History and Development of Speech Recognition



Speech is the primary means of communication between humans. For reasons ranging from technological curiosity about the mechanisms for mechanical realization of human speech capabilities to the desire to automate simple tasks which necessitate human–machine interactions, research in automatic speech recognition by machines has attracted a great deal of attention for five decades.


Speech Recognition Automatic Speech Recognition Dynamic Time Warping Speech Recognition System Spontaneous Speech 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Allen, J. (2002). From Lord Rayleigh to Shannon: How do we decode speech? In: Proc. IEEE Int. Conf. on Acoustics, Speech, Signal Processing, Orlando, FL, http://www.auditorymodels.org/jba/PAPERS/ICASSP/Plenary_Allen.asp.html.
  2. 2.
    ATIS Technical Reports (1995). Proc. ARPA Spoken Language Systems Technology Workshop, Austin, TX, 241–280.Google Scholar
  3. 3.
    Beek, B., Neuberg, E., Hodge, D. (1977). An assessment of the technology of automatic speech recognition for military applications. IEEE Trans. Acoust., Speech, Signal Process., 25, 310–322.CrossRefGoogle Scholar
  4. 4.
    Bridle, J. S., Brown, M. D. (1979). Connected word recognition using whole word templates. In: Proc. Inst. Acoustics Autumn Conf., 25–28.Google Scholar
  5. 5.
    Chou, W. (2003). Minimum classification error (MCE) approach in pattern recognition. Chou, W., Juang, B.-H. (eds) Pattern Recognition in Speech and Language Processing. CRC Press, New York, 1–49.CrossRefGoogle Scholar
  6. 6.
    Chow, Y. L., Dunham, M. O., Kimball, O. A. (1987). BYBLOS, the BBN continuous speech recognition system. In: Proc. IEEE Int. Conf. on Acoustics, Speech, Signal Processing, Dallas, TX, 89–92.Google Scholar
  7. 7.
    Davis, K. H., Biddulph, R., Balashek, S. (1952). Automatic recognition of spoken digits. J. Acoust. Soc. Am., 24 (6), 637–642.CrossRefGoogle Scholar
  8. 8.
    Ferguson, J. (ed) (1980). Hidden Markov Models for Speech. IDA, Princeton, NJ.Google Scholar
  9. 9.
    Forgie, J. W., Forgie, C. D. (1959). Results obtained from a vowel recognition computer program. J. Acoust. Soc. Am., 31 (11), 1480–1489.CrossRefGoogle Scholar
  10. 10.
    Fry, D. B., Denes, P. (1959). Theoretical aspects of mechanical speech recognition. The design and operation of the mechanical speech recognizer at University College London. J. British Inst. Radio Eng., 19 (4), 211–229.Google Scholar
  11. 11.
    Furui, S. (1986). Speaker independent isolated word recognition using dynamic features of speech spectrum. IEEE Trans. Acoust., Speech, Signal Process., 34, 52–59.CrossRefGoogle Scholar
  12. 12.
    Furui, S. (2004). Speech-to-text and speech-to-speech summarization of spontaneous speech. IEEE Trans. Speech Audio Process., 12, 401–408.CrossRefGoogle Scholar
  13. 13.
    Furui, S. (2004). Fifty years of progress in speech and speaker recognition. In: Proc. 148th Acoustical Society of America Meeting, San Diego, CA, 2497.Google Scholar
  14. 14.
    Furui, S. (2005). Recent progress in corpus-based spontaneous speech recognition. IEICE Trans. Inf. Syst., E88-D (3), 366–375.CrossRefGoogle Scholar
  15. 15.
    Gales, M. J. F., Young, S. J. (1993). Parallel model combination for speech recognition in noise. Technical Report, CUED/F-INFENG/TR135.Google Scholar
  16. 16.
    Itakura, F. (1975). Minimum prediction residual applied to speech recognition. IEEE Trans. Acoust., Speech, Signal Process., 23, 67–72.CrossRefGoogle Scholar
  17. 17.
    Jelinek, F. (1985). The development of an experimental discrete dictation recognizer. Proc. IEEE, 73 (11), 1616–1624.CrossRefGoogle Scholar
  18. 18.
    Jelinek, F., Bahl, L., Mercer, R. (1975). Design of a linguistic statistical decoder for the recognition of continuous speech. IEEE Trans. Inf. Theory, 21, 250–256.MATHCrossRefGoogle Scholar
  19. 19.
