Chemical Sensor Array Response Modeling Using Quantitative Structure-Activity Relationships Technique

  • Abhijit V. Shevade
  • Margaret A. Ryan
  • Margie L. Homer
  • Hanying Zhou
  • Allison M. Manfreda
  • Liana M. Lara
  • Shiao -Pin S. Yen
  • April D. Jewell
  • Kenneth S. Manatt
  • Adam K. Kisor
Part of the Integrated Analytical Systems book series (ANASYS)


We have developed a Quantitative Structure-Activity Relationships (QSAR) based approach to correlate the response of chemical sensors in an array with molecular descriptors. A novel molecular descriptor set has been developed; this set combines descriptors of sensing film-analyte interactions, representing sensor response, with a basic analyte descriptor set commonly used in QSAR studies. The descriptors are obtained using a combination of molecular modeling tools and empirical and semi-empirical Quantitative Structure-Property Relationships (QSPR) methods. The sensors under investigation are polymer-carbon sensing films which have been exposed to analyte vapors at parts-per-million (ppm) concentrations; response is measured as change in film resistance. Statistically validated QSAR models have been developed using Genetic Function Approximations (GFA) for a sensor array for a given training data set. The applicability of the sensor response models has been tested by using it to predict the sensor activities for test analytes not considered in the training set for the model development. The validated QSAR sensor response models show good predictive ability. The QSAR approach is a promising computational tool for sensing materials evaluation and selection. It can also be used to predict response of an existing sensing film to new target analytes.


Sensor Response Sensor Array QSAR Model Isosteric Heat QSAR Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was funded by the Advanced Environmental Monitoring and Control Program of NASA. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. The authors thank Prof. Anton Hopfinger and Dr. David Rogers for their very valuable suggestions and the Caltech Material and Process Simulation center (MSC) for use of computing facilities.


  1. 1.
    Eastman, M. P.; Hughes, R. C.; Yelton, G.; Ricco, A. J.; Patel, S. V.; Jenkins, M. W., Application of the solubility parameter concept to the design of chemiresistor arrays, J. Electrochem. Soc. 1999, 146, 3907–3913CrossRefGoogle Scholar
  2. 2.
    Grate, J. W.; Patrash, S. J.; Kaganove, S. N.; Abraham, M. H.; Wise, B. M.; Gallagher, N. B., Inverse least-squares modeling of vapor descriptors using polymer-coated surface acoustic wave sensor array responses, Anal. Chem. 2001, 73, 5247–5259CrossRefGoogle Scholar
  3. 3.
    Hierlemann, A.; Zellers E. T.; Ricco, A. J., Use of linear solvation energy relationships for modeling responses from polymer-coated acoustic-wave vapor sensors, Anal. Chem. 2001, 73, 3458–3466CrossRefGoogle Scholar
  4. 4.
    Nakamura, K.; Nakamoto T.; Moriizumi, T., Prediction of QCM gas sensor responses and calculation of electrostatic contribution to sensor responses using a computational chemistry method, Mater. Sci. Eng. C 2000, 12, 3–7CrossRefGoogle Scholar
  5. 5.
    Goddard III, W. A.; Cagin, T.; Blanco, M.; Vaidehi, N.; Dasgupta, S.; Floriano, W.; Belmares, M.; Kua, J.; Zamanakos, G.; Kashihara, S.; Iotov, M.; Gao, G. H., Strategies for multiscale modeling and simulation of organic materials: polymers and biopolymers, Comput. Theo. Poly. Sci. 2001, 11, 329–343Google Scholar
  6. 6.
    Belmares, M.; Blanco, M.; Goddard III, W.A; Ross, R. B.; Caldwell, G.; Chou, S. -H.; Pham, J.; Olofson, P. M.; Thomas, C., Hildebrand and Hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors, J. Comp. Chem. 2004, 25, 1814–1826CrossRefGoogle Scholar
  7. 7.
    Shevade, A. V.; Homer, M. L.; Taylor, C. J.; Zhou, H.; Manatt, K.; Jewell, A. D.; Kisor, A.; Yen, S. P. S.; Ryan, M. A., Correlating polymer-carbon composite sensor response with molecular descriptors, J. Electrochem. 2006, 153, H209–H216CrossRefGoogle Scholar
  8. 8.
    Ryan, M. A.; Zhou, H.; Buehler, M. G.; Manatt, K. S.; Mowrey, V. S.; Jackson, S. P.; Kisor, A. K.; Shevade, A.V.; Homer, M. L., Monitoring space shuttle air quality using the jet propulsion laboratory electronic nose, IEEE Sens. J. 2004, 4, 337–347CrossRefGoogle Scholar
  9. 9.
    Ryan, M. A.; Shevade, A. V.; Zhou H.; Homer, M. L., Polymer-carbon black composite sensors in an electronic nose for air-quality monitoring, MRS Bull. 2004, 29, 714–719CrossRefGoogle Scholar
  10. 10.
