Development of New Sensing Materials Using Combinatorial and High-Throughput Experimentation

  • Radislav A. Potyrailo
  • Vladimir M. Mirsky
Part of the Integrated Analytical Systems book series (ANASYS)


New sensors with improved performance characteristics are needed for applications as diverse as bedside continuous monitoring, tracking of environmental pollutants, monitoring of food and water quality, monitoring of chemical processes, and safety in industrial, consumer, and automotive settings. Typical requirements in sensor improvement are selectivity, long-term stability, sensitivity, response time, reversibility, and reproducibility. Design of new sensing materials is the important cornerstone in the effort to develop new sensors. Often, sensing materials are too complex to predict their performance quantitatively in the design stage. Thus, combinatorial and high-throughput experimentation methodologies provide an opportunity to generate new required data to discover new sensing materials and/or to optimize existing material compositions. The goal of this chapter is to provide an overview of the key concepts of experimental development of sensing materials using combinatorial and high-throughput experimentation tools, and to promote additional fruitful interactions between computational scientists and experimentalists.


Imprint Polymer Home Blood Glucose Kinetic Association Combinatorial Screening Conductometric Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Buhlmann, K.; Schlatt, B.; Cammann, K.; Shulga, A., Plasticised polymeric electrolytes: New extremely versatile receptor materials for gas sensors (VOC monitoring) and electronic noses (odour identification:discrimination), Sens. Actuators B. 1998, 49, 156–165Google Scholar
  2. 2.
    Walt, D. R.; Dickinson, T.; White, J.; Kauer, J.; Johnson, S.; Engelhardt, H.; Sutter, J.; Jurs, P., Optical sensor arrays for odor recognition, Biosens. Bioelectron. 1998, 13, 697–699Google Scholar
  3. 3.
    Conway, V. L.; Hassen, K. P.; Zhang, L.; Seitz, W. R.; Gross, T. S., The influence of composition on the properties of pH-swellable polymers for chemical sensors, Sens. Actuators B. 1997, 45, 1–9Google Scholar
  4. 4.
    Potyrailo, R. A.; Mirsky, V. M., Combinatorial and high-throughput development of sensing materials: The first ten years, Chem. Rev. 2008, 108, 770–813Google Scholar
  5. 5.
    Lundström, I.; Sundgren, H.; Winquist, F.; Eriksson, M.; Krantz-Rülcker, C.; Lloyd-Spetz, A., Twenty-five years of field effect gas sensor research in Linköping, Sens. Actuators B. 2007, 121, 247–262Google Scholar
  6. 6.
    Dickinson, T. A.; Walt, D. R.; White, J.; Kauer, J. S., Generating sensor diversity through combinatorial polymer synthesis, Anal. Chem. 1997, 69, 3413–3418Google Scholar
  7. 7.
    Cho, E. J.; Tao, Z.; Tang, Y.; Tehan, E. C.; Bright, F. V.; Hicks, W. L., Jr.; Gardella, J. A., Jr.; Hard, R., Tools to rapidly produce and screen biodegradable polymer and sol-gel-derived xerogel formulations, Appl. Spectrosc. 2002, 56, 1385–1389Google Scholar
  8. 8.
    Apostolidis, A.; Klimant, I.; Andrzejewski, D.; Wolfbeis, O. S., A combinatorial approach for development of materials for optical sensing of gases, J. Comb. Chem. 2004, 6, 325–331Google Scholar
  9. 9.
    Simon, U.; Sanders, D.; Jockel, J.; Heppel, C.; Brinz, T., Design strategies for multielectrode arrays applicable for high-throughput impedance spectroscopy on novel gas sensor materials, J. Comb. Chem. 2002, 4, 511–515Google Scholar
  10. 10.
    Frantzen, A.; Scheidtmann, J.; Frenzer, G.; Maier, W. F.; Jockel, J.; Brinz, T.; Sanders, D.; Simon, U., High-throughput method for the impedance spectroscopic characterization of resistive gas sensors, Angew. Chem. Int. Ed. 2004, 43, 752–754Google Scholar
  11. 11.