    Juang, B. H., Furui, S. (2000). Automatic speech recognition and understanding: A first step toward natural human-machine communication. Proc. IEEE, 88 (8), 1142–1165.CrossRefGoogle Scholar
  20. 20.
    Juang, B. H., Rabiner, L. R. (2005). Automatic speech recognition: History. Brown, K. (ed) Encyclopedia of Language and Linguistics, Second Edition, Oxford: Elsevier, New York, 11, 806–819.Google Scholar
  21. 21.
    Junqua, J. C., Haton, J. P. (1996). Robustness in Automatic Speech Recognition. Kluwer, Boston.CrossRefGoogle Scholar
  22. 22.
    Katagiri, S. (2003). Speech pattern recognition using neural networks. Chou, W., Juang, B. H. (eds) Pattern Recognition in Speech and Language Processing. CRC Press, New York, 115–147.Google Scholar
  23. 23.
    Kawahara, T., Lee, C. H., Juang, B. H. (1998). Key-phrase detection and verification for flexible speech understanding. IEEE Trans. Speech Audio Process, 6, 558–568.CrossRefGoogle Scholar
  24. 24.
    Klatt, D. (1977). Review of the ARPA speech understanding project. J. Acoust. Soc. Am., 62 (6), 1324–1366.CrossRefGoogle Scholar
  25. 25.
    Koo, M. W., Lee, C. H., Juang, B. H. (2001). Speech recognition and utterance verification based on a generalized confidence score. IEEE Trans. Speech Audio Process, 9, 821–832.CrossRefGoogle Scholar
  26. 26.
    Lee, C. H., Giachin, E., Rabiner, L. R., Pieraccini, R., Rosenberg, A. E. (1990). Acoustic modeling for large vocabulary speech recognition. Comput. Speech Lang., 4, 127–165.CrossRefGoogle Scholar
  27. 27.
    Lee, C. H., Rabiner, L. R. (1989). A frame synchronous network search algorithm for connected word recognition. IEEE Trans. Acoust., Speech, Signal Process, 37, 1649–1658.CrossRefGoogle Scholar
  28. 28.
    Lee, K. F., Hon, H., Reddy, R. (1990). An overview of the SPHINX speech recognition system. IEEE Trans. Acoust., Speech, Signal Process, 38, 600–610.Google Scholar
  29. 29.
    Leggetter, C. J., Woodland, P. C. (1995). Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models. Comput. Speech Lang., 9, 171–185.CrossRefGoogle Scholar
  30. 30.
    Lippmann, R. P. (1987). An introduction to computing with neural nets. IEEE ASSP Mag., 4 (2), 4–22.CrossRefGoogle Scholar
  31. 31.
    Lippmann, R. P. (1997). Speech recognition by machines and humans. Speech Communication, 22, 1–15.CrossRefGoogle Scholar
  32. 32.
    Liu, Y., Shriberg, E., Stolcke, A., Peskin, B., Ang, J., Hillard, D., Ostendorf, M., Tomalin, M., Woodland, P. C., Harper, M. (2005). Structural metadata research in the EARS program. In: Proc. IEEE Int. Conf. on Acoustics, Speech, Signal Processing, Montreal, Canada, V, 957–960.Google Scholar
  33. 33.
    Lowerre, B. (1980). The HARPY speech understanding system. Lea, W (ed) Trends in Speech Recognition. Prentice Hall, NJ, 576–586.Google Scholar
  34. 34.
    Martin, T. B., Nelson, A. L., Zadell, H. J. (1964). Speech recognition by feature abstraction techniques. Technical Report AL-TDR-64-176, Air Force Avionics Lab.Google Scholar
  35. 35.
    Moore, R. C. (1997). Using natural-language knowledge sources in speech recognition. Ponting, K. (ed) Computational Models of Speech Pattern Processing. Springer, Berlin, 304–327.Google Scholar
  36. 36.
    Myers, C. S., Rabiner, L. R. (1981). A level building dynamic time warping algorithm for connected word recognition. IEEE Trans. Acoust., Speech, Signal Process., 29, 284–297.MATHCrossRefGoogle Scholar
  37. 37.
    Nagata, K., Kato, Y., Chiba, S. (1963). Spoken digit recognizer for Japanese language. NEC Res. Develop., 6.Google Scholar
  38. 38.
    Olson, H. F., Belar, H. (1956). Phonetic typewriter. J. Acoust. Soc. Am., 28 (6), 1072–1081.CrossRefGoogle Scholar
  39. 39.