    Ryan, M. A.; Homer, M. L.; Zhou, H.; Manatt, K. S.; Manfreda, A., Toward a second generation electronic nose at JPL: sensing film optimization studies, In Proceedings of the International Conference On Environmental Systems 2001, 2001–01–2308, Orlando, FL,CrossRefGoogle Scholar
  11. 11.
    Ryan, M. A.; Homer, M. L.; Zhou, H.; Manatt, K.; Manfreda, A.; Kisor, A.; Shevade, A.; Yen, S. P. S., Expanding the analyte set of the JPL electronic nose to include inorganic species, J Aerosp SAE Trans, 2005, 114, 225–232Google Scholar
  12. 12.
    Ryan, M. A.; Homer, M. L.; Zhou, H.; Manatt, K.; Manfreda, A.; Kisor, A.; Shevade, A.; Yen, S. P. S., Expanding the capabilities of the JPL Electronic nose for an international space station technology demonstration, In Proceedings of the 36th International Conference on Environmental Systems, Arlington, VA, 2006 CrossRefGoogle Scholar
  13. 13.
    Shevade, A. V.; Ryan, M. A.; Taylor, C. J.; Homer, M. L.; Jewell, A. D.; Kisor, A. K.; Manatt, K. S.; Yen, S. -P. S., Development of the third generation JPL electronic nose for international space station technology demonstration, In Proceedings of International Conference on Environmental Systems, Chicago, IL, 2007 CrossRefGoogle Scholar
  14. 14.
    Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Kisor A. K.; Manatt, K. S., Off-gassing and particle release by heated polymeric materials, In Proceedings of 38th International Conference on Environmental Systems, San Francisco, CA, 2008 CrossRefGoogle Scholar
  15. 15.
    Ryan, M. A.; Shevade, A. V.; Kisor, A. K.; Manatt, K. S.; Homer, M. L.; Lara, L. M.; Zhou, H., Ground validation of the third generation JPL electronic nose, In Proceedings of 38th International Conference on Environmental Systems, San Francisco CA, 2008 CrossRefGoogle Scholar
  16. 16.
    Homer, M. L.; Lim, J. R.; Manatt, K.; Kisor, A.; Lara, L.; Jewell, A. D.; Shevade, A. V.; Ryan, M. A., Using temperature effects on polymer-composite sensor arrays to identify analytes, Proc. IEEE Sens. 2003, 1, 144–147Google Scholar
  17. 17.
    Homer, M. L.; Lim, J. R.; Manatt, K.; Kisor, A.; Manfreda, A. M.; Lara, L.; Jewell, A. D.; Yen, S. -P. S.; Zhou, H.; Shevade, A. V.; Ryan, M.A., Temperature effects on polymer-carbon composite sensors: evaluating the role of polymer molecular weight and carbon loading, Proc. IEEE Sens. 2003, 2, 877–881Google Scholar
  18. 18.
    Manfreda, A. M., Elucidating Humidity Dependence of the Jet Propulsion Laboratory's Electronic Nose Polymer-Carbon Composite Sensors, Research report submitted to the California State Polytechnic University – Pomona 2002 Google Scholar
  19. 19.
    Zhou, H., Homer, M. L., Shevade, A. V., Ryan, M. A., Nonlinear least-squares based method for identifying and quantifying single and mixed contaminants in air with an electronic nose, Sensors 2006, 6, 1–18CrossRefGoogle Scholar
  20. 20.
    Liu, J. Z.; Hopfinger, A. J., Identification of possible sources of nanotoxicity from carbon nanotubes inserted into membrane bilayers using membrane interaction quantitative structure-activity relationship analysis, Chem. Res. Toxicol. 2008, 21, 459–466CrossRefGoogle Scholar
  21. 21.
    Kurup, A.; Mekapati, S. B.; Garg R.; Hansch, C., HIV-1 protease inhibitors: A comparative QSAR analysis, Current Med. Chem. 2003, 10, 1679–1688CrossRefGoogle Scholar
  22. 22.
    Raymond, J. W.; Rogers, T. N.; Shonnard, D. R.; Kline, A., A review of structure-based biodegradation estimation methods, J. Hazard. Mater. 2001, 84, 189–215CrossRefGoogle Scholar
  23. 23.
    Perkins, R.; Fang, H.; Tong, W. D.; Welsh, W., Quantitative structure-activity relationship methods: Perspectives on drug discovery and toxicology, Environ. Toxicol. Chem. 2003, 22, 1666–1679CrossRefGoogle Scholar
  24. 24.
    Rogers, D.; Hopfinger, A. J., Application of genetic of function approximation to quantitative structure-activity relationships and quantitative structure-property relationships, J. Chem. Inf. Comp. Sci. 1994, 34, 854–866CrossRefGoogle Scholar
  25. 25.
    Brocchini, S.; James, K.; Tangpasuthadol, V.; Kohn, J., Structure-property correlations in a combinatorial library of degradable biomaterials, J. Biomed. Mat. Res. 1998, 42, 66–75CrossRefGoogle Scholar
  26. 26.