    Mirsky, V. M.; Kulikov, V.; Hao, Q.; Wolfbeis, O. S., Multiparameter high-throughput characterization of combinatorial chemical microarrays of chemosensitive polymers, Macromol. Rapid Commun. 2004, 25, 253–258Google Scholar
  12. 12.
    Potyrailo, R. A.; Mirsky, V. M., Eds., Combinatorial Methods for Chemical and Biological Sensors; Springer, New York, NY, 2009 Google Scholar
  13. 13.
    Njagi, J.; Warner, J.; Andreescu, S., A bioanalytical chemistry experiment for undergraduate students: Biosensors based on metal nanoparticles, J. Chem. Educ. 2007, 84, 1180–1182Google Scholar
  14. 14.
    Shtoyko, T.; Zudans, I.; Seliskar, C. J.; Heineman, W. R.; Richardson, J. N., An attenuated total reflectance sensor for copper: An experiment for analytical or physical chemistry, J. Chem. Educ. 2004, 81, 1617–1619Google Scholar
  15. 15.
    Honeybourne, C. L., Organic vapor sensors for food quality assessment, J. Chem. Educ. 2000, 77, 338–344Google Scholar
  16. 16.
    Newnham, R. E., Structure-property relationships in sensors, Cryst. Rev. 1988, 1, 253–280Google Scholar
  17. 17.
    Akporiaye, D. E., Towards a rational synthesis of large-pore zeolite-type materials? Angew. Chem. Int. Ed. 1998, 37, 2456–2457Google Scholar
  18. 18.
    Ulmer II, C. W.; Smith, D. A.; Sumpter, B. G.; Noid, D. I., Computational neural networks and the rational design of polymeric materials: The next generation polycarbonates, Comput. Theor. Polym. Sci. 1998, 8, 311–321Google Scholar
  19. 19.
    Suman, M.; Freddi, M.; Massera, C.; Ugozzoli, F.; Dalcanale, E., Rational design of cavitand receptors for mass sensors, J. Am. Chem. Soc. 2003, 125, 12068–12069Google Scholar
  20. 20.
    Lavigne, J. J.; Anslyn, E. V., Sensing a paradigm shift in the field of molecular recognition: From selective to differential receptors, Angew. Chem. Int. Ed. 2001, 40, 3119–3130Google Scholar
  21. 21.
    Hatchett, D. W.; Josowicz, M., Composites of intrinsically conducting polymers as sensing nanomaterials, Chem. Rev. 2008, 108, 746–769Google Scholar
  22. 22.
    Jandeleit, B.; Schaefer, D. J.; Powers, T. S.; Turner, H. W.; Weinberg, W. H., Combinatorial materials science and catalysis, Angew. Chem. Int. Ed. 1999, 38, 2494–2532Google Scholar
  23. 23.
    Maier, W.; Kirsten, G.; Orschel, M.; Weiß, P.-A.; Holzwarth, A.; Klein, J., Combinatorial chemistry of materials, polymers, and catalysts, In Combinatorial Approaches to Materials Development; Malhotra, R., Ed.; American Chemical Society, Washington, DC, 2002, Vol. 814, 1–21Google Scholar
  24. 24.
    Takeuchi, I.; Newsam, J. M.; Wille, L. T.; Koinuma, H.; Amis, E. J., Eds., Combinatorial and Artificial Intelligence Methods in Materials Science; Materials Research Society, Warrendale, PA, 2002, Vol. 700Google Scholar
  25. 25.
    Xiang, X.-D.; Takeuchi, I., Eds., Combinatorial Materials Synthesis; Marcel Dekker, New York, NY, 2003 Google Scholar
  26. 26.
    Potyrailo, R. A.; Amis, E. J., Eds., High-throughput Analysis: A Tool for Combinatorial Materials Science; Kluwer Academic/Plenum Publishers, New York, NY, 2003 Google Scholar
  27. 27.
