Skip to main content

Chemical Sensor Array Response Modeling Using Quantitative Structure-Activity Relationships Technique

  • Chapter
  • First Online:
Computational Methods for Sensor Material Selection

Abstract

We have developed a Quantitative Structure-Activity Relationships (QSAR) based approach to correlate the response of chemical sensors in an array with molecular descriptors. A novel molecular descriptor set has been developed; this set combines descriptors of sensing film-analyte interactions, representing sensor response, with a basic analyte descriptor set commonly used in QSAR studies. The descriptors are obtained using a combination of molecular modeling tools and empirical and semi-empirical Quantitative Structure-Property Relationships (QSPR) methods. The sensors under investigation are polymer-carbon sensing films which have been exposed to analyte vapors at parts-per-million (ppm) concentrations; response is measured as change in film resistance. Statistically validated QSAR models have been developed using Genetic Function Approximations (GFA) for a sensor array for a given training data set. The applicability of the sensor response models has been tested by using it to predict the sensor activities for test analytes not considered in the training set for the model development. The validated QSAR sensor response models show good predictive ability. The QSAR approach is a promising computational tool for sensing materials evaluation and selection. It can also be used to predict response of an existing sensing film to new target analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eastman, M. P.; Hughes, R. C.; Yelton, G.; Ricco, A. J.; Patel, S. V.; Jenkins, M. W., Application of the solubility parameter concept to the design of chemiresistor arrays, J. Electrochem. Soc. 1999, 146, 3907–3913

    Article  CAS  Google Scholar 

  2. Grate, J. W.; Patrash, S. J.; Kaganove, S. N.; Abraham, M. H.; Wise, B. M.; Gallagher, N. B., Inverse least-squares modeling of vapor descriptors using polymer-coated surface acoustic wave sensor array responses, Anal. Chem. 2001, 73, 5247–5259

    Article  CAS  Google Scholar 

  3. Hierlemann, A.; Zellers E. T.; Ricco, A. J., Use of linear solvation energy relationships for modeling responses from polymer-coated acoustic-wave vapor sensors, Anal. Chem. 2001, 73, 3458–3466

    Article  CAS  Google Scholar 

  4. Nakamura, K.; Nakamoto T.; Moriizumi, T., Prediction of QCM gas sensor responses and calculation of electrostatic contribution to sensor responses using a computational chemistry method, Mater. Sci. Eng. C 2000, 12, 3–7

    Article  Google Scholar 

  5. Goddard III, W. A.; Cagin, T.; Blanco, M.; Vaidehi, N.; Dasgupta, S.; Floriano, W.; Belmares, M.; Kua, J.; Zamanakos, G.; Kashihara, S.; Iotov, M.; Gao, G. H., Strategies for multiscale modeling and simulation of organic materials: polymers and biopolymers, Comput. Theo. Poly. Sci. 2001, 11, 329–343

    CAS  Google Scholar 

  6. Belmares, M.; Blanco, M.; Goddard III, W.A; Ross, R. B.; Caldwell, G.; Chou, S. -H.; Pham, J.; Olofson, P. M.; Thomas, C., Hildebrand and Hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors, J. Comp. Chem. 2004, 25, 1814–1826

    Article  CAS  Google Scholar 

  7. Shevade, A. V.; Homer, M. L.; Taylor, C. J.; Zhou, H.; Manatt, K.; Jewell, A. D.; Kisor, A.; Yen, S. P. S.; Ryan, M. A., Correlating polymer-carbon composite sensor response with molecular descriptors, J. Electrochem. 2006, 153, H209–H216

    Article  CAS  Google Scholar 

  8. Ryan, M. A.; Zhou, H.; Buehler, M. G.; Manatt, K. S.; Mowrey, V. S.; Jackson, S. P.; Kisor, A. K.; Shevade, A.V.; Homer, M. L., Monitoring space shuttle air quality using the jet propulsion laboratory electronic nose, IEEE Sens. J. 2004, 4, 337–347

    Article  CAS  Google Scholar 

  9. Ryan, M. A.; Shevade, A. V.; Zhou H.; Homer, M. L., Polymer-carbon black composite sensors in an electronic nose for air-quality monitoring, MRS Bull. 2004, 29, 714–719

    Article  CAS  Google Scholar 

  10. Ryan, M. A.; Homer, M. L.; Zhou, H.; Manatt, K. S.; Manfreda, A., Toward a second generation electronic nose at JPL: sensing film optimization studies, In Proceedings of the International Conference On Environmental Systems 2001, 2001–01–2308, Orlando, FL,

    Book  Google Scholar 

  11. Ryan, M. A.; Homer, M. L.; Zhou, H.; Manatt, K.; Manfreda, A.; Kisor, A.; Shevade, A.; Yen, S. P. S., Expanding the analyte set of the JPL electronic nose to include inorganic species, J Aerosp SAE Trans, 2005, 114, 225–232

