Geometry of Linear Differential Systems Towards Contact Geometry of Second Order

  • Keizo Yamaguchi
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 144)


This is a lecture note on the geometry of linear differential systems. By a (linear) differential system (or Pfaffian system) (M, D), we mean a subbundle D of the tangent bundle T(M) of a manifold M. Locally D is defined by 1-forms w 1,...,w s such that w 1Λ⋯Λw s ≠0 at each point , where r is the rank of D and r + s = dim M;
$$ D = \{ \omega _1 = \cdots = \omega _s = 0\} . $$


Differential System Parabolic Geometry Finite Type Contact Manifold Canonical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bo]
    W.M. Boothby, Homogeneous complex contact manifolds, Proc. Symp. Pure Math., Amer. Math. Soc. (1961), 3: 144–154.MathSciNetGoogle Scholar
  2. [Bu]
    N. Bourbaki, Groupes et algèbles de Lie, Chapitre 4,5 et 6, Hermann, Paris (1968).Google Scholar
  3. [B]
    R. Bryant, Some aspect of the local and global theory of Pfaffian systems, Thesis, University of North Carolina, Chapel Hill, 1979.Google Scholar
  4. [BCG3]
    R. Bryant, S.S. Chern, R.B. Gardner, H. Goldschmidt, AND P. Griffiths, Exterior differential systems, Springer-Verlag, New-York (1986).Google Scholar
  5. [BH]
    R. Bryant AND L. Hsu, Rigidity of integral curves of rank 2 distributions, Invent. Math. (1993), 144: 435–461.CrossRefMathSciNetGoogle Scholar
  6. [Cl]
    E. Cartan, Les systèmes de Pf aff à cinq variables et les équations aux dérivées partielles du second ordre, Ann. Ec. Normale (1910), 27: 109–192.MathSciNetGoogle Scholar
  7. [C2]
    -, Sur les systèmes en involution d’équations aux dérivées partielles du second ordre à une fonction inconnue de trois variables indépendantes, Bull. Soc. Math. France (1911), 39: 352–443.MathSciNetGoogle Scholar
  8. [DKM]
    B. Doubrov, B. Komrakov, AND T. Morimoto, Equivalence of holonomic differential equations,Lobachevskii J. of Math. (1999), 3: 39–71.MATHMathSciNetGoogle Scholar
  9. [GKR]
    A. Giaro, A. Kumpera, AND C. Ruiz, Sur la lecture correcte d’un résultat d’Elie Cartan, C.R. Acad. Sc. Paris (1978), Sér.A 287: 241–244.MATHMathSciNetGoogle Scholar
  10. [Hu]
    J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York(1972).MATHGoogle Scholar
  11. [K-A]
    S. Kaneyuki AND H. Asano, Graded Lie algebras and generalized Jordan triple systems, Nagoya Math. J. (1988), 112: 81–115.MATHMathSciNetGoogle Scholar
  12. [Ko]
    B. Kostant, Lie algebra cohomology and generalized Borel-Weil theorem, Ann. Math. (1961), 74: 329–387.CrossRefMathSciNetGoogle Scholar
  13. [Ku]
    M. Kuranishi, Lectures on involutive systems of partial differential equations, Pub. Soc. Mat., São Paulo (1967).Google Scholar
  14. [MZ]
    R. Montgomery AND M. Zhitomirskii, Geometric approach to Goursat flags, Ann. Inst. H. Poincaré-AN (2001), 18: 459–493.MATHCrossRefMathSciNetGoogle Scholar
  15. [M]
    P. Mormul, Goursat Flags.’Classification of codimension-one singularities, J.of Dynamical and Control Systems (2000), 6(3): 311–330.MATHCrossRefMathSciNetGoogle Scholar
  16. [SYY]
    T. Sasaki, K. Yamaguchi, AND M. Yoshida, On the Rigidity of Differen-tial Systems modeled on Hermitian Symmetric Spaces and Disproofs of a Conjecture concerning Modular Interpretations of Configuration Spaces, Advanced Studies in Pure Math. (1997), 25: 318–354.MathSciNetGoogle Scholar
  17. [Se]
    Y. Se-ashi, On differential invariants of integrable finite type linear differential equations, Hokkaido Math.J. (1988), 17: 151–195.MATHMathSciNetGoogle Scholar
