Skip to main content

Development of New Sensing Materials Using Combinatorial and High-Throughput Experimentation

  • Chapter
  • First Online:
Computational Methods for Sensor Material Selection

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 1024 Accesses

Abstract

New sensors with improved performance characteristics are needed for applications as diverse as bedside continuous monitoring, tracking of environmental pollutants, monitoring of food and water quality, monitoring of chemical processes, and safety in industrial, consumer, and automotive settings. Typical requirements in sensor improvement are selectivity, long-term stability, sensitivity, response time, reversibility, and reproducibility. Design of new sensing materials is the important cornerstone in the effort to develop new sensors. Often, sensing materials are too complex to predict their performance quantitatively in the design stage. Thus, combinatorial and high-throughput experimentation methodologies provide an opportunity to generate new required data to discover new sensing materials and/or to optimize existing material compositions. The goal of this chapter is to provide an overview of the key concepts of experimental development of sensing materials using combinatorial and high-throughput experimentation tools, and to promote additional fruitful interactions between computational scientists and experimentalists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buhlmann, K.; Schlatt, B.; Cammann, K.; Shulga, A., Plasticised polymeric electrolytes: New extremely versatile receptor materials for gas sensors (VOC monitoring) and electronic noses (odour identification:discrimination), Sens. Actuators B. 1998, 49, 156–165

    Google Scholar 

  2. Walt, D. R.; Dickinson, T.; White, J.; Kauer, J.; Johnson, S.; Engelhardt, H.; Sutter, J.; Jurs, P., Optical sensor arrays for odor recognition, Biosens. Bioelectron. 1998, 13, 697–699

    CAS  Google Scholar 

  3. Conway, V. L.; Hassen, K. P.; Zhang, L.; Seitz, W. R.; Gross, T. S., The influence of composition on the properties of pH-swellable polymers for chemical sensors, Sens. Actuators B. 1997, 45, 1–9

    Google Scholar 

  4. Potyrailo, R. A.; Mirsky, V. M., Combinatorial and high-throughput development of sensing materials: The first ten years, Chem. Rev. 2008, 108, 770–813

    CAS  Google Scholar 

  5. Lundström, I.; Sundgren, H.; Winquist, F.; Eriksson, M.; Krantz-Rülcker, C.; Lloyd-Spetz, A., Twenty-five years of field effect gas sensor research in Linköping, Sens. Actuators B. 2007, 121, 247–262

    Google Scholar 

  6. Dickinson, T. A.; Walt, D. R.; White, J.; Kauer, J. S., Generating sensor diversity through combinatorial polymer synthesis, Anal. Chem. 1997, 69, 3413–3418

    CAS  Google Scholar 

  7. Cho, E. J.; Tao, Z.; Tang, Y.; Tehan, E. C.; Bright, F. V.; Hicks, W. L., Jr.; Gardella, J. A., Jr.; Hard, R., Tools to rapidly produce and screen biodegradable polymer and sol-gel-derived xerogel formulations, Appl. Spectrosc. 2002, 56, 1385–1389

    CAS  Google Scholar 

  8. Apostolidis, A.; Klimant, I.; Andrzejewski, D.; Wolfbeis, O. S., A combinatorial approach for development of materials for optical sensing of gases, J. Comb. Chem. 2004, 6, 325–331

    CAS  Google Scholar 

  9. Simon, U.; Sanders, D.; Jockel, J.; Heppel, C.; Brinz, T., Design strategies for multielectrode arrays applicable for high-throughput impedance spectroscopy on novel gas sensor materials, J. Comb. Chem. 2002, 4, 511–515

    CAS  Google Scholar 

  10. Frantzen, A.; Scheidtmann, J.; Frenzer, G.; Maier, W. F.; Jockel, J.; Brinz, T.; Sanders, D.; Simon, U., High-throughput method for the impedance spectroscopic characterization of resistive gas sensors, Angew. Chem. Int. Ed. 2004, 43, 752–754

    CAS  Google Scholar 

  11. Mirsky, V. M.; Kulikov, V.; Hao, Q.; Wolfbeis, O. S., Multiparameter high-throughput characterization of combinatorial chemical microarrays of chemosensitive polymers, Macromol. Rapid Commun. 2004, 25, 253–258

    CAS  Google Scholar 

  12. Potyrailo, R. A.; Mirsky, V. M., Eds., Combinatorial Methods for Chemical and Biological Sensors; Springer, New York, NY, 2009

    Google Scholar 

  13. Njagi, J.; Warner, J.; Andreescu, S., A bioanalytical chemistry experiment for undergraduate students: Biosensors based on metal nanoparticles, J. Chem. Educ. 2007, 84, 1180–1182

