). “Accurate three-dimensional registration of CT, PET, and/or MR images of the brain.” J Comput Assist Tomogr, 13(1), 20-26.CrossRefGoogle Scholar
  62. Peters TM, Clark J, Pike B, Drangova M, and Olivier A. (1987). “Stereotactic surgical planning with magnetic resonance imaging, digital subtraction angio-graphy and computed tomography.” Appl Neurophysiol, 50(1-6), 33-38.Google Scholar
  63. Peters TM, Clark JA, Pike GB, Henri C, Collins L, Leksell D, and Jeppsson O. (1989). “Stereotactic neurosurgery planning on a personal-computer-based work station.” J Digit Imaging, 2(2), 75-81.CrossRefGoogle Scholar
  64. Peters TM, Henri C, Collins L, Pike B, and Olivier A. (1990a). “Clinical appli-cations of integrated 3-D stereoscopic imaging in neurosurgery.” Australas Phys Eng Sci Med, 13(4), 166-176.Google Scholar
  65. Peters TM, Henri C, Pike GB, Clark JA, Collins L, and Olivier A. (1990b). “Integration of stereoscopic DSA with three-dimensional image reconstruction for stereotactic planning.” Stereotact Funct Neurosurg, 54-55, 471-476.CrossRefGoogle Scholar
  66. Peters TM, Henri CJ, Munger P, Takahashi AM, Evans AC, Davey B, and Olivier A. (1994). “Integration of stereoscopic DSA and 3D MRI for image-guided neurosurgery.” Comput Med Imaging Graph, 18(4), 289-299.CrossRefGoogle Scholar
  67. Reinhardt HF, Horstmann GA, and Gratzl O. (1993). “Sonic stereometry in micro-surgical procedures for deep-seated brain tumors and vascular malformations.” Neurosurgery, 32(1), 51-57; discussion 57.CrossRefGoogle Scholar
  68. Riechert T, and Wolff M. (1951). “A new stereotactic instrument for intrac- ranial placement of electrodes.” Arch Psychiatr Nervenkr Z Gesamte Neurol Psychiatr, 186(2), 225-230.Google Scholar
  69. Roberts DW, Strohbehn JW, Hatch JF, Murray W, and Kettenberger H. (1986). “A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope.” J Neurosurg, 65(4), 545-549.CrossRefGoogle Scholar
  70. Shelden CH, McCann G, Jacques S, Lutes HR, Frazier RE, Katz R, and Kuki R. (1980). “Development of a computerized microstereotaxic method for locali-zation and removal of minute CNS lesions under direct 3-D vision. Technical report.” J Neurosurg, 52(1), 21-27.CrossRefGoogle Scholar
  71. Sinha TK, Dawant BM, Duay V, Cash DM, Weil RJ, Thompson RC, Weaver KD, and Miga MI. (2005). “A method to track cortical surface deformations using a laser range scanner.” IEEE Trans Med Imaging, 24(6), 767-781.CrossRefGoogle Scholar
  72. Spiegel E, Wycis H, Marks M, and Lee A. (1947). “ Stereotactic apparatus for operations on the human brain.” Science, 106, 349-350.CrossRefGoogle Scholar
  73. Talairach J. (1957). Atlas d’anatomie stéréotaxique; repérage radiologique indirect des noyaux gris centraux des régions mésencéphalo-sous-optique et hypo-thalamique de l’homme, Masson, Paris.Google Scholar
  74. Talairach J, and Tourneau P. (1988). Co-planar stereotaxic atlas of the human brain, Georg Thieme Verlag, Stuttgart, Germany.Google Scholar
  75. Talairach J, and Tourneau P. (1993). Referentially oriented cerebral MRI anatomy, Georg Thieme Verlag, Stuttgart, Germany.Google Scholar
  76. Tebo SA, Leopold DA, Long DM, Zinreich SJ, and Kennedy DW. (1996). “An optical SD digitizer for frameless stereotactic surgery.” IEEE Comput Graph Appl, 16(1), 55-64.CrossRefGoogle Scholar
  77. Thomas DG, Doshi P, Colchester A, Hawkes DJ, Hill DL, Zhao J, Maitland N, Strong AJ, and Evans RI. (1996). “Craniotomy guidance using a stereo-video-based tracking system.” Stereotact Funct Neurosurg, 66(1-3), 81-83.CrossRefGoogle Scholar
  78. Todd E. (1967). Todd-Wells Manual of Stereotaxic Procedures, Codman & Shurtleff, Randolph Mass.Google Scholar
  79. Warfield SK, Haker SJ, Talos IF, Kemper CA, Weisenfeld N, Mewes AU, Goldberg-Zimring D, Zou KH, Westin CF, Wells WM, Tempany CM, Golby A, Black PM, Jolesz FA, and Kikinis R. (2005). “Capturing intraoperative deformations: research experience at Brigham and Women's Hospital.” Med Image Anal, 9(2), 145-162.CrossRefGoogle Scholar
  80. Watanabe E, Watanabe T, Manaka S, Mayanagi Y, and Takakura K. (1987). “Three-dimensional digitizer (neuronavigator): new equipment for computed tomography-guided stereotaxic surgery.” Surg Neurol, 27(6), 543-547.CrossRefGoogle Scholar
  81. West J, Fitzpatrick JM, Wang MY, Dawant BM, Maurer CR, Jr., Kessler RM, Maciunas RJ, Barillot C, Lemoine D, Collignon A, Maes F, Suetens P, Vander-meulen D, van den Elsen PA, Napel S, Sumanaweera TS, Harkness B, Hemler PF, Hill DL, Hawkes DJ, Studholme C, Maintz JB, Viergever MA, Malandain G, Woods RP, et al. (1997). “Comparison and evaluation of retrospective inter-modality brain image registration techniques.” J Comput Assist Tomogr, 21(4), 554-566.CrossRefGoogle Scholar
  82. Wiles AD, Thompson DG, and Frantz DD. (2004). “Accuracy assessment and interpretation for optical tracking systems.” SPIE Medical Imaging, Visua-lization, Image-Guided Procedures, and Display, San Diego, CA, 421-432.Google Scholar
  83. Zamorano LJ, Nolte L, Kadi AM, and Jiang Z. (1994). “Interactive intraoperative localization using an infrared-based system.” Stereotact Funct Neurosurg, 63 (1-4), 84-88.CrossRefGoogle Scholar
  84. Zinreich SJ, and Zinreich ES. US Patent 5368030. (1994). “Non invasive Multi-Modality Radiographic Surface Markers.” USA.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Robert Galloway
    • 1
  • Terry Peters
    • 2
  1. 1.Dept of Biomedical EngineeringVanderbilt UniversityNashvilleUSA
  2. 2.Robarts Research InstituteUniversity of Western OntarioLondonCanada

Personalised recommendations