Skip to main content

Geometry of Linear Differential Systems Towards Contact Geometry of Second Order

  • Chapter
Symmetries and Overdetermined Systems of Partial Differential Equations

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 144))

Abstract

This is a lecture note on the geometry of linear differential systems. By a (linear) differential system (or Pfaffian system) (M, D), we mean a subbundle D of the tangent bundle T(M) of a manifold M. Locally D is defined by 1-forms w 1,...,w s such that w 1Λ⋯Λw s ≠0 at each point , where r is the rank of D and r + s = dim M;

$$ D = \{ \omega _1 = \cdots = \omega _s = 0\} . $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.M. Boothby, Homogeneous complex contact manifolds, Proc. Symp. Pure Math., Amer. Math. Soc. (1961), 3: 144–154.

    MathSciNet  Google Scholar 

  2. N. Bourbaki, Groupes et algèbles de Lie, Chapitre 4,5 et 6, Hermann, Paris (1968).

    Google Scholar 

  3. R. Bryant, Some aspect of the local and global theory of Pfaffian systems, Thesis, University of North Carolina, Chapel Hill, 1979.

    Google Scholar 

  4. R. Bryant, S.S. Chern, R.B. Gardner, H. Goldschmidt, AND P. Griffiths, Exterior differential systems, Springer-Verlag, New-York (1986).

    Google Scholar 

  5. R. Bryant AND L. Hsu, Rigidity of integral curves of rank 2 distributions, Invent. Math. (1993), 144: 435–461.

    Article  MathSciNet  Google Scholar 

  6. E. Cartan, Les systèmes de Pf aff à cinq variables et les équations aux dérivées partielles du second ordre, Ann. Ec. Normale (1910), 27: 109–192.

    MathSciNet  Google Scholar 

  7. -, Sur les systèmes en involution d’équations aux dérivées partielles du second ordre à une fonction inconnue de trois variables indépendantes, Bull. Soc. Math. France (1911), 39: 352–443.

    MathSciNet  Google Scholar 

  8. B. Doubrov, B. Komrakov, AND T. Morimoto, Equivalence of holonomic differential equations,Lobachevskii J. of Math. (1999), 3: 39–71.

    MATH  MathSciNet  Google Scholar 

  9. A. Giaro, A. Kumpera, AND C. Ruiz, Sur la lecture correcte d’un résultat d’Elie Cartan, C.R. Acad. Sc. Paris (1978), Sér.A 287: 241–244.

    MATH  MathSciNet  Google Scholar 

  10. J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York(1972).

    MATH  Google Scholar 

  11. S. Kaneyuki AND H. Asano, Graded Lie algebras and generalized Jordan triple systems, Nagoya Math. J. (1988), 112: 81–115.

    MATH  MathSciNet  Google Scholar 

  12. B. Kostant, Lie algebra cohomology and generalized Borel-Weil theorem, Ann. Math. (1961), 74: 329–387.

    Article  MathSciNet  Google Scholar 

  13. M. Kuranishi, Lectures on involutive systems of partial differential equations, Pub. Soc. Mat., São Paulo (1967).

    Google Scholar 

  14. R. Montgomery AND M. Zhitomirskii, Geometric approach to Goursat flags, Ann. Inst. H. Poincaré-AN (2001), 18: 459–493.

    Article  MATH  MathSciNet  Google Scholar 

  15. P. Mormul, Goursat Flags.’Classification of codimension-one singularities, J.of Dynamical and Control Systems (2000), 6(3): 311–330.

    Article  MATH  MathSciNet  Google Scholar 

  16. T. Sasaki, K. Yamaguchi, AND M. Yoshida, On the Rigidity of Differen-tial Systems modeled on Hermitian Symmetric Spaces and Disproofs of a Conjecture concerning Modular Interpretations of Configuration Spaces, Advanced Studies in Pure Math. (1997), 25: 318–354.

    MathSciNet  Google Scholar 

  17. Y. Se-ashi, On differential invariants of integrable finite type linear differential equations, Hokkaido Math.J. (1988), 17: 151–195.