    Koinuma, H.; Takeuchi, I., Combinatorial solid state chemistry of inorganic materials, Nat. Mater. 2004, 3, 429–438Google Scholar
  28. 28.
    Potyrailo, R. A.; Karim, A.; Wang, Q.; Chikyow, T., Eds., Combinatorial and Artificial Intelligence Methods in Materials Science II; Materials Research Society, Warrendale, PA, 2004, Vol. 804Google Scholar
  29. 29.
    Potyrailo, R. A.; Takeuchi, I., Eds., Special Feature on Combinatorial and High-Throughput Materials Research; Measurement Science Technology. 2005, Vol. 16, 316Google Scholar
  30. 30.
    Potyrailo, R. A.; Maier, W. F., Eds., Combinatorial and High-Throughput Discovery and Optimization of Catalysts and Materials; CRC Press, Boca Raton, FL, 2006 Google Scholar
  31. 31.
    Potyrailo, R. A.; Chisholm, B. J.; Olson, D. R.; Brennan, M. J.; Molaison, C. A., Development of combinatorial chemistry methods for coatings: High-throughput screening of abrasion resistance of coatings libraries, Anal. Chem. 2002, 74, 5105–5111Google Scholar
  32. 32.
    Potyrailo, R. A.; Chisholm, B. J.; Morris, W. G.; Cawse, J. N.; Flanagan, W. P.; Hassib, L.; Molaison, C. A.; Ezbiansky, K.; Medford, G.; Reitz, H., Development of combinatorial chemistry methods for coatings: High-throughput adhesion evaluation and scale-up of combinatorial leads, J. Comb. Chem. 2003, 5, 472–478Google Scholar
  33. 33.
    MacLean, D.; Baldwin, J. J.; Ivanov, V. T.; Kato, Y.; Shaw, A.; Schneider, P.; Gordon, E. M., Glossary of terms used in combinatorial chemistry, J. Comb. Chem. 2000, 2, 562–578Google Scholar
  34. 34.
    Potyrailo, R. A.; Takeuchi, I., Role of high-throughput characterization tools in combinatorial materials science, Meas. Sci. Technol. 2005, 16, 1–4Google Scholar
  35. 35.
    Cohan, P. E., Combinatorial materials science applied – mini case studies, lessons and strategies, In 2002 Combi – The 4th Annual International Symposium on Combinatorial Approaches For New Materials Discovery, Knowledge Foundation, Arlington, VA, 2002 Google Scholar
  36. 36.
    Matzger, A. J.; Lawrence, C. E.; Grubbs, R. H.; Lewis, N. S., Combinatorial approaches to the synthesis of vapor detector arrays for use in an electronic nose, J. Comb. Chem. 2000, 2, 301–304Google Scholar
  37. 37.
    Lu, Y.; Liu, J.; Li, J.; Bruesehoff, P. J.; Pavot, C. M.-B.; Brown, A. K., New highly sensitive and selective catalytic DNA biosensors for metal ions, Biosens. Bioelectron. 2003, 18, 529–540Google Scholar
  38. 38.
    Bakker, E.; Bühlmann, P.; Pretsch, E., Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics, Chem. Rev. 1997, 97, 3083–3132Google Scholar
  39. 39.
    Deans, R.; Kim, J.; Machacek, M. R.; Swager, T. M., A poly(p-phenyleneethynylene) with a highly emissive aggregated phase, J. Am. Chem. Soc. 2000, 122, 8565–8566Google Scholar
  40. 40.
    Lavastre, O.; Illitchev, I.; Jegou, G.; Dixneuf, P. H., Discovery of new fluorescent materials from fast synthesis and screening of conjugated polymers, J. Am. Chem. Soc. 2002, 124, 5278–5279Google Scholar
  41. 41.
    Janata, J.; Josowicz, M., Conducting polymers in electronic chemical sensors, Nat. Mater. 2002, 2, 19–24Google Scholar
  42. 42.