    Smith, J. R.; Seyda, A.; Weber, N.; Knight, D.; Abramson, S.; Kohn, J., Integration of combinatorial synthesis, rapid screening, and computational modeling in biomaterials development, Macromol. Rapid Comm. 2004, 25, 127–140CrossRefGoogle Scholar
  27. 27.
    Abramson, S. D.; Alexe, G.; Hammer, P. L.; Kohn, J., A computational approach to predicting cell growth on polymeric biomaterials, J. Biomed. Mat. Res. Part A 2005, 73A, 116–124CrossRefGoogle Scholar
  28. 28.
    Livingstone, D., Data Analysis for Chemists, Oxford University Press, New York 1995 Google Scholar
  29. 29.
    van Krevelen, D. W., Properties of Polymers: Their Correlation with Chemical Structure; their Numerical Estimation and Prediction from Group Contributions, Elsevier, New York, 1990 Google Scholar
  30. 30.
    Severin, E. J.; Lewis, N. S., Relationships among resonant frequency changes on a coated quartz crystal microbalance, thickness changes, and resistance responses of polymer-carbon black composite chemiresistors, Anal. Chem. 2000, 72, 2008–2015CrossRefGoogle Scholar
  31. 31.
    Blanco, M., Molecular silverware 1. General solutions to excluded volume constrained problems, J. Comput. Chem 1991, 12, 237–247CrossRefGoogle Scholar
  32. 32.
    Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Zhou, H.; Manatt, K., Molecular modeling of polymer composite-analyte interactions in electronic nose sensors, Sens. Actuat. B: Chem. 2003, 93, 84–91CrossRefGoogle Scholar
  33. 33.
    Cerius2 v 4.2, Accelrys Inc., San Diego, CAGoogle Scholar
  34. 34.
    Berendsen, H. J. C, et al., Intermolecular Forces; Pullman, B., Ed.; Reidel, Dordrecht, Holland, 1981, 331Google Scholar
  35. 35.
    Rappe, A. K.; Goddard, W.A., Charge equilibration for Molecular-dynamics simulations, J. Phys. Chem. 1991, 95, 3358–3363CrossRefGoogle Scholar
  36. 36.
    Mayo, S. L.; Olafson, B. D.; Goddard, W. A., Dreiding A. generic force-field for molecular simulations, J. Phys. Chem. 1990, 94, 8897–8909CrossRefGoogle Scholar
  37. 37.
    Steele, W. A., The Interaction of Gases with Solids Surfaces, Clarendon Press, Oxford, 1974 Google Scholar
  38. 38.
    Siperstein, F. R.; Myers, A. L., Mixed-gas adsorption, AIChE J 2001, 47, 1141–1159CrossRefGoogle Scholar
  39. 39.
    Grate, J. W.; Kaganove, S. N.; Bhethanabotla, V. R., Comparisons of polymer/gas partition coefficients calculated from responses of thickness shear mode and surface acoustic wave vapor sensors, Anal. Chem. 1998, 70, 199–203CrossRefGoogle Scholar
  40. 40.
    Grate, J. W.; Abraham, M. H.; Du, C. M.; Mcgill, R. A.; Shuely, W. J., Examination of vapor sorption by fullerene, fullerene-coated surface-acoustic-wave sensors, graphite, and low-polarity polymers using linear solvation energy relationships Langmuir 1995, 11, 2125–2130CrossRefGoogle Scholar
  41. 41.
    Severin, E. J.; Doleman, B. J.; Lewis, N. S., An investigation of the concentration dependence and response to analyte mixtures of carbon black/insulating organic polymer composite vapor detectors, Anal. Chem. 2000, 72, 658–668CrossRefGoogle Scholar
  42. 42.
    Doleman, B. J.; Severin, E. J.; Lewis, N. S., Trends in odor intensity for human and electronic noses: Relative roles of odorant vapor pressure vs. molecularly specific odorant binding, Proc. Nat. Acad. Sci. 1998, 95, 5442–5447CrossRefGoogle Scholar
  43. 43.
    Lonergan, M. C.; Severin, E. J.; Doleman, B. J.; Beaber, S. A.; Grubbs, R. H.; Lewis, N. S., Array-based vapor sensing using chemically sensitive, carbon black-polymer resistors, Anal. Chem. 1996, 8, 2298–2312Google Scholar
  44. 44.
    Janghorbani, M.; Freund, H., Application of a piezoelectric quartz crystal as a partition detector-development of digital sensor, Anal. Chem. 1973, 45, 325–332CrossRefGoogle Scholar
  45. 45.
    National Institute of Standards and Technology (NIST)/TRC Vapor Pressure Database, version 2001 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Abhijit V. Shevade
    • 1
  • Margaret A. Ryan
    • 1
  • Margie L. Homer
    • 1
  • Hanying Zhou
    • 1
  • Allison M. Manfreda
    • 1
  • Liana M. Lara
  • Shiao -Pin S. Yen
    • 1
  • April D. Jewell
  • Kenneth S. Manatt
    • 1
  • Adam K. Kisor
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations