Invariant Prolongation and Detour Complexes

  • A. Rod Gover
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 144)


In these expository notes we draw together and develop the ideas behind some recent progress in two directions: the treatment of finite type partial differential operators by prolongation, and a class of differential complexes known as detour complexes. This elaborates on a lecture given at the IMA Summer Programme “Symmetries and overdetermined systems of partial differential equations”.


Finite Type Conformal Structure Formal Adjoint Connection Versus Schouten Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T.N. Bailey, M.G. Eastwood, AND A.R. Gover, Thomas’s structure bundle for conformal, projective and related structures, Rocky Mountain J. Math. (1994), 24: 1191–1217.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    R. Baston, Almost Hermitian symmetric manifolds I, II, Duke Math. Jour. (1991), 63: 81–111, 113–138.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    B.D. Boe AND D.H. Collingwood, A comparison theory for the structure of induced representations, II. Math. Z. (1985), 190: 1–11.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    N. Bokan, P. Gilkey, AND R. źivaljević, An inhomogeneous elliptic complex, J. Anal. Math. (1993), 61: 367–393.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    T. Branson, Sharp inequalities, the functional determinant, and the complementary series. Trans. Amer. Math. Soc. (1995), 347: 3671–3742.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    T. Branson, Conformal Structure and spin geometry in: Dirac operators: yesterday and today, Proceedings of the Summer School and Workshop held in Beirut, August 27-September 7, 2001. Edited by J.-P. Bourguignon, T. Branson, A. Chamseddine, O. Hijazi, and R.J. Stanton. International Press, Somerville, MA, 2005. viii+310 pp.Google Scholar
  7. [7]
    T. Branson, Q-curvature and spectral invariants,Rend. Circ. Mat. Palermo (2) Suppl. (2005), 75: 11–55.MathSciNetGoogle Scholar
  8. [8]
    T. Branson, A. Čap, M.G. Eastwood, AND A.R. Gover, Prolongations of Geometric Overdetermined Systems, Int. J. Math. (2006), 17: 641–664.MATHCrossRefGoogle Scholar
  9. [9]
    T. Branson AND A.R. Gover, Pontrjagin forms and invariant objects related to the Q-curvature, Commun. Contemp. Math., to appear. Preprint math.DG/0511311, http://www.arxiv.orgGoogle Scholar
  10. [10]
    T. Branson AND A.R. Gover, The conformal deformation detour complex for the obstruction tensor, Proc. Amer. Math. Soc. to appear. Preprint Math.DG/0605192, http://www.arxiv.orgGoogle Scholar
  11. [11]
    T. Branson AND A.R. Gover, Conformally invariant operators, differential forms, cohomology and a generalisation of Q-curvature, Comm. Partial Differential Equations (2005), 30: 1611–1669.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    T. Branson AND A.R. Gover, Detour torsion. In progress.Google Scholar
  13. [13]
    D.M.J. Calderbank AND T. Diemer, Differential invariants and curved Bernstein-Gelfand-Gelfand sequences, J. Reine Angew. Math. (2001), 537: 67–103.MATHMathSciNetGoogle Scholar
  14. [14]
    D.M.J. Calderbank, T. Diemer, AND V. Souček, Ricci-corrected derivatives and invariant differential operators, Differential Geom. Appl. (2005), 23: 149–175.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    A. Čap, Overdetermined systems, conformal geometry, and the BGG complex. Preprint math.DG/0610225, Scholar
  16. [16]
    A. Čap AND A.R. Gover, Tractor bundles for irreducible parabolic geometries. Global analysis and harmonic analysis (Marseille-Luminy, 1999), pp. 129–154, Sémin. Congr., 4, Soc. Math. Prance, Paris, 2000. Preprint Publications/SeminairesCongres, Scholar
  17. [17]
    A. Čap AND A.R. Gover, Tractor calculi for parabolic geometries, Trans. Amer. Math. Soc. (2002), 354: 1511–1548.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    A. Čap, J. Slovák, AND V. Souček, Bernstein-Gelfand-Gelfand sequences, Annals of Math., (2001), 154: 97–113.MATHCrossRefGoogle Scholar
  19. [19]
    S.-Y. A. Chang, Non-linear elliptic equations in conformai geometry, Zurich Lectures in Advanced Mathematics, European Mathematical Society, Zürich, 2004, viii+92pp.Google Scholar
  20. [20]
    M.G. Eastwood, Notes on conformai differential geometry. The Proceedings of the 15th Winter School “Geometry and Physics” (Srni, 1995). Rend. Circ. Mat. Palermo (2) Suppl. (1996), 43: 57–76.MathSciNetGoogle Scholar
  21. [21]
    M. Eastwood, Variations on the de Rham complex, Notices Amer. Math. Soc. (1999), 46: 1368–1376.MATHMathSciNetGoogle Scholar