    Rege, K.; Raravikar, N. R.; Kim, D.-Y.; Schadler, L. S.; Ajayan, P. M.; Dordick, J. S., Enzyme-polymer-single walled carbon nanotube composites as biocatalytic films, Nano Lett. 2003, 3, 829–832Google Scholar
  43. 43.
    Zhou, Y.; Freitag, M.; Hone, J.; Staii, C.; Johnson, A. T.; Pinto, N. J.; MacDiarmid, A. G., Fabrication and electrical characterization of polyaniline-based nanofibers with diameter below 30 nm, Appl. Phys. Lett. 2003, 83, 3800–3802Google Scholar
  44. 44.
    Siemons, M.; Koplin, T. J.; Simon, U., Advances in high-throughput screening of gas sensing materials, Appl. Surf. Sci. 2007, 254, 669–676Google Scholar
  45. 45.
    Qin, L.; Zou, S.; Xue, C.; Atkinson, A.; Schatz, G. C.; Mirkin, C. A., Designing, fabricating, and imaging Raman hot spots, Proc. Natl. Acad. Sci. USA. 2006, 103, 13300–13303Google Scholar
  46. 46.
    Paulose, M.; Varghese, O. K.; Mor, G. K.; Grimes, C. A.; Ong, K. G., Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes, Nanotechnology. 2006, 17, 398–402Google Scholar
  47. 47.
    Hirsch, T.; Kettenberger, H.; Wolfbeis, O. S.; Mirsky, V. M., A simple strategy for preparation of sensor arrays: Molecularly structured monolayers as recognition elements, Chem. Commun. 2003, 3, 432–433Google Scholar
  48. 48.
    Hermann, T.; Patel, D. J., Adaptive recognition by nucleic acid aptamers, Science. 2000, 287, 820–825Google Scholar
  49. 49.
    Mirsky, V. M.; Riepl, M.; Wolfbeis, O. S., Capacitive monitoring of protein immobilization and antigen-antibody reaction on the mono-molecular films of alkylthiols adsorbed on gold electrodes, Biosens. Bioelectron. 1997, 12, 977–989Google Scholar
  50. 50.
    Kramer, K.; Hock, B., Antibodies for biosensors, In Ultrathin Electrochemical Chemo- and Biosensors; Mirsky, V. M., Ed.; Springer: Berlin, Germany, 2004 Google Scholar
  51. 51.
    Birina, G. A.; Boitsov, K. A., Experimental use of combinational and factorial plans for optimizing the compositions of electronic materials, Zavodskaya Laboratoriya (in Russian). 1974, 40, 855–857Google Scholar
  52. 52.
    Xiang, X.-D.; Sun, X.; Briceño, G.; Lou, Y.; Wang, K.-A.; Chang, H.; Wallace-Freedman, W. G.; Chen, S.-W.; Schultz, P. G., A combinatorial approach to materials discovery, Science. 1995, 268, 1738–1740Google Scholar
  53. 53.
    Kennedy, K.; Stefansky, T.; Davy, G.; Zackay, V. F.; Parker, E. R., Rapid method for determining ternary-alloy phase diagrams, J. Appl. Phys. 1965, 36, 3808–3810Google Scholar
  54. 54.
    Hanak, J. J., The “multiple-sample concept” in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems, J. Mater. Sci. 1970, 5, 964–971Google Scholar
  55. 55.
    Bever, M. B.; Duwez, P. E., Gradients in composite materials, Mater. Sci. Eng. 1972, 10, 1–8Google Scholar
  56. 56.
    Shen, M.; Bever, M. B., Gradients in polymeric materials, J. Mater. Sci. 1972, 7, 741–746Google Scholar
  57. 57.
    Pompe, W.; Worch, H.; Epple, M.; Friess, W.; Gelinsky, M.; Greil, P.; Hempel, U.; Scharnweber, D.; Schulte, K., Functionally graded materials for biomedical applications, Mater. Sci. Eng. A. 2003, 362, 40–60Google Scholar
  58. 58.