    MATH  MathSciNet  Google Scholar 

  18. S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, New Jersey (1964).

    MATH  Google Scholar 

  19. K. Shibuya AND K. Yamaguchi, Drapeau Theorem for Differential Systems, to appear.

    Google Scholar 

  20. M. Takeuchi, Cell decomposition and Morse equalities on certain symmetric spaces, J. Fac. Sci. Univ. Tokyo (1965), 12: 81–192.

    MATH  Google Scholar 

  21. N. Tanaka, On generalized graded Lie algebras and geometric structures I, J. Math. Soc. Japan (1967), 19: 215–254.

    Article  MATH  MathSciNet  Google Scholar 

  22. -, On differential systems, graded Lie algebras and pseudo-groups, J. Math. Kyoto Univ. (1970), 10: 1–82.

    MATH  MathSciNet  Google Scholar 

  23. -, On non-degenerate real hy persurf aces, graded Lie algebras and Cartan connections, Japan. J. Math. (1976), 2: 131–190.

    MathSciNet  Google Scholar 

  24. -, On the equivalence problems associated with simple graded Lie algebras, Hokkaido Math. J. (1979), 8: 23–84.

    MATH  MathSciNet  Google Scholar 

  25. -, On geometry and integration of systems of second order ordinary differential equations, Proc. Symposium on Differential Geometry, 1982, pp. 194–205 (in Japanese).

    Google Scholar 

  26. -, On affine symmetric spaces and the automorphism groups of product manifolds, Hokkaido Math. J. (1985), 14: 277–351.

    Google Scholar 

  27. -, Geometric theory of ordinary differential equations, Report of Grant-in-Aid for Scientific Research MESC Japan (1989).

    Google Scholar 

  28. A. Tsuchiya, Geometric theory of partial differential equations of second order, Lecture Note at Nagoya University (in Japanese) (1981).

    Google Scholar 

  29. J. Tits, Espaces homogènes complexes compacts, Comm. Math. Helv. (1962), 37: 111–120.

    Article  MATH  MathSciNet  Google Scholar 

  30. V.S. Varadarajan, Lie Groups, Lie Algebras and Their Representations, Spriger-Verlag, New York, 1984.

    MATH  Google Scholar 

  31. K. Yamaguchi, Contact geometry of higher order, Japanese J. of Math. (1982), 8: 109–176.

    MATH  Google Scholar 

  32. -, On involutive systems of second order of codimension 2, Proc. of Japan Acad. (1982), Ser A 58(7): 302–305.

    Article  MATH  Google Scholar 

  33. -, Geometrization of Jet bundles, Hokkaido Math. J. (1983), 12: 27–40.

    MATH  MathSciNet  Google Scholar 

  34. -, Typical classes in involutive systems of second order, Japanese J. Math. (1985), 11: 265–291.

    MATH  Google Scholar 

  35. -, Differential systems associated with simple graded Lie algebras, Adv. Studies in Pure Math. (1993), 22: 413–494.

    Google Scholar 

  36. -, C 2-Geometry of Overdetermined Systems of Second Order, Trends in Math. (Analysis and Geometry in Several Complex Variables) (1999), Birkhäuser, Boston, pp. 289–314.

    Google Scholar 

  37. K. Yamaguchi AND T. Yatsui, Geometry of Higher Order Differential Equations of Finite Type associated with Symmetric Spaces, Advanced Studies in Pure Mathematics (2002), 37: 397–458.

    MathSciNet  Google Scholar 

  38. K. Yamaguchi AND T. Yatsui, Parabolic Geometries associated with Differential Equations of Finite Type, Progress in Mathematics, 252 (from Geometry to Quantum Mechanics: In honor of Hideki Omori) (2007), pp. 161–209.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yamaguchi, K. (2008). Geometry of Linear Differential Systems Towards Contact Geometry of Second Order. In: Eastwood, M., Miller, W. (eds) Symmetries and Overdetermined Systems of Partial Differential Equations. The IMA Volumes in Mathematics and its Applications, vol 144. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73831-4_8

Download citation

Publish with us

Policies and ethics