  22. [22]
    M.G. Eastwood AND J.W. Rice, Conformally invariant differential operators on Minkowski space and their curved analogues, Comm. Math. Phys. (1987), 109: 207–228; Erratum: Comm. Math. Phys. (1992), 144: 213.MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    C. Fefferman AND C.R. Graham, Conformal invariants, in Elie Cartan et les mathématiques d’aujourd’hui, Astérisque, hors série (SMF, Paris, 1985), 95–116.Google Scholar
  24. [24]
    J. Gasqui, Sur la résolubilité locale des équations d’Einstein, [On the local solvability of Einstein’s equations], Compositio Math. (1982), 47: 43–69.MATHMathSciNetGoogle Scholar
  25. [25]
    J. Gasqui AND H. Goldschmidt, Déformations infinitésimales des structures conformes plates (French) [Infinitesimal deformations of flat conformal structures]. Progress in Mathematics, 52. Birkhäuser Boston, Inc., Boston, MA, 1984.Google Scholar
  26. [26]
    A.R. Gover, Conformally invariant operators of standard type, Quart. J. Math. (1989), 40: 197–207.MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    A.R. Gover, Almost conformally Einstein manifolds and obstructions, in Differential Geometry and its Applications, proceedings of the 9th International Conference on Differential Geometry and its Applications, Prague 2004, Charles University, Prague, 2005, pp. 243-255. Electronic: math.DG/0412393, Scholar
  28. [28]
    A.R. Gover, K. Hallowell, AND A. Waldron, Higher Spin Gravitational Couplings and the Yang-Mills Detour Complex, preprint hep-th/0606160, Physical Review D, to appear.Google Scholar
  29. [29]
    A.R. Gover AND F. Leitner, A sub-product construction of Poincaré-Einstein metrics, preprint math.DG/0608044, Scholar
  30. [30]
    A.R. Gover AND P. Nurowski, Obstructions to conformally Einstein metrics in n dimensions, J. Geom. Phys. (2006), 56: 450–484.MATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    A.R. Gover AND L.J. Peterson, The ambient obstruction tensor and the conformal deformation complex, Pacific J. Math. (2006), 226: 309–351. Preprint math.DG/0408229, Scholar
  32. [32]
    A.R. Gover AND J. Silhan, The conformal Killing equation on forms-prolongations and applications. Preprint math.DG/0601751, Differential Geom. Appl., to appear.Google Scholar
  33. [33]
    A.R. Gover, Petr Somberg, AND Vladimir Soucek, Yang-Mills detour complexes and conformal geometry. Preprint math.DG/0606401, Scholar
  34. [34]
    C.R. Graham, R. Jenne, L. Mason, AND G. Sparling, Conformally invariant powers of the Laplacian, I: existence, J. London Math. Soc, (1992), 46: 557–565.MATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    C.R. Graham AND K. Hirachi, The ambient obstruction tensor and Q-curvature, in: AdS/CFT correspondence: Einstein metrics and their conformai boundaries, 59–71, IRMA Lect. Math. Theor. Phys., 8, Eur. Math. Soc, Zürich, 2005.Google Scholar
  36. [36]
    C.R. Graham AND M. Zworski, Scattering matrix in conformai geometry, Invent. Math. (2003), 152: 89–118.MATHCrossRefMathSciNetGoogle Scholar
  37. [37]
    M. Korzynski AND J. Lewandowski, The Normal Conformal Cartan Connection and the Bach Tensor, Class. Quant. Grav. (2003), 20: 3745–3764.MATHCrossRefMathSciNetGoogle Scholar
  38. [38]
    B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. Math. (1961), 74: 329–387.CrossRefMathSciNetGoogle Scholar
  39. [39]
    J.M. Lee AND T.H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (1987), 17: 37–91.MATHCrossRefMathSciNetGoogle Scholar
  40. [40]
    J. Lepowsky, A generalization of the Bernstein-Gelfand-Gelfand resolution, J. Alg. (1977), 49: 496–511.MATHCrossRefMathSciNetGoogle Scholar
  41. [41]
    S. Merkulov, A conformally invariant theory of gravitation and electromagnetism, Class. Quantum Gravity (1984), 1: 349–354.CrossRefMathSciNetGoogle Scholar
  42. [42]
    R. Penrose AND W. Rindler, Wolfgang, Spinors and space-time, Vol 1 and Vol. 2. Spinor and twistor methods in space-time geometry, Cambridge Monographs on Mathematical Physics Cambridge University Press, Cambridge, 1987, 1988, x+458pp, x+501 pp.Google Scholar
  43. [43]
    U. Semmelmann, Conformal Killing forms on Riemannian manifolds, Math. Z. (2003), 245: 503–527.MATHCrossRefMathSciNetGoogle Scholar
  44. [44]
    D.C. Spencer, Overdetermined systems of linear partial differential equations, Bull. Amer. Math. Soc. (1969), 75: 179–239.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • A. Rod Gover
    • 1
  1. 1.Department of MathematicsUniversity of AucklandAucklandNew Zealand

Personalised recommendations