    Hirschfeld, T.; Callis, J. B.; Kowalski, B. R., Chemical sensing in process analysis, Science. 1984, 226, 312–318Google Scholar
  59. 59.
    Wolfbeis, O. S., Ed., Fiber Optic Chemical Sensors and Biosensors; CRC Press, Boca Raton, FL, 1991 Google Scholar
  60. 60.
    Taylor, R. F.; Schultz, J. S., Ed., Handbook of Chemical and Biological Sensors; IOP Publishing, Bristol, UK, 1996 Google Scholar
  61. 61.
    Carrano, J. C.; Jeys, T.; Cousins, D.; Eversole, J.; Gillespie, J.; Healy, D.; Licata, N.; Loerop, W.; O 'Keefe, M.; Samuels, A.; Schultz, J.; Walter, M.; Wong, N.; Billotte, B.; Munley, M.; Reich, E.; Roos, J., Chemical and biological sensor standards study (CBS3), In Optically Based Biological and Chemical Sensing for Defence; Carrano, J. C.; Zukauskas, A. Eds.; SPIE – The International Society for Optical Engineering: Bellingham, WA, 2004, Vol. 5617, xi–xiiiGoogle Scholar
  62. 62.
    Meyerhoff, M. E., In vivo blood-gas and electrolyte sensors: Progress and challenges, Trends Anal. Chem. 1993, 12, 257–266Google Scholar
  63. 63.
    Clark, K. J. R.; Furey, J., Suitability of selected single-use process monitoring and control technology, BioProcess Int. 2006, 4, S16–S20Google Scholar
  64. 64.
    Newman, J. D.; Turner, A. P. F., Home blood glucose biosensors: A commercial perspective, Biosens. Bioelectron. 2005, 20, 2435–2453Google Scholar
  65. 65.
    Pickup, J. C.; Alcock, S., Clinicians' requirements for chemical sensors for in vivo monitoring: A multinational survey, Biosens. Bioelectron. 1991, 6, 639–646Google Scholar
  66. 66.
    Klingvall, R.; Lundström, I.; Löfdahl, M.; Eriksson, M., A combinatorial approach for field-effect gas sensor research and development, IEEE Sens. J. 2005, 5, 995–1003Google Scholar
  67. 67.
    Eriksson, M.; Klingvall, R.; Lundström, I., A combinatorial method for optimization of materials for gas sensitive field-effect devices, In Combinatorial and High-Throughput Discovery and Optimization of Catalysts and Materials; Potyrailo, R. A.; Maier, W. F., Eds.; CRC Press: Boca Raton, FL, 2006, 85–95Google Scholar
  68. 68.
    Sysoev, V. V.; Kiselev, I.; Frietsch, M.; Goschnick, J., Temperature gradient effect on gas discrimination power of a metal-oxide thin-film sensor microarray, Sensors. 2004, 4, 37–46Google Scholar
  69. 69.
    Goschnick, J.; Koronczi, I.; Frietsch, M.; Kiselev, I., Water pollution recognition with the electronic nose KAMINA, Sens. Actuators B. 2005, 106, 182–186Google Scholar
  70. 70.
    Mazza, T.; Barborini, E.; Kholmanov, I. N.; Piseri, P.; Bongiorno, G.; Vinati, S.; Milania, P.; Ducati, C.; Cattaneo, D.; Li Bassi, A.; Bottani, C. E.; Taurino, A. M.; Siciliano, P., Libraries of cluster-assembled titania films for chemical sensing, Appl. Phys. Lett. 2005, 87, 103108Google Scholar
  71. 71.
    Korotcenkov, G., Gas response control through structural and chemical modification of metal oxide films: State of the art and approaches, Sens. Actuators B. 2005, 107, 209–232Google Scholar
  72. 72.
    Franke, M. E.; Koplin, T. J.; Simon, U., Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small 2006, 2, 36–50Google Scholar
  73. 73.
    Barsan, N.; Koziej, D.; Weimar, U., Metal oxide-based gas sensor research: How to? Sens. Actuators B 2007, 121, 18–35Google Scholar
  74. 74.
