Distribution of Network Generated Profit by considering Individual Profit Expectations

  • Hendrik Jähn
  • Marco Fischer
  • Tobias Teich
Part of the IFIP — The International Federation for Information Processing book series (IFIPAICT, volume 243)


In this contribution approaches for the distribution of profit within networked production structures to the different network members are introduced and discussed. In this context exact rules are indispensable for the success of a cooperation because profits are the main target of all economic activities. In this context three influencing parameters are considered: a fixed share, a value-adding-dependent share and a profit expectation dependent share whereby the last mentioned parameter represents the most important variable.


Network Member Expected Profit Sales Price Offer Price Collaborative Network 


  1. 1.
    Eisenführ F. Rationales Entscheiden. 4. Auflage. Berlin, Heidelberg, New York: Springer, 2003.CrossRefGoogle Scholar
  2. 2.
    romen B. Faire Aufteilung in Unternehmensnetzwerken. Wiesbaden: DUV, 2004.Google Scholar
  3. 3.
    Furubotn EG, Richter, R. Institutions and Economic Theory: The Contribution of the New Institutional Economics. 2nd ed. Ann Arbor: University of Michigan Press, 2005.CrossRefGoogle Scholar
  4. 4.
    Jähn H, Fischer M, Zimmermann M. An Approach for the Ascertainment of Profit Shares for Network Participants. In Collaborative Networks and their breeding Environments. Camarinha-Matos L.M. et al., eds. New York: Springer, 2005; 257–264.CrossRefGoogle Scholar
  5. 5.
    Sucky E. Koordination in Supply Chains -Spieltheoretische Ansätze zur Ermittlung integrierter Bestell-und Produktionspolitiken. Wiesbaden: DUV, 2004.Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2007

Authors and Affiliations

  • Hendrik Jähn
    • 1
  • Marco Fischer
    • 1
  • Tobias Teich
    • 2
  1. 1.Chemnitz University of TechnologyGermany
  2. 2.Zwickau University of Applied Sciences of West SaxonyGermany

Personalised recommendations