    CAS  Google Scholar 

  14. Shtoyko, T.; Zudans, I.; Seliskar, C. J.; Heineman, W. R.; Richardson, J. N., An attenuated total reflectance sensor for copper: An experiment for analytical or physical chemistry, J. Chem. Educ. 2004, 81, 1617–1619

    CAS  Google Scholar 

  15. Honeybourne, C. L., Organic vapor sensors for food quality assessment, J. Chem. Educ. 2000, 77, 338–344

    CAS  Google Scholar 

  16. Newnham, R. E., Structure-property relationships in sensors, Cryst. Rev. 1988, 1, 253–280

    Google Scholar 

  17. Akporiaye, D. E., Towards a rational synthesis of large-pore zeolite-type materials? Angew. Chem. Int. Ed. 1998, 37, 2456–2457

    CAS  Google Scholar 

  18. Ulmer II, C. W.; Smith, D. A.; Sumpter, B. G.; Noid, D. I., Computational neural networks and the rational design of polymeric materials: The next generation polycarbonates, Comput. Theor. Polym. Sci. 1998, 8, 311–321

    CAS  Google Scholar 

  19. Suman, M.; Freddi, M.; Massera, C.; Ugozzoli, F.; Dalcanale, E., Rational design of cavitand receptors for mass sensors, J. Am. Chem. Soc. 2003, 125, 12068–12069

    CAS  Google Scholar 

  20. Lavigne, J. J.; Anslyn, E. V., Sensing a paradigm shift in the field of molecular recognition: From selective to differential receptors, Angew. Chem. Int. Ed. 2001, 40, 3119–3130

    Google Scholar 

  21. Hatchett, D. W.; Josowicz, M., Composites of intrinsically conducting polymers as sensing nanomaterials, Chem. Rev. 2008, 108, 746–769

    CAS  Google Scholar 

  22. Jandeleit, B.; Schaefer, D. J.; Powers, T. S.; Turner, H. W.; Weinberg, W. H., Combinatorial materials science and catalysis, Angew. Chem. Int. Ed. 1999, 38, 2494–2532

    CAS  Google Scholar 

  23. Maier, W.; Kirsten, G.; Orschel, M.; Weiß, P.-A.; Holzwarth, A.; Klein, J., Combinatorial chemistry of materials, polymers, and catalysts, In Combinatorial Approaches to Materials Development; Malhotra, R., Ed.; American Chemical Society, Washington, DC, 2002, Vol. 814, 1–21

    Google Scholar 

  24. Takeuchi, I.; Newsam, J. M.; Wille, L. T.; Koinuma, H.; Amis, E. J., Eds., Combinatorial and Artificial Intelligence Methods in Materials Science; Materials Research Society, Warrendale, PA, 2002, Vol. 700

    Google Scholar 

  25. Xiang, X.-D.; Takeuchi, I., Eds., Combinatorial Materials Synthesis; Marcel Dekker, New York, NY, 2003

    Google Scholar 

  26. Potyrailo, R. A.; Amis, E. J., Eds., High-throughput Analysis: A Tool for Combinatorial Materials Science; Kluwer Academic/Plenum Publishers, New York, NY, 2003

    Google Scholar 

  27. Koinuma, H.; Takeuchi, I., Combinatorial solid state chemistry of inorganic materials, Nat. Mater. 2004, 3, 429–438

    CAS  Google Scholar 

  28. Potyrailo, R. A.; Karim, A.; Wang, Q.; Chikyow, T., Eds., Combinatorial and Artificial Intelligence Methods in Materials Science II; Materials Research Society, Warrendale, PA, 2004, Vol. 804

    Google Scholar 

  29. Potyrailo, R. A.; Takeuchi, I., Eds., Special Feature on Combinatorial and High-Throughput Materials Research; Measurement Science Technology. 2005, Vol. 16, 316

    Google Scholar 

  30. Potyrailo, R. A.; Maier, W. F., Eds., Combinatorial and High-Throughput Discovery and Optimization of Catalysts and Materials; CRC Press, Boca Raton, FL, 2006

    Google Scholar 

  31. Potyrailo, R. A.; Chisholm, B. J.; Olson, D. R.; Brennan, M. J.; Molaison, C. A., Development of combinatorial chemistry methods for coatings: High-throughput screening of abrasion resistance of coatings libraries, Anal. Chem. 2002, 74, 5105–5111

    CAS  Google Scholar 

  32. Potyrailo, R. A.; Chisholm, B. J.; Morris, W. G.; Cawse, J. N.; Flanagan, W. P.; Hassib, L.; Molaison, C. A.; Ezbiansky, K.; Medford, G.; Reitz, H., Development of combinatorial chemistry methods for coatings: High-throughput adhesion evaluation and scale-up of combinatorial leads, J. Comb. Chem. 2003, 5, 472–478

    CAS  Google Scholar 

  33. MacLean, D.; Baldwin, J. J.; Ivanov, V. T.; Kato, Y.; Shaw, A.; Schneider, P.; Gordon, E. M., Glossary of terms used in combinatorial chemistry, J. Comb. Chem. 2000, 2, 562–578

    CAS  Google Scholar 

  34. Potyrailo, R. A.; Takeuchi, I., Role of high-throughput characterization tools in combinatorial materials science, Meas. Sci. Technol. 2005, 16, 1–4

    CAS  Google Scholar 

  35. Cohan, P. E., Combinatorial materials science applied – mini case studies, lessons and strategies, In 2002 Combi – The 4th Annual International Symposium on Combinatorial Approaches For New Materials Discovery, Knowledge Foundation, Arlington, VA, 2002

    Google Scholar 

  36. Matzger, A. J.; Lawrence, C. E.; Grubbs, R. H.; Lewis, N. S., Combinatorial approaches to the synthesis of vapor detector arrays for use in an electronic nose, J. Comb. Chem. 2000, 2, 301–304

    CAS  Google Scholar 

  37. Lu, Y.; Liu, J.; Li, J.; Bruesehoff, P. J.; Pavot, C. M.-B.; Brown, A. K., New highly sensitive and selective catalytic DNA biosensors for metal ions, Biosens. Bioelectron. 2003, 18, 529–540

    CAS  Google Scholar 

  38. Bakker, E.; Bühlmann, P.; Pretsch, E., Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics, Chem. Rev. 1997, 97, 3083–3132

    CAS  Google Scholar 

  39. Deans, R.; Kim, J.; Machacek, M. R.; Swager, T. M., A poly(p-phenyleneethynylene) with a highly emissive aggregated phase, J. Am. Chem. Soc. 2000, 122, 8565–8566

    CAS  Google Scholar 

  40. Lavastre, O.; Illitchev, I.; Jegou, G.; Dixneuf, P. H., Discovery of new fluorescent materials from fast synthesis and screening of conjugated polymers, J. Am. Chem. Soc. 2002, 124, 5278–5279

    CAS  Google Scholar 

  41. Janata, J.; Josowicz, M., Conducting polymers in electronic chemical sensors, Nat. Mater. 2002, 2, 19–24

    Google Scholar 

  42. Rege, K.; Raravikar, N. R.; Kim, D.-Y.; Schadler, L. S.; Ajayan, P. M.; Dordick, J. S., Enzyme-polymer-single walled carbon nanotube composites as biocatalytic films, Nano Lett. 2003, 3, 829–832

    CAS  Google Scholar 

  43. Zhou, Y.; Freitag, M.; Hone, J.; Staii, C.; Johnson, A. T.; Pinto, N. J.; MacDiarmid, A. G., Fabrication and electrical characterization of polyaniline-based nanofibers with diameter below 30 nm, Appl. Phys. Lett. 2003, 83, 3800–3802

    CAS  Google Scholar 

  44. Siemons, M.; Koplin, T. J.; Simon, U., Advances in high-throughput screening of gas sensing materials, Appl. Surf. Sci. 2007, 254, 669–676

    CAS  Google Scholar 

  45. Qin, L.; Zou, S.; Xue, C.; Atkinson, A.; Schatz, G. C.; Mirkin, C. A., Designing, fabricating, and imaging Raman hot spots, Proc. Natl. Acad. Sci. USA. 2006, 103, 13300–13303

    CAS  Google Scholar 

  46. Paulose, M.; Varghese, O. K.; Mor, G. K.; Grimes, C. A.; Ong, K. G., Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes, Nanotechnology. 2006, 17, 398–402

    CAS  Google Scholar 

  47. Hirsch, T.; Kettenberger, H.; Wolfbeis, O. S.; Mirsky, V. M., A simple strategy for preparation of sensor arrays: Molecularly structured monolayers as recognition elements, Chem. Commun. 2003, 3, 432–433

    Google Scholar 

  48. Hermann, T.; Patel, D. J., Adaptive recognition by nucleic acid aptamers, Science. 2000, 287, 820–825

    CAS  Google Scholar 

  49. Mirsky, V. M.; Riepl, M.; Wolfbeis, O. S., Capacitive monitoring of protein immobilization and antigen-antibody reaction on the mono-molecular films of alkylthiols adsorbed on gold electrodes, Biosens. Bioelectron. 1997, 12, 977–989

    CAS  Google Scholar 

  50. Kramer, K.; Hock, B., Antibodies for biosensors, In Ultrathin Electrochemical Chemo- and Biosensors; Mirsky, V. M., Ed.; Springer: Berlin, Germany, 2004

