Pseudo-Groups, Moving Frames, and Differential Invariants

  • Peter J. Olver
  • Juha Pohjanpelto
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 144)


We survey recent developments in the method of moving frames for infinite-dimensional Lie pseudo-groups. These include a new, direct approach to the construction of invariant Maurer-Cartan forms and the Cartan structure equations for pseudo-groups, and new algorithms, based on constructive commutative algebra, for establishing the structure of their differential invariant algebras.


Determine Equation Moving Frame Differential Invariant Symbol Module Invariant Differential Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Anderson I.M., The Variational Bicomplex, Utah State Technical Report, 1989, http: //math. usu. edu/~f g_mp.Google Scholar
  2. [2]
    Bazin P.-L., AND Boutin M., Structure from motion: theoretical foundations of a novel approach using custom built invariants, SIAM J. Appl. Math. 64 (2004), 1156–1174.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Berchenko I.A., AND Olver P.J., Symmetries of polynomials, J. Symb. Comp. 29 (2000), 485–514.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Bílă N., Mansfield E.L., AND Clarkson P.A., Symmetry group analysis of the shallow water and semi-geostrophic equations, Quart. J. Mech. Appl. Math. 59 (2006), 95–123.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Bleecker D., Gauge Theory and Variational Principles, Addison-Wesley Publ. Co., Reading, Mass., 1981.MATHGoogle Scholar
  6. [6]
    Boutin M., Numerically invariant signature curves, Int. J. Computer Vision 40 (2000), 235–248.MATHCrossRefGoogle Scholar
  7. [7]
    Boutin M., On orbit dimensions under a simultaneous Lie group action on n copies of a manifold, J. Lie Theory 12 (2002), 191–203.MATHMathSciNetGoogle Scholar
  8. [8]
    Boutin M., Polygon recognition and symmetry detection, Found. Comput. Math. 3(2003), 227–271.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Bryant R.L., Chern S.-S., Gardner R.B., Goldschmidt H.L., AND Griffiths P.A., Exterior Differential Systems, Math. Sci. Res. Inst. Publ., Vol. 18, Springer-Verlag, New York, 1991.Google Scholar
  10. [10]
    Calabi E., Olver P.J., Shakiban C., Tannenbaum A., AND Haker S., Differential and numerically invariant signature curves applied to object recognition, Int. J. Computer Vision 26 (1998), 107–135.CrossRefGoogle Scholar
  11. [11]
    Cartan é., La Méthode du Repère Mobile, la Théorie des Groupes Continus, et les Espaces Généralisés, Exposés de Géométrie, no. 5, Hermann, Paris, 1935.Google Scholar
  12. [12]
    Cartan é., Sur la structure des groupes infinis de transformations, in: Oeuvres Complètes, Part. II, Vol. 2, Gauthier-Villars, Paris, 1953, pp. 571–714.Google Scholar
  13. [13]
    Cartan é., La structure des groupes infinis, in: Oeuvres Complètes, part. II, Vol. 2, Gauthier-Villars, Paris, 1953, pp. 1335–1384.Google Scholar
  14. [14]
    Cheh J., Olver P.J., AND Pohjanpelto J., Maurer-Cartan equations for Lie symmetry pseudo-groups of differential equations, J. Math. Phys. 46 (2005), 023504.CrossRefMathSciNetGoogle Scholar
  15. [15]
    Cheh J., Olver P. J., AND Pohjanpelto J., Algorithms for differential invariants of symmetry groups of differential equations, Found. Comput. Math., to appear.Google Scholar
  16. [16]
    Chern S.S., AND Moser J.K., Real hypersurfaces in complex manifolds, Ada Math. 133(1974), 219–271; also Selected Papers, Vol. 3, Springer-Verlag, New York, 1989, pp. 209-262.MathSciNetGoogle Scholar
  17. [17]
    Cox D., Little J., AND O’Shea D., Ideals, Varieties, and Algorithms, 2nd ed., Springer-Verlag, New York, 1996.MATHGoogle Scholar
  18. [18]
    David D., Kamran N., Levi D., AND Winternitz P., Subalgebras of loop algebras and symmetries of the Kadomtsev-Petviashivili equation, Phys. Rev. Lett. 55 (1985), 2111–2113.CrossRefMathSciNetGoogle Scholar
  19. [19]
    Di Francesco P., Mathieu P., AND Sénéchal D., Conformai Field Theory, Springer-Verlag, New York, 1997.Google Scholar
  20. [20]
    Ehresmann C., Introduction à la théorie des structures infinitésimales et des pseudo-groupes de Lie, in: Géométrie Différentielle, Colloq. Inter, du Centre Nat. de la Rech. Sci., Strasbourg, 1953, pp. 97–110.Google Scholar
  21. [21]
    Fefferman C., AND Graham C.R., Conformai invariants, in: élie Cartan et les Mathématiques d’aujourd’hui, Astérisque, hors série, Soc. Math. France, Paris, 1985, pp. 95–116.Google Scholar
  22. [22]
    Fels M., AND Olver P.J., Moving coframes. I. A practical algorithm, Acta Appl. Math. 51 (1998), 161–213.CrossRefMathSciNetGoogle Scholar
  23. [23]
    Fels M., AND Olver P.J., Moving coframes. II. Regularization and theoretical foundations, Acta Appl. Math. 55 (1999), 127–208.MATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    Fuchs D.B., Gabrielov A.M., AND Gel’fand I.M., The Gauss-Bonnet theorem and Atiyah-Patodi-Singer functionals for the characteristic classes of foliations, Topology 15 (1976), 165–188.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    Guggenheimer H.W., Differential Geometry, McGraw-Hill, New York, 1963.MATHGoogle Scholar
  26. [26]
    Hann C.E., AND Hickman M.S., Projective curvature and integral invariants, Acta Appl. Math. 74 (2002), 177–193.MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    Hubert, E., The AIDA Maple package,, 2006..Google Scholar
  28. [28]
    Hubert E., AND Kogan I.A., Rational invariants of an algebraic group action. Construction and rewriting, J. Symb. Comp., to appear.Google Scholar
  29. [29]
    Hubert E., AND Kogan I.A., Smooth and algebraic invariants of a group action. Local and global constructions, Found. Comput. Math., to appear.Google Scholar
  30. [30]
    Kamran N., Contributions to the study of the equivalence problem of Elie Cartan and its applications to partial and ordinary differential equations, Mém. Cl. Sci. Acad. Roy. Belg. 45 (1989), Fac. 7.Google Scholar
  31. [31]
    Kamran N., AND Robart T., A manifold structure for analytic isotropy Lie pseudogroups of infinite type, J. Lie Theory 11 (2001), 57–80.MATHMathSciNetGoogle Scholar
  32. [32]
    Kim P., Invariantization of Numerical Schemes for Differential Equations Using Moving Frames, Ph.D. Thesis, University of Minnesota, Minneapolis, 2006.Google Scholar
  33. [33]
    Kogan I.A., AND Olver P.J., Invariant Euler-Lagrange equations and the invariant variational bicomplex, Ada Appl. Math. 76 (2003), 137–193.MATHMathSciNetGoogle Scholar
  34. [34]
    Kruglikov B., AND Lychagin V., Invariants of pseudogroup actions: homological methods and finiteness theorem, preprint, arXiv: math.DG/0511711, 2005.Google Scholar
  35. [35]
    Kumpera A., Invariants différentiels d’un pseudogroupe de Lie, J. Diff. Geom. 10 (1975), 289–416.MATHMathSciNetGoogle Scholar
  36. [36]
    Kuranishi M., On the local theory of continuous infinite pseudo groups I, Nagoya Math. J. 15 (1959), 225–260.MathSciNetGoogle Scholar
  37. [37]
    Kuranishi M., On the local theory of continuous infinite pseudo groups II, Nagoya Math. J. 19 (1961), 55–91.MathSciNetGoogle Scholar
  38. [38]