  18. [St]
    S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, New Jersey (1964).MATHGoogle Scholar
  19. [SY]
    K. Shibuya AND K. Yamaguchi, Drapeau Theorem for Differential Systems, to appear.Google Scholar
  20. [Tk]
    M. Takeuchi, Cell decomposition and Morse equalities on certain symmetric spaces, J. Fac. Sci. Univ. Tokyo (1965), 12: 81–192.MATHGoogle Scholar
  21. [Tl]
    N. Tanaka, On generalized graded Lie algebras and geometric structures I, J. Math. Soc. Japan (1967), 19: 215–254.MATHMathSciNetCrossRefGoogle Scholar
  22. [T2]
    -, On differential systems, graded Lie algebras and pseudo-groups, J. Math. Kyoto Univ. (1970), 10: 1–82.MATHMathSciNetGoogle Scholar
  23. [T3]
    -, On non-degenerate real hy persurf aces, graded Lie algebras and Cartan connections, Japan. J. Math. (1976), 2: 131–190.MathSciNetGoogle Scholar
  24. [T4]
    -, On the equivalence problems associated with simple graded Lie algebras, Hokkaido Math. J. (1979), 8: 23–84.MATHMathSciNetGoogle Scholar
  25. [T5]
    -, On geometry and integration of systems of second order ordinary differential equations, Proc. Symposium on Differential Geometry, 1982, pp. 194–205 (in Japanese).Google Scholar
  26. [T6]
    -, On affine symmetric spaces and the automorphism groups of product manifolds, Hokkaido Math. J. (1985), 14: 277–351.Google Scholar
  27. [T7]
    -, Geometric theory of ordinary differential equations, Report of Grant-in-Aid for Scientific Research MESC Japan (1989).Google Scholar
  28. [Ts]
    A. Tsuchiya, Geometric theory of partial differential equations of second order, Lecture Note at Nagoya University (in Japanese) (1981).Google Scholar
  29. [Tt]
    J. Tits, Espaces homogènes complexes compacts, Comm. Math. Helv. (1962), 37: 111–120.MATHCrossRefMathSciNetGoogle Scholar
  30. [V]
    V.S. Varadarajan, Lie Groups, Lie Algebras and Their Representations, Spriger-Verlag, New York, 1984.MATHGoogle Scholar
  31. [Y1]
    K. Yamaguchi, Contact geometry of higher order, Japanese J. of Math. (1982), 8: 109–176.MATHGoogle Scholar
  32. [Y2]
    -, On involutive systems of second order of codimension 2, Proc. of Japan Acad. (1982), Ser A 58(7): 302–305.MATHCrossRefGoogle Scholar
  33. [Y3]
    -, Geometrization of Jet bundles, Hokkaido Math. J. (1983), 12: 27–40.MATHMathSciNetGoogle Scholar
  34. [Y4]
    -, Typical classes in involutive systems of second order, Japanese J. Math. (1985), 11: 265–291.MATHGoogle Scholar
  35. [Y5]
    -, Differential systems associated with simple graded Lie algebras, Adv. Studies in Pure Math. (1993), 22: 413–494.Google Scholar
  36. [Y6]
    -, C 2-Geometry of Overdetermined Systems of Second Order, Trends in Math. (Analysis and Geometry in Several Complex Variables) (1999), Birkhäuser, Boston, pp. 289–314.Google Scholar
  37. [YYl]
    K. Yamaguchi AND T. Yatsui, Geometry of Higher Order Differential Equations of Finite Type associated with Symmetric Spaces, Advanced Studies in Pure Mathematics (2002), 37: 397–458.MathSciNetGoogle Scholar
  38. [YY2]
    K. Yamaguchi AND T. Yatsui, Parabolic Geometries associated with Differential Equations of Finite Type, Progress in Mathematics, 252 (from Geometry to Quantum Mechanics: In honor of Hideki Omori) (2007), pp. 161–209.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Keizo Yamaguchi
    • 1
  1. 1.Department of Mathematics, Faculty of ScienceHokkaido UniversitySapporoJapan

Personalised recommendations