    Google Scholar 

  51. Birina, G. A.; Boitsov, K. A., Experimental use of combinational and factorial plans for optimizing the compositions of electronic materials, Zavodskaya Laboratoriya (in Russian). 1974, 40, 855–857

    CAS  Google Scholar 

  52. Xiang, X.-D.; Sun, X.; Briceño, G.; Lou, Y.; Wang, K.-A.; Chang, H.; Wallace-Freedman, W. G.; Chen, S.-W.; Schultz, P. G., A combinatorial approach to materials discovery, Science. 1995, 268, 1738–1740

    CAS  Google Scholar 

  53. Kennedy, K.; Stefansky, T.; Davy, G.; Zackay, V. F.; Parker, E. R., Rapid method for determining ternary-alloy phase diagrams, J. Appl. Phys. 1965, 36, 3808–3810

    CAS  Google Scholar 

  54. Hanak, J. J., The “multiple-sample concept” in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems, J. Mater. Sci. 1970, 5, 964–971

    CAS  Google Scholar 

  55. Bever, M. B.; Duwez, P. E., Gradients in composite materials, Mater. Sci. Eng. 1972, 10, 1–8

    CAS  Google Scholar 

  56. Shen, M.; Bever, M. B., Gradients in polymeric materials, J. Mater. Sci. 1972, 7, 741–746

    CAS  Google Scholar 

  57. Pompe, W.; Worch, H.; Epple, M.; Friess, W.; Gelinsky, M.; Greil, P.; Hempel, U.; Scharnweber, D.; Schulte, K., Functionally graded materials for biomedical applications, Mater. Sci. Eng. A. 2003, 362, 40–60

    Google Scholar 

  58. Hirschfeld, T.; Callis, J. B.; Kowalski, B. R., Chemical sensing in process analysis, Science. 1984, 226, 312–318

    CAS  Google Scholar 

  59. Wolfbeis, O. S., Ed., Fiber Optic Chemical Sensors and Biosensors; CRC Press, Boca Raton, FL, 1991

    Google Scholar 

  60. Taylor, R. F.; Schultz, J. S., Ed., Handbook of Chemical and Biological Sensors; IOP Publishing, Bristol, UK, 1996

    Google Scholar 

  61. Carrano, J. C.; Jeys, T.; Cousins, D.; Eversole, J.; Gillespie, J.; Healy, D.; Licata, N.; Loerop, W.; O 'Keefe, M.; Samuels, A.; Schultz, J.; Walter, M.; Wong, N.; Billotte, B.; Munley, M.; Reich, E.; Roos, J., Chemical and biological sensor standards study (CBS3), In Optically Based Biological and Chemical Sensing for Defence; Carrano, J. C.; Zukauskas, A. Eds.; SPIE – The International Society for Optical Engineering: Bellingham, WA, 2004, Vol. 5617, xi–xiii

    Google Scholar 

  62. Meyerhoff, M. E., In vivo blood-gas and electrolyte sensors: Progress and challenges, Trends Anal. Chem. 1993, 12, 257–266

    CAS  Google Scholar 

  63. Clark, K. J. R.; Furey, J., Suitability of selected single-use process monitoring and control technology, BioProcess Int. 2006, 4, S16–S20

    Google Scholar 

  64. Newman, J. D.; Turner, A. P. F., Home blood glucose biosensors: A commercial perspective, Biosens. Bioelectron. 2005, 20, 2435–2453

    CAS  Google Scholar 

  65. Pickup, J. C.; Alcock, S., Clinicians' requirements for chemical sensors for in vivo monitoring: A multinational survey, Biosens. Bioelectron. 1991, 6, 639–646

    CAS  Google Scholar 

  66. Klingvall, R.; Lundström, I.; Löfdahl, M.; Eriksson, M., A combinatorial approach for field-effect gas sensor research and development, IEEE Sens. J. 2005, 5, 995–1003

    CAS  Google Scholar 

  67. Eriksson, M.; Klingvall, R.; Lundström, I., A combinatorial method for optimization of materials for gas sensitive field-effect devices, In Combinatorial and High-Throughput Discovery and Optimization of Catalysts and Materials; Potyrailo, R. A.; Maier, W. F., Eds.; CRC Press: Boca Raton, FL, 2006, 85–95

    Google Scholar 

  68. Sysoev, V. V.; Kiselev, I.; Frietsch, M.; Goschnick, J., Temperature gradient effect on gas discrimination power of a metal-oxide thin-film sensor microarray, Sensors. 2004, 4, 37–46

    CAS  Google Scholar 

  69. Goschnick, J.; Koronczi, I.; Frietsch, M.; Kiselev, I., Water pollution recognition with the electronic nose KAMINA, Sens. Actuators B. 2005, 106, 182–186