    Lie S., Die Grundlagen für die Theorie der unendlichen kontinuierlichen Transformationsgruppen, Leipzig. Ber. 43 (1891), 316–393; also Gesammelte Abhandlungen, Vol. 6, B.G. Teubner, Leipzig, 1927, pp. 300-364.Google Scholar
  39. [39]
    Lisle LG., AND Reid G.J., Geometry and structure of Lie pseudogroups from infinitesimal defining systems, J. Symb. Comp. 26 (1998), 355–379.MATHCrossRefMathSciNetGoogle Scholar
  40. [40]
    Lisle LG., AND Reid G.J., Cartan structure of infinite Lie pseudogroups, in: Geometric Approaches to Differential Equations, P.J. Vassiliou and I.G. Lisle, eds., Austral. Math. Soc. Lect. Ser., 15, Cambridge Univ. Press, Cambridge, 2000, pp. 116–145.Google Scholar
  41. [41]
    Mackenzie K., Lie Groupoids and Lie Algebroids in Differential Geometry, London Math. Soc. Lecture Notes, Vol. 124, Cambridge University Press, Cambridge, 1987.Google Scholar
  42. [42]
    Mansfield E.L., Algorithms for symmetric differential systems, Found. Comput. Math. 1 (2001), 335–383.MATHMathSciNetGoogle Scholar
  43. [43]
    Marí Beffa G., Relative and absolute differential invariants for conformai curves, J. Lie Theory 13 (2003), 213–245.MATHMathSciNetGoogle Scholar
  44. [44]
    Marí Beffa G., Poisson geometry of differential invariants of curves in some non-semisimple homogeneous spaces, Proc. Amer. Math. Soc. 134 (2006), 779–791.MATHCrossRefMathSciNetGoogle Scholar
  45. [45]
    Marí Beffa G., AND Olver P.J., Differential invariants for parametrized projective surfaces, Commun. Anal. Geom. 7 (1999), 807–839.MATHGoogle Scholar
  46. [46]
    Martina L., Sheftel M.B., AND Winternitz P., Group foliation and non-invariant solutions of the heavenly equation, J. Phys. A 34 (2001), 9243–9263.MATHCrossRefMathSciNetGoogle Scholar
  47. [47]
    McLachlan R.I., AND Quispel G.R.W., What kinds of dynamics are there? Lie pseudogroups, dynamical systems and geometric integration, Nonlinearity 14 (2001), 1689–1705.MATHCrossRefMathSciNetGoogle Scholar
  48. [48]
    McLenaghan R.G., Smirnov R.G., AND The D., An extension of the classical theory of algebraic invariants to pseudo-Riemannian geometry and Hamiltonian mechanics, J. Math. Phys. 45 (2004), 1079–1120.MATHCrossRefMathSciNetGoogle Scholar
  49. [49]
    Medolaghi P., Classificazione delle equazioni alle derivate parziali del secondo ordine, che ammettono un gruppo infinito di trasformazioni puntuali, Ann. Mat. Pura Appl. 1(3) (1898), 229–263.Google Scholar
  50. [50]
    Morozov O., Moving coframes and symmetries of differential equations, J. Phys. A 35 (2002), 2965–2977.MATHCrossRefMathSciNetGoogle Scholar
  51. [51]
    Morozov O.I., Structure of symmetry groups via Cartan’s method: survey of four approaches, SIGMA: Symmetry Integrability Geom. Methods Appl. 1 (2005), paper 006.Google Scholar
  52. [52]
    Muñoz J., Muriel F.J., AND Rodríguez J., On the finiteness of differential invariants, J. Math. Anal. Appl. 284 (2003), 266–282.MATHCrossRefMathSciNetGoogle Scholar
  53. [53]
    Nutku Y., AND Sheftel M.B., Differential invariants and group foliation for the complex Monge-Ampère equation, J. Phys. A 34 (2001), 137–156.MATHCrossRefMathSciNetGoogle Scholar
  54. [54]
    Olver P.J., Applications of Lie Groups to Differential Equations, Second Edition, Graduate Texts in Mathematics, Vol. 107, Springer-Verlag, New York, 1993.Google Scholar
  55. [55]
    Olver P. J., Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge, 1995.MATHGoogle Scholar
  56. [56]
    Olver P.J., Classical Invariant Theory, London Math. Soc. Student Texts, Vol. 44, Cambridge University Press, Cambridge, 1999.Google Scholar