    Taylor, C. J.; Semancik, S., Use of microhotplate arrays as microdeposition substrates for materials exploration, Chem. Mater. 2002, 14, 1671–1677Google Scholar
  75. 75.
    Semancik, S. Correlation of chemisorption and electronic effects for metal oxide interfaces: Transducing principles for temperature programmed gas microsensors. Final technical report project number: EMSP 65421, grant number: 07-98ER62709; US Department of Energy Information Bridge: 2002,
  76. 76.
    Semancik, S., Temperature-dependent materials research with micromachined array platforms, In Combinatorial Materials Synthesis; Xiang, X.-D.; Takeuchi, I., Eds.; Marcel Dekker, New York, NY, 2003, 263–295Google Scholar
  77. 77.
    Aronova, M. A.; Chang, K. S.; Takeuchi, I.; Jabs, H.; Westerheim, D.; Gonzalez-Martin, A.; Kim, J.; Lewis, B., Combinatorial libraries of semiconductor gas sensors as inorganic electronic noses, Appl. Phys. Lett. 2003, 83, 1255–1257Google Scholar
  78. 78.
    Simon, U.; Sanders, D.; Jockel, J.; Brinz, T., Setup for high-throughput impedance screening of gas-sensing materials, J. Comb. Chem. 2005, 7, 682–687Google Scholar
  79. 79.
    Sanders, D.; Simon, U., High-throughput gas sensing screening of surface-doped In2O3, J. Comb. Chem. 2007, 9, 53–61Google Scholar
  80. 80.
    Siemons, M.; Simon, U., Preparation and gas sensing properties of nanocrystalline la-doped CoTiO3, Sens. Actuators B. 2006, 120, 110–118Google Scholar
  81. 81.
    Siemons, M.; Simon, U., Gas sensing properties of volume-doped CoTiO3 synthesized via polyol method, Sens. Actuators B. 2007, 126, 595–603Google Scholar
  82. 82.
    Siemons, M.; Simon, U., High-throughput screening of the propylene and ethanol sensing properties of rare-earth orthoferrites and orthochromites, Sens. Actuators B. 2007, 126, 181–186Google Scholar
  83. 83.
    Nakagawa, M.; Okabayashi, T.; Fujimoto, T.; Utsunomiya, K.; Yamamoto, I.; Wada, T.; Yamashita, Y.; Yamashita, N., A new method for recognizing organic vapor by spectroscopic image on cataluminescence-based gas sensor, Sens. Actuators B. 1998, 51, 159–162Google Scholar
  84. 84.
    Nakagawa, M.; Yamashita, N., Cataluminescence-based gas sensors, Springer Ser. Chem. Sens. Biosens. 2005, 3, 93–132Google Scholar
  85. 85.
    Baker, B. E.; Kline, N. J.; Treado, P. J.; Natan, M. J., Solution-based assembly of metal surfaces by combinatorial methods, J. Am. Chem. Soc. 1996, 118, 8721–8722Google Scholar
  86. 86.
    Kahl, M.; Voges, E.; Kostrewa, S.; Viets, C.; Hill, W., Periodically structured metallic substrates for SERS, Sens. Actuators B. 1998, 51, 285–291Google Scholar
  87. 87.
    Han, M. S.; Lytton-Jean, A. K. R.; Oh, B.-K.; Heo, J.; Mirkin, C. A., Colorimetric screening of DNA-binding molecules with gold nanoparticle probes, Angew. Chem. Int. Ed. 2006, 45, 1807–1810Google Scholar
  88. 88.
    Dovidenko, K.; Potyrailo, R. A.; Grande, J., Focused ion beam microscope as an analytical tool for nanoscale characterization of gradient-formulated polymeric sensor materials, In Combinatorial Methods and Informatics in Materials Science. Materials Research Society Symposium Proceedings; Fasolka, M.; Wang, Q.; Potyrailo, R. A.; Chikyow, T.; Schubert, U. S.; Korkin, A., Eds.; Materials Research Society, Warrendale, PA, 2006, Vol. 894, 231–236Google Scholar
  89. 89.