    Google Scholar 

  70. Mazza, T.; Barborini, E.; Kholmanov, I. N.; Piseri, P.; Bongiorno, G.; Vinati, S.; Milania, P.; Ducati, C.; Cattaneo, D.; Li Bassi, A.; Bottani, C. E.; Taurino, A. M.; Siciliano, P., Libraries of cluster-assembled titania films for chemical sensing, Appl. Phys. Lett. 2005, 87, 103108

    Google Scholar 

  71. Korotcenkov, G., Gas response control through structural and chemical modification of metal oxide films: State of the art and approaches, Sens. Actuators B. 2005, 107, 209–232

    Google Scholar 

  72. Franke, M. E.; Koplin, T. J.; Simon, U., Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small 2006, 2, 36–50

    CAS  Google Scholar 

  73. Barsan, N.; Koziej, D.; Weimar, U., Metal oxide-based gas sensor research: How to? Sens. Actuators B 2007, 121, 18–35

    Google Scholar 

  74. Taylor, C. J.; Semancik, S., Use of microhotplate arrays as microdeposition substrates for materials exploration, Chem. Mater. 2002, 14, 1671–1677

    CAS  Google Scholar 

  75. Semancik, S. Correlation of chemisorption and electronic effects for metal oxide interfaces: Transducing principles for temperature programmed gas microsensors. Final technical report project number: EMSP 65421, grant number: 07-98ER62709; US Department of Energy Information Bridge: 2002, http://www.osti.gov/bridge/

  76. Semancik, S., Temperature-dependent materials research with micromachined array platforms, In Combinatorial Materials Synthesis; Xiang, X.-D.; Takeuchi, I., Eds.; Marcel Dekker, New York, NY, 2003, 263–295

    Google Scholar 

  77. Aronova, M. A.; Chang, K. S.; Takeuchi, I.; Jabs, H.; Westerheim, D.; Gonzalez-Martin, A.; Kim, J.; Lewis, B., Combinatorial libraries of semiconductor gas sensors as inorganic electronic noses, Appl. Phys. Lett. 2003, 83, 1255–1257

    CAS  Google Scholar 

  78. Simon, U.; Sanders, D.; Jockel, J.; Brinz, T., Setup for high-throughput impedance screening of gas-sensing materials, J. Comb. Chem. 2005, 7, 682–687

    CAS  Google Scholar 

  79. Sanders, D.; Simon, U., High-throughput gas sensing screening of surface-doped In2O3, J. Comb. Chem. 2007, 9, 53–61

    CAS  Google Scholar 

  80. Siemons, M.; Simon, U., Preparation and gas sensing properties of nanocrystalline la-doped CoTiO3, Sens. Actuators B. 2006, 120, 110–118

    Google Scholar 

  81. Siemons, M.; Simon, U., Gas sensing properties of volume-doped CoTiO3 synthesized via polyol method, Sens. Actuators B. 2007, 126, 595–603

    Google Scholar 

  82. Siemons, M.; Simon, U., High-throughput screening of the propylene and ethanol sensing properties of rare-earth orthoferrites and orthochromites, Sens. Actuators B. 2007, 126, 181–186

    Google Scholar 

  83. Nakagawa, M.; Okabayashi, T.; Fujimoto, T.; Utsunomiya, K.; Yamamoto, I.; Wada, T.; Yamashita, Y.; Yamashita, N., A new method for recognizing organic vapor by spectroscopic image on cataluminescence-based gas sensor, Sens. Actuators B. 1998, 51, 159–162

    Google Scholar 

  84. Nakagawa, M.; Yamashita, N., Cataluminescence-based gas sensors, Springer Ser. Chem. Sens. Biosens. 2005, 3, 93–132

    CAS  Google Scholar 

  85. Baker, B. E.; Kline, N. J.; Treado, P. J.; Natan, M. J., Solution-based assembly of metal surfaces by combinatorial methods, J. Am. Chem. Soc. 1996, 118, 8721–8722

    CAS  Google Scholar 

  86. Kahl, M.; Voges, E.; Kostrewa, S.; Viets, C.; Hill, W., Periodically structured metallic substrates for SERS, Sens. Actuators B. 1998, 51, 285–291

    Google Scholar 

  87. Han, M. S.; Lytton-Jean, A. K. R.; Oh, B.-K.; Heo, J.; Mirkin, C. A., Colorimetric screening of DNA-binding molecules with gold nanoparticle probes, Angew. Chem. Int. Ed. 2006, 45, 1807–1810

    CAS  Google Scholar 

  88. Dovidenko, K.; Potyrailo, R. A.; Grande, J., Focused ion beam microscope as an analytical tool for nanoscale characterization of gradient-formulated polymeric sensor materials, In Combinatorial Methods and Informatics in Materials Science. Materials Research Society Symposium Proceedings; Fasolka, M.; Wang, Q.; Potyrailo, R. A.; Chikyow, T.; Schubert, U. S.; Korkin, A., Eds.; Materials Research Society, Warrendale, PA, 2006, Vol. 894, 231–236