    Paul, D. B. (1989). The Lincoln robust continuous speech recognizer. In: Proc. IEEE Int. Conf. on Acoustics, Speech, Signal Processing, Glasgow, Scotland, 449–452.Google Scholar
  40. 40.
    Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE, 77 (2), 257–286.CrossRefGoogle Scholar
  41. 41.
    Rabiner, L. R., Juang, B. H. (1993). Fundamentals of Speech Recognition. Prentice-Hall, Englewood Cliff, NJ.Google Scholar
  42. 42.
    Rabiner, L. R., Levinson, S. E., Rosenberg, A. E. (1979). Speaker independent recognition of isolated words using clustering techniques. IEEE Trans. Acoust., Speech, Signal Process., 27, 336–349.MATHCrossRefGoogle Scholar
  43. 43.
    Reddy, D. R. (1966). An approach to computer speech recognition by direct analysis of the speech wave. Technical Report No. C549, Computer Science Department, Stanford University, Stanford.Google Scholar
  44. 44.
    Sakai, T., Doshita, S. (1962). The phonetic typewriter, information processing. In: Proc. IFIP Congress, Munich.Google Scholar
  45. 45.
    Sakoe, H. (1979). Two level DP matching – a dynamic programming based pattern matching algorithm for connected word recognition. IEEE Trans. Acoust., Speech, Signal Process., 27, 588–595.CrossRefGoogle Scholar
  46. 46.
    Sakoe, H., Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust., Speech, Signal Process., 26, 43–49.MATHCrossRefGoogle Scholar
  47. 47.
    Shinoda, K., Lee, C. H. (2001). A structural Bayes approach to speaker adaptation. IEEE Trans. Speech Audio Process., 9, 276–287.CrossRefGoogle Scholar
  48. 48.
    Soltau, H., Kingsbury, B., Mangu, L., Povey, D., Saon, G., Zweig, G. (2005). The IBM 2004 conversational telephone system for rich transcription. In: Proc. IEEE Int. Conf. on Acoustics, Speech, Signal Processing, Montreal, Canada, I, 205–208.Google Scholar
  49. 49.
    Suzuki, J., Nakata, K. (1961). Recognition of Japanese vowels – preliminary to the recognition of speech. J. Radio Res. Lab., 37 (8), 193–212.Google Scholar
  50. 50.
    Tappert, C., Dixon, N. R., Rabinowitz, A. S., Chapman, W. D. (1971). Automatic recognition of continuous speech utilizing dynamic segmentation, dual classification, sequential decoding and error recovery. Rome Air Dev. Cen, Rome, NY, Technical Report TR 71–146.Google Scholar
  51. 51.
    Varga, P., Moore, R. K. (1990). Hidden Markov model decomposition of speech and noise. In: Proc. IEEE Int. Conf. on Acoustics, Speech, Signal Processing, Albuquerque, New Mexico, 845–848.Google Scholar
  52. 52.
    Velichko, V. M., Zagoruyko, N. G. (1970). Automatic recognition of 200 words. Int. J. Man-Machine Studies, 2, 223–234.CrossRefGoogle Scholar
  53. 53.
    Vintsyuk, T. K. (1968). Speech discrimination by dynamic programming. Kibernetika, 4 (2), 81–88.MathSciNetGoogle Scholar
  54. 54.
    Viterbi, J. (1967). Error bounds for convolutional codes and an asymptotically optimal decoding algorithm. IEEE Trans. Inf. Theory, 13, 260–269.MATHCrossRefGoogle Scholar
  55. 55.
    Waibel, A., Hanazawa, T., Hinton, G., Shiano, K., Lang, K. (1989). Phoneme recognition using time-delay neural networks. IEEE Trans. Acoust., Speech, Signal Process., 37, 393–404.CrossRefGoogle Scholar
  56. 56.
    Weintraub, M., Murveit, H., Cohen, M., Price, P., Bernstein, J., Bell, G. (1989). Linguistic constraints in hidden Markov model based speech recognition. In: Proc. IEEE Int. Conf. on Acoustics, Speech, Signal Processing, Glasgow, Scotland, 699–702.Google Scholar
  57. 57.
    Zue, V., Glass, J., Phillips, M., Seneff, S. (1989). The MIT summit speech recognition system, a progress report. In: Proc. DARPA Speech and Natural Language Workshop, Philadelphia, PA, 179–189.Google Scholar
  58. 58.
    Zweig, G. (1998). Speech recognition with dynamic Bayesian networks. Ph.D. Thesis, University of California, Berkeley.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Computer ScienceTokyo Institute of TechnologyTokyoJapan

Personalised recommendations