  57. [57]
    Olver P.J., Joint invariant signatures, Found. Comput. Math. 1 (2001), 3–67.MATHCrossRefMathSciNetGoogle Scholar
  58. [58]
    Olver P.J., Geometric foundations of numerical algorithms and symmetry, Appl. Alg. Engin. Commun. Comput. 11 (2001), 417–436.MATHCrossRefMathSciNetGoogle Scholar
  59. [59]
    Olver P.J., Generating differential invariants, J. Math. Anal. Appl., to appear.Google Scholar
  60. [60]
    Olver P.J., AND Pohjanpelto J., Regularity of pseudogroup orbits, in: Symmetry and Perturbation Theory, G. Gaeta, B. Prinari, S. Rauch-Wojciechowski, S. Terracini, eds., World Scientific, Singapore, 2005, pp. 244–254.Google Scholar
  61. [61]
    Olver P.J., AND Pohjanpelto J., Maurer-Cartan forms and the structure of Lie pseudo-groups, Selecta Math. 11 (2005), 99–126.MATHCrossRefMathSciNetGoogle Scholar
  62. [62]
    Olver P. J., AND Pohjanpelto J., Moving frames for Lie pseudo-groups, Canadian J. Math., to appear.Google Scholar
  63. [63]
    Olver P.J., AND Pohjanpelto J., On the algebra of differential invariants of a Lie pseudo-group, preprint, University of Minnesota, 2007.Google Scholar
  64. [64]
    Ovsiannikov L.V., Group Analysis of Differential Equations, Academic Press, New York, 1982.MATHGoogle Scholar
  65. [65]
    Pommaret J.F., Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach, New York, 1978.MATHGoogle Scholar
  66. [66]
    Robart T., AND Kamran N., Sur la théorie locale des pseudogroupes de transformations continus infinis I, Math. Ann. 308 (1997), 593–613.MATHCrossRefMathSciNetGoogle Scholar
  67. [67]
    Seiler W., On the arbitrariness of the solution to a general partial differential equation, J. Math. Phys. 35 (1994), 486–498.MATHCrossRefMathSciNetGoogle Scholar
  68. [68]
    Seiler W., Involution, in preparation.Google Scholar
  69. [69]
    Serra J., Image Analysis and Mathematical Morphology, Academic Press, London 1982.MATHGoogle Scholar
  70. [70]
    Singer I.M., AND Sternberg S., The infinite groups of Lie and Cartan. Part I (the transitive groups), J. Analyse Math. 15 (1965), 1–114.MATHCrossRefMathSciNetGoogle Scholar
  71. [71]
    Smirnov R., AND Yue J., Covariants, joint invariants and the problem of equivalence in the invariant theory of Killing tensors defined in pseudo-Riemannian spaces of constant curvature, J. Math. Phys. 45 (2004), 4141–4163.MATHCrossRefMathSciNetGoogle Scholar
  72. [72]
    Stormark O., Lie’s Structural Approach to PDE Systems, Cambridge University Press, Cambridge, 2000.MATHGoogle Scholar
  73. [73]
    Tresse A., Sur les invariants différentiels des groupes continus de transformations, Acta Math. 18 (1894), 1–88.CrossRefMathSciNetGoogle Scholar
  74. [74]
    Tsujishita T., On variational bicomplexes associated to differential equations, Osaka J. Math. 19 (1982), 311–363.MATHMathSciNetGoogle Scholar
  75. [75]
    Vessiot E., Sur l’intégration des systèmes différentiels qui admettent des groupes continues de transformations, Acta. Math. 28 (1904), 307–349.MATHCrossRefMathSciNetGoogle Scholar
  76. [76]
    Welk M., Kim P., AND Olver P.J., Numerical invariantization for morphological PDE schemes, in: Scale Space and Variational Methods in Computer Vision, F. Sgallari, A. Murli and N. Paragios, eds., Lecture Notes in Computer Science, Springer-Verlag, New York, 2007.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Peter J. Olver
    • 1
  • Juha Pohjanpelto
    • 2
  1. 1.School of MathematicsUniversity of MinnesotaMinneapolis
  2. 2.Department of MathematicsOregon State UniversityCorvallis

Personalised recommendations