    Google Scholar 

  89. Bhat, R. R.; Genzer, J., Combinatorial study of nanoparticle dispersion in surface-grafted macromolecular gradients, Appl. Surf. Sci. 2005, 252, 2549–2554

    Google Scholar 

  90. Bhat, R. R.; Tomlinson, M. R.; Wu, T.; Genzer, J., Surface-grafted polymer gradients: Formation, characterization and applications, Adv. Polym. Sci. 2006, 198, 51–124

    CAS  Google Scholar 

  91. Bhat, R. R.; Genzer, J., Tuning the number density of nanoparticles by multivariant tailoring of attachment points on flat substrates, Nanotechnology 2007, 18, 025301

    Google Scholar 

  92. Demers, L. M.; Mirkin, C. A., Combinatorial templates generated by dip-pen nanolithography for the formation of two-dimensional particle arrays, Angew. Chem. Int. Ed. 2001, 40, 3069–3071

    CAS  Google Scholar 

  93. Ivanisevic, A.; McCumber, K. V.; Mirkin, C. A., Site-directed exchange studies with combinatorial libraries of nanostructures, J. Am. Chem. Soc. 2002, 124, 11997–12001

    CAS  Google Scholar 

  94. Potyrailo, R. A.; Leach, A. M., Gas sensor materials based on semiconductor nanocrystal/polymer composite films, In Proceedings of Transducers '05, The 13th International Conference On Solid-State Sensors, Actuators and Microsystems, Seoul, Korea, June 5–9 2005, 1292–1295

    Google Scholar 

  95. Potyrailo, R. A.; Leach, A. M., Selective gas nanosensors with multisize cdse nanocrystal/polymer composite films and dynamic pattern recognition, Appl. Phys. Lett. 2006, 88, 134110

    Google Scholar 

  96. Leach, A. M.; Potyrailo, R. A., Gas sensor materials based on semiconductor nanocrystal/polymer composite films, In Combinatorial Methods and Informatics in Materials Science. Materials Research Society Symposium Proceedings; Wang, Q.; Potyrailo, R. A.; Fasolka, M.; Chikyow, T.; Schubert, U. S.; Korkin, A., Eds.; Materials Research Society, Warrendale, PA, 2006, Vol. 894, 237–243

    Google Scholar 

  97. Singh, A.; Yao, Q.; Tong, L.; Still, W. C.; Sames, D., Combinatorial approach to the development of fluorescent sensors for nanomolar aqueous copper, Tetrahedron Lett. 2000, 41, 9601–9605

    CAS  Google Scholar 

  98. Szurdoki, F.; Ren, D.; Walt, D. R., A combinatorial approach to discover new chelators for optical metal ion sensing, Anal. Chem. 2000, 72, 5250–5257

    CAS  Google Scholar 

  99. Castillo, M.; Rivero, I. A., Combinatorial synthesis of fluorescent trialkylphosphine sulfides as sensor materials for metal ions of environmental concern, ARKIVOC. 2003, 11, 193–202

    Google Scholar 

  100. Mello, J. V.; Finney, N. S., Reversing the discovery paradigm: A new approach to the combinatorial discovery of fluorescent chemosensors, J. Am. Chem. Soc. 2005, 127, 10124–10125

    Google Scholar 

  101. Hagihara, M.; Fukuda, M.; Hasegawa, T.; Morii, T., A modular strategy for tailoring fluorescent biosensors from ribonucleopeptide complexes, J. Am. Chem. Soc. 2006, 128, 12932–12940

    CAS  Google Scholar 

  102. Wang, S.; Chang, Y.-T., Combinatorial synthesis of benzimidazolium dyes and its diversity directed application toward GTP-selective fluorescent chemosensors, J. Am. Chem. Soc. 2006, 128, 10380–10381

    CAS  Google Scholar 

  103. Buryak, A.; Severin, K., Dynamic combinatorial libraries of dye complexes as sensors, Angew. Chem. Int. Ed. 2005, 44, 7935–7938

    CAS  Google Scholar 

  104. Buryak, A.; Severin, K., Easy to optimize: Dynamic combinatorial libraries of metal-dye complexes as flexible sensors for tripeptides, J. Comb. Chem. 2006, 8, 540–543

    CAS  Google Scholar 

  105. Li, Q.; Lee, J.-S.; Ha, C.; Park, C. B.; Yang, G.; Gan, W. B.; Chang, Y.-T., Solid-phase synthesis of styryl dyes and their application as amyloid sensors, Angew. Chem. Int. Ed. 2004, 46, 6331–6335