    Google Scholar 

  12. Ryan, M. A.; Homer, M. L.; Zhou, H.; Manatt, K.; Manfreda, A.; Kisor, A.; Shevade, A.; Yen, S. P. S., Expanding the capabilities of the JPL Electronic nose for an international space station technology demonstration, In Proceedings of the 36th International Conference on Environmental Systems, Arlington, VA, 2006

    Book  Google Scholar 

  13. Shevade, A. V.; Ryan, M. A.; Taylor, C. J.; Homer, M. L.; Jewell, A. D.; Kisor, A. K.; Manatt, K. S.; Yen, S. -P. S., Development of the third generation JPL electronic nose for international space station technology demonstration, In Proceedings of International Conference on Environmental Systems, Chicago, IL, 2007

    Book  Google Scholar 

  14. Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Kisor A. K.; Manatt, K. S., Off-gassing and particle release by heated polymeric materials, In Proceedings of 38th International Conference on Environmental Systems, San Francisco, CA, 2008

    Book  Google Scholar 

  15. Ryan, M. A.; Shevade, A. V.; Kisor, A. K.; Manatt, K. S.; Homer, M. L.; Lara, L. M.; Zhou, H., Ground validation of the third generation JPL electronic nose, In Proceedings of 38th International Conference on Environmental Systems, San Francisco CA, 2008

    Book  Google Scholar 

  16. Homer, M. L.; Lim, J. R.; Manatt, K.; Kisor, A.; Lara, L.; Jewell, A. D.; Shevade, A. V.; Ryan, M. A., Using temperature effects on polymer-composite sensor arrays to identify analytes, Proc. IEEE Sens. 2003, 1, 144–147

    CAS  Google Scholar 

  17. Homer, M. L.; Lim, J. R.; Manatt, K.; Kisor, A.; Manfreda, A. M.; Lara, L.; Jewell, A. D.; Yen, S. -P. S.; Zhou, H.; Shevade, A. V.; Ryan, M.A., Temperature effects on polymer-carbon composite sensors: evaluating the role of polymer molecular weight and carbon loading, Proc. IEEE Sens. 2003, 2, 877–881

    CAS  Google Scholar 

  18. Manfreda, A. M., Elucidating Humidity Dependence of the Jet Propulsion Laboratory's Electronic Nose Polymer-Carbon Composite Sensors, Research report submitted to the California State Polytechnic University – Pomona 2002

    Google Scholar 

  19. Zhou, H., Homer, M. L., Shevade, A. V., Ryan, M. A., Nonlinear least-squares based method for identifying and quantifying single and mixed contaminants in air with an electronic nose, Sensors 2006, 6, 1–18

    Article  CAS  Google Scholar 

  20. Liu, J. Z.; Hopfinger, A. J., Identification of possible sources of nanotoxicity from carbon nanotubes inserted into membrane bilayers using membrane interaction quantitative structure-activity relationship analysis, Chem. Res. Toxicol. 2008, 21, 459–466

    Article  CAS  Google Scholar 

  21. Kurup, A.; Mekapati, S. B.; Garg R.; Hansch, C., HIV-1 protease inhibitors: A comparative QSAR analysis, Current Med. Chem. 2003, 10, 1679–1688

    Article  CAS  Google Scholar 

  22. Raymond, J. W.; Rogers, T. N.; Shonnard, D. R.; Kline, A., A review of structure-based biodegradation estimation methods, J. Hazard. Mater. 2001, 84, 189–215

    Article  CAS  Google Scholar 

  23. Perkins, R.; Fang, H.; Tong, W. D.; Welsh, W., Quantitative structure-activity relationship methods: Perspectives on drug discovery and toxicology, Environ. Toxicol. Chem. 2003, 22, 1666–1679

    Article  CAS  Google Scholar 

  24. Rogers, D.; Hopfinger, A. J., Application of genetic of function approximation to quantitative structure-activity relationships and quantitative structure-property relationships, J. Chem. Inf. Comp. Sci. 1994, 34, 854–866

    Article  CAS  Google Scholar 

  25. Brocchini, S.; James, K.; Tangpasuthadol, V.; Kohn, J., Structure-property correlations in a combinatorial library of degradable biomaterials, J. Biomed. Mat. Res. 1998, 42, 66–75

    Article  CAS  Google Scholar 

  26. Smith, J. R.; Seyda, A.; Weber, N.; Knight, D.; Abramson, S.; Kohn, J., Integration of combinatorial synthesis, rapid screening, and computational modeling in biomaterials development, Macromol. Rapid Comm. 2004, 25, 127–140

    Article  CAS  Google Scholar 

  27. Abramson, S. D.; Alexe, G.; Hammer, P. L.; Kohn, J., A computational approach to predicting cell growth on polymeric biomaterials, J. Biomed. Mat. Res. Part A 2005, 73A, 116–124