    Bhat, R. R.; Genzer, J., Combinatorial study of nanoparticle dispersion in surface-grafted macromolecular gradients, Appl. Surf. Sci. 2005, 252, 2549–2554Google Scholar
  90. 90.
    Bhat, R. R.; Tomlinson, M. R.; Wu, T.; Genzer, J., Surface-grafted polymer gradients: Formation, characterization and applications, Adv. Polym. Sci. 2006, 198, 51–124Google Scholar
  91. 91.
    Bhat, R. R.; Genzer, J., Tuning the number density of nanoparticles by multivariant tailoring of attachment points on flat substrates, Nanotechnology 2007, 18, 025301Google Scholar
  92. 92.
    Demers, L. M.; Mirkin, C. A., Combinatorial templates generated by dip-pen nanolithography for the formation of two-dimensional particle arrays, Angew. Chem. Int. Ed. 2001, 40, 3069–3071Google Scholar
  93. 93.
    Ivanisevic, A.; McCumber, K. V.; Mirkin, C. A., Site-directed exchange studies with combinatorial libraries of nanostructures, J. Am. Chem. Soc. 2002, 124, 11997–12001Google Scholar
  94. 94.
    Potyrailo, R. A.; Leach, A. M., Gas sensor materials based on semiconductor nanocrystal/polymer composite films, In Proceedings of Transducers '05, The 13th International Conference On Solid-State Sensors, Actuators and Microsystems, Seoul, Korea, June 5–9 2005, 1292–1295Google Scholar
  95. 95.
    Potyrailo, R. A.; Leach, A. M., Selective gas nanosensors with multisize cdse nanocrystal/polymer composite films and dynamic pattern recognition, Appl. Phys. Lett. 2006, 88, 134110Google Scholar
  96. 96.
    Leach, A. M.; Potyrailo, R. A., Gas sensor materials based on semiconductor nanocrystal/polymer composite films, In Combinatorial Methods and Informatics in Materials Science. Materials Research Society Symposium Proceedings; Wang, Q.; Potyrailo, R. A.; Fasolka, M.; Chikyow, T.; Schubert, U. S.; Korkin, A., Eds.; Materials Research Society, Warrendale, PA, 2006, Vol. 894, 237–243Google Scholar
  97. 97.
    Singh, A.; Yao, Q.; Tong, L.; Still, W. C.; Sames, D., Combinatorial approach to the development of fluorescent sensors for nanomolar aqueous copper, Tetrahedron Lett. 2000, 41, 9601–9605Google Scholar
  98. 98.
    Szurdoki, F.; Ren, D.; Walt, D. R., A combinatorial approach to discover new chelators for optical metal ion sensing, Anal. Chem. 2000, 72, 5250–5257Google Scholar
  99. 99.
    Castillo, M.; Rivero, I. A., Combinatorial synthesis of fluorescent trialkylphosphine sulfides as sensor materials for metal ions of environmental concern, ARKIVOC. 2003, 11, 193–202Google Scholar
  100. 100.
    Mello, J. V.; Finney, N. S., Reversing the discovery paradigm: A new approach to the combinatorial discovery of fluorescent chemosensors, J. Am. Chem. Soc. 2005, 127, 10124–10125Google Scholar
  101. 101.
    Hagihara, M.; Fukuda, M.; Hasegawa, T.; Morii, T., A modular strategy for tailoring fluorescent biosensors from ribonucleopeptide complexes, J. Am. Chem. Soc. 2006, 128, 12932–12940Google Scholar
  102. 102.
    Wang, S.; Chang, Y.-T., Combinatorial synthesis of benzimidazolium dyes and its diversity directed application toward GTP-selective fluorescent chemosensors, J. Am. Chem. Soc. 2006, 128, 10380–10381Google Scholar
  103. 103.