    Google Scholar 

  106. Rosania, G. R.; Lee, J. W.; Ding, L.; Yoon, H.-S.; Chang, Y.-T., Combinatorial approach to organelle-targeted fluorescent library based on the styryl scaffold, J. Am. Chem. Soc. 2003, 125, 1130–1131

    CAS  Google Scholar 

  107. Shedden, K.; Brumer, J.; Chang, Y. T.; Rosania, G. R., Chemoinformatic analysis of a supertargeted combinatorial library of styryl molecules, J. Chem. Inf. Comput. Sci. 2003, 43, 2068–2080

    CAS  Google Scholar 

  108. Basabe-Desmonts, L.; Beld, J.; Zimmerman, R. S.; Hernando, J.; Mela, P.; Garcia Parajo, M. F.; van Hulst, N. F.; van den Berg, A.; Reinhoudt, D. N.; Crego-Calama, M., A simple approach to sensor discovery and fabrication on self-assembled monolayers on glass, J. Am. Chem. Soc. 2004, 126, 7293–7299

    CAS  Google Scholar 

  109. Basabe-Desmonts, L.; Zimmerman, R. S.; Reinhoudt, D. N.; Crego-Calama, M., Combinatorial method for surface-confined sensor design and fabrication, Springer Ser. Chem. Sens. Biosens. 2005, 3, 169–188

    CAS  Google Scholar 

  110. Basabe-Desmonts, L.; Reinhoudt, D. N.; Crego-Calama, M., Combinatorial fabrication of fluorescent patterns with metal ions using soft lithography, Adv. Mater. 2006, 18, 1028–1032

    CAS  Google Scholar 

  111. Basabe-Desmonts, L.; Reinhoudt, D. N.; Crego-Calama, M., Design of fluorescent materials for chemical sensing, Chem. Soc. Rev. 2007, 36, 993–1017

    CAS  Google Scholar 

  112. Chojnacki, P.; Werner, T.; Wolfbeis, O. S., Combinatorial approach towards materials for optical ion sensors, Microchim. Acta. 2004, 147, 87–92

    CAS  Google Scholar 

  113. Potyrailo, R. A., Expanding combinatorial methods from automotive to sensor coatings, Polymeric Mater. Sci. Eng. Polymer Preprints 2004, 90, 797–798

    CAS  Google Scholar 

  114. Hassib, L.; Potyrailo, R. A., Combinatorial development of polymer coating formulations for chemical sensor applications, Polymer Preprints 2004, 45, 211–212

    CAS  Google Scholar 

  115. Potyrailo, R. A.; Morris, W. G.; Wroczynski, R. J., Acoustic-wave sensors for high-throughput screening of materials, In High-Throughput Analysis: A Tool for Combinatorial Materials Science; Potyrailo, R. A.; Amis, E. J., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, 2003; Chap. 11

    Google Scholar 

  116. Potyrailo, R. A.; Morris, W. G.; Wroczynski, R. J., Multifunctional sensor system for high-throughput primary, secondary, and tertiary screening of combinatorially developed materials, Rev. Sci. Instrum. 2004, 75, 2177–2186

    CAS  Google Scholar 

  117. Potyrailo, R. A.; McCloskey, P. J.; Ramesh, N.; Surman, C. M., Sensor devices containing co-polymer substrates for analysis of chemical and biological species in water and air, US Patent Application 2005133697: 2005

    Google Scholar 

  118. Potyrailo, R. A.; McCloskey, P. J.; Wroczynski, R. J.; Morris, W. G., High-throughput determination of quantitative structure-property relationships using resonant multisensor system: Solvent-resistance of bisphenol a polycarbonate copolymers, Anal. Chem. 2006, 78, 3090–3096

    CAS  Google Scholar 

  119. Potyrailo, R. A.; Morris, W. G., Wireless resonant sensor array for high-throughput screening of materials, Rev. Sci. Instrum. 2007, 78, 072214

    Google Scholar 

  120. Wu, X.; Kim, J.; Dordick, J. S., Enzymatically and combinatorially generated array-based polyphenol metal ion sensor, Biotechnol. Prog. 2000, 16, 513–516

    CAS  Google Scholar 

  121. Kim, D.-Y.; Wu, X.; Dordick, J. S., Generation of environmentally compatible polymer libraries via combinatorial biocatalysis, In Biocatalysis in Polymer Science. American Chemical Society, Washington, DC, 2003, Vol. 840, 34–49

    Google Scholar 

  122. Mirsky, V. M.; Kulikov, V., Combinatorial electropolymerization: Concept, equipment and applications, In High-Throughput Analysis: A Tool for Combinatorial Materials Science; Potyrailo, R. A.; Amis, E. J., Eds.; Kluwer Academic/Plenum Publishers, New York, NY, 2003, Chap. 20