    Article  CAS  Google Scholar 

  28. Livingstone, D., Data Analysis for Chemists, Oxford University Press, New York 1995

    Google Scholar 

  29. van Krevelen, D. W., Properties of Polymers: Their Correlation with Chemical Structure; their Numerical Estimation and Prediction from Group Contributions, Elsevier, New York, 1990

    Google Scholar 

  30. Severin, E. J.; Lewis, N. S., Relationships among resonant frequency changes on a coated quartz crystal microbalance, thickness changes, and resistance responses of polymer-carbon black composite chemiresistors, Anal. Chem. 2000, 72, 2008–2015

    Article  CAS  Google Scholar 

  31. Blanco, M., Molecular silverware 1. General solutions to excluded volume constrained problems, J. Comput. Chem 1991, 12, 237–247

    Article  CAS  Google Scholar 

  32. Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Zhou, H.; Manatt, K., Molecular modeling of polymer composite-analyte interactions in electronic nose sensors, Sens. Actuat. B: Chem. 2003, 93, 84–91

    Article  CAS  Google Scholar 

  33. Cerius2 v 4.2, Accelrys Inc., San Diego, CA

    Google Scholar 

  34. Berendsen, H. J. C, et al., Intermolecular Forces; Pullman, B., Ed.; Reidel, Dordrecht, Holland, 1981, 331

    Google Scholar 

  35. Rappe, A. K.; Goddard, W.A., Charge equilibration for Molecular-dynamics simulations, J. Phys. Chem. 1991, 95, 3358–3363

    Article  CAS  Google Scholar 

  36. Mayo, S. L.; Olafson, B. D.; Goddard, W. A., Dreiding A. generic force-field for molecular simulations, J. Phys. Chem. 1990, 94, 8897–8909

    Article  CAS  Google Scholar 

  37. Steele, W. A., The Interaction of Gases with Solids Surfaces, Clarendon Press, Oxford, 1974

    Google Scholar 

  38. Siperstein, F. R.; Myers, A. L., Mixed-gas adsorption, AIChE J 2001, 47, 1141–1159

    Article  CAS  Google Scholar 

  39. Grate, J. W.; Kaganove, S. N.; Bhethanabotla, V. R., Comparisons of polymer/gas partition coefficients calculated from responses of thickness shear mode and surface acoustic wave vapor sensors, Anal. Chem. 1998, 70, 199–203

    Article  CAS  Google Scholar 

  40. Grate, J. W.; Abraham, M. H.; Du, C. M.; Mcgill, R. A.; Shuely, W. J., Examination of vapor sorption by fullerene, fullerene-coated surface-acoustic-wave sensors, graphite, and low-polarity polymers using linear solvation energy relationships Langmuir 1995, 11, 2125–2130

    Article  CAS  Google Scholar 

  41. Severin, E. J.; Doleman, B. J.; Lewis, N. S., An investigation of the concentration dependence and response to analyte mixtures of carbon black/insulating organic polymer composite vapor detectors, Anal. Chem. 2000, 72, 658–668

    Article  CAS  Google Scholar 

  42. Doleman, B. J.; Severin, E. J.; Lewis, N. S., Trends in odor intensity for human and electronic noses: Relative roles of odorant vapor pressure vs. molecularly specific odorant binding, Proc. Nat. Acad. Sci. 1998, 95, 5442–5447

    Article  CAS  Google Scholar 

  43. Lonergan, M. C.; Severin, E. J.; Doleman, B. J.; Beaber, S. A.; Grubbs, R. H.; Lewis, N. S., Array-based vapor sensing using chemically sensitive, carbon black-polymer resistors, Anal. Chem. 1996, 8, 2298–2312

    CAS  Google Scholar 

  44. Janghorbani, M.; Freund, H., Application of a piezoelectric quartz crystal as a partition detector-development of digital sensor, Anal. Chem. 1973, 45, 325–332

    Article  CAS  Google Scholar 

  45. National Institute of Standards and Technology (NIST)/TRC Vapor Pressure Database, version 2001

    Google Scholar 

Download references

Acknowledgments

This research was funded by the Advanced Environmental Monitoring and Control Program of NASA. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. The authors thank Prof. Anton Hopfinger and Dr. David Rogers for their very valuable suggestions and the Caltech Material and Process Simulation center (MSC) for use of computing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit V. Shevade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shevade, A.V. et al. (2009). Chemical Sensor Array Response Modeling Using Quantitative Structure-Activity Relationships Technique. In: Ryan, M., Shevade, A., Taylor, C., Homer, M., Blanco, M., Stetter, J. (eds) Computational Methods for Sensor Material Selection. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73715-7_8

Download citation

Publish with us

Policies and ethics