    Google Scholar 

  123. Kulikov, V.; Mirsky, V. M., Equipment for combinatorial electrochemical polymerization and high-throughput investigation of electrical properties of the synthesized polymers, Meas. Sci. Technol. 2004, 15, 49–54

    CAS  Google Scholar 

  124. Kulikov, V.; Mirsky, V. M.; Delaney, T. L.; Donoval, D.; Koch, A. W.; Wolfbeis, O. S., High-throughput analysis of bulk and contact conductance of polymer layers on electrodes, Meas. Sci. Technol. 2005, 16, 95–99

    CAS  Google Scholar 

  125. Xiang, Y.; LaVan, D., Parallel microfluidic synthesis of conductive biopolymers, In Proceedings of the 2nd IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, 2006; 1–5

    Google Scholar 

  126. Mirsky, V. M.; Hirsch, T.; Piletsky, S. A.; Wolfbeis, O. S., A spreader-bar approach to molecular architecture: Formation of stable artificial chemoreceptors, Angew. Chem. Int. Ed. 1999, 38, 1108–1110

    CAS  Google Scholar 

  127. Lahav, M.; Katz, E.; Willner, I., Photochemical imprint of molecular recognition sites in two-dimensional monolayers assembled on au electrodes: Effects of the monolayer structures on the binding affinities and association kinetics to the imprinted interfaces, Langmuir. 2001, 17, 7387–7395

    CAS  Google Scholar 

  128. Prodromidis, M. I.; Hirsch, T.; Mirsky, V. M.; Wolfbeis, O. S., Enantioselective artificial receptors formed by the spreader-bar technique, Electroanalysis. 2003, 15, 1795–1798

    CAS  Google Scholar 

  129. Tappura, K.; IVikholm-Lundin, I.; Albers, W. M., Lipoate-based imprinted self-assembled molecular thin films for biosensor applications, Biosens. Bioelectron. 2007, 22, 912–919

    CAS  Google Scholar 

  130. Cho, E. J.; Tao, Z.; Tehan, E. C.; Bright, F. V., Multianalyte pin-printed biosensor arrays based on protein-doped xerogels, Anal. Chem. 2002, 74, 6177–6184

    CAS  Google Scholar 

  131. de Gans, B.-J.; Wijnans, S.; Woutes, D.; Schubert, U. S., Sector spin coating for fast preparation of polymer libraries, J. Comb. Chem. 2005, 7, 952–957

    Google Scholar 

  132. Egger, S.; Higuchi, S.; Nakayama, T., A method for combinatorial fabrication and characterization of organic/inorganic thin film devices in UHV, J. Comb. Chem. 2006, 8, 275–279

    CAS  Google Scholar 

  133. Potyrailo, R. A.; Morris, W. G.; Leach, A. M.; Hassib, L.; Krishnan, K.; Surman, C.; Wroczynski, R.; Boyette, S.; Xiao, C.; Shrikhande, P.; Agree, A.; Cecconie, T., Theory and practice of ubiquitous quantitative chemical analysis using conventional computer optical disk drives, Appl. Opt. 2007, 46, 7007–7017

    Google Scholar 

  134. Frenzer, G.; Frantzen, A.; Sanders, D.; Simon, U.; Maier, W. F., Wet chemical synthesis and screening of thick porous oxide films for resistive gas sensing applications, Sensors. 2006, 6, 1568–1586

    CAS  Google Scholar 

  135. Villoslada, F. N.; Takeuchi, T., Multivariate analysis and experimental design in the screening of combinatorial libraries of molecular imprinted polymers, Bull. Chem. Soc. Japan. 2005, 78, 1354–1361

    CAS  Google Scholar 

  136. Mijangos, I.; Navarro-Villoslada, F.; Guerreiro, A.; Piletska, E.; Chianella, I.; Karim, K.; Turner, A.; Piletsky, S., Influence of initiator and different polymerisation conditions on performance of molecularly imprinted polymers, Biosens. Bioelectron. 2006, 22, 381–387

    CAS  Google Scholar 

  137. Potyrailo, R. A. High-throughput experimentation in early 21st century: Searching for materials descriptors, not for a needle in the haystack, 6th DPI Workshop on Combinatorial and High-Throughput Approaches in Polymer Science, September 10–11, Darmstadt, Germany, 2007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radislav A. Potyrailo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Potyrailo, R.A., Mirsky, V.M. (2009). Development of New Sensing Materials Using Combinatorial and High-Throughput Experimentation. In: Ryan, M., Shevade, A., Taylor, C., Homer, M., Blanco, M., Stetter, J. (eds) Computational Methods for Sensor Material Selection. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73715-7_7

Download citation

Publish with us

Policies and ethics