    Buryak, A.; Severin, K., Dynamic combinatorial libraries of dye complexes as sensors, Angew. Chem. Int. Ed. 2005, 44, 7935–7938Google Scholar
  104. 104.
    Buryak, A.; Severin, K., Easy to optimize: Dynamic combinatorial libraries of metal-dye complexes as flexible sensors for tripeptides, J. Comb. Chem. 2006, 8, 540–543Google Scholar
  105. 105.
    Li, Q.; Lee, J.-S.; Ha, C.; Park, C. B.; Yang, G.; Gan, W. B.; Chang, Y.-T., Solid-phase synthesis of styryl dyes and their application as amyloid sensors, Angew. Chem. Int. Ed. 2004, 46, 6331–6335Google Scholar
  106. 106.
    Rosania, G. R.; Lee, J. W.; Ding, L.; Yoon, H.-S.; Chang, Y.-T., Combinatorial approach to organelle-targeted fluorescent library based on the styryl scaffold, J. Am. Chem. Soc. 2003, 125, 1130–1131Google Scholar
  107. 107.
    Shedden, K.; Brumer, J.; Chang, Y. T.; Rosania, G. R., Chemoinformatic analysis of a supertargeted combinatorial library of styryl molecules, J. Chem. Inf. Comput. Sci. 2003, 43, 2068–2080Google Scholar
  108. 108.
    Basabe-Desmonts, L.; Beld, J.; Zimmerman, R. S.; Hernando, J.; Mela, P.; Garcia Parajo, M. F.; van Hulst, N. F.; van den Berg, A.; Reinhoudt, D. N.; Crego-Calama, M., A simple approach to sensor discovery and fabrication on self-assembled monolayers on glass, J. Am. Chem. Soc. 2004, 126, 7293–7299Google Scholar
  109. 109.
    Basabe-Desmonts, L.; Zimmerman, R. S.; Reinhoudt, D. N.; Crego-Calama, M., Combinatorial method for surface-confined sensor design and fabrication, Springer Ser. Chem. Sens. Biosens. 2005, 3, 169–188Google Scholar
  110. 110.
    Basabe-Desmonts, L.; Reinhoudt, D. N.; Crego-Calama, M., Combinatorial fabrication of fluorescent patterns with metal ions using soft lithography, Adv. Mater. 2006, 18, 1028–1032Google Scholar
  111. 111.
    Basabe-Desmonts, L.; Reinhoudt, D. N.; Crego-Calama, M., Design of fluorescent materials for chemical sensing, Chem. Soc. Rev. 2007, 36, 993–1017Google Scholar
  112. 112.
    Chojnacki, P.; Werner, T.; Wolfbeis, O. S., Combinatorial approach towards materials for optical ion sensors, Microchim. Acta. 2004, 147, 87–92Google Scholar
  113. 113.
    Potyrailo, R. A., Expanding combinatorial methods from automotive to sensor coatings, Polymeric Mater. Sci. Eng. Polymer Preprints 2004, 90, 797–798Google Scholar
  114. 114.
    Hassib, L.; Potyrailo, R. A., Combinatorial development of polymer coating formulations for chemical sensor applications, Polymer Preprints 2004, 45, 211–212Google Scholar
  115. 115.
    Potyrailo, R. A.; Morris, W. G.; Wroczynski, R. J., Acoustic-wave sensors for high-throughput screening of materials, In High-Throughput Analysis: A Tool for Combinatorial Materials Science; Potyrailo, R. A.; Amis, E. J., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, 2003; Chap. 11Google Scholar
  116. 116.
    Potyrailo, R. A.; Morris, W. G.; Wroczynski, R. J., Multifunctional sensor system for high-throughput primary, secondary, and tertiary screening of combinatorially developed materials, Rev. Sci. Instrum. 2004, 75, 2177–2186Google Scholar
  117. 117.
    Potyrailo, R. A.; McCloskey, P. J.; Ramesh, N.; Surman, C. M., Sensor devices containing co-polymer substrates for analysis of chemical and biological species in water and air, US Patent Application 2005133697: 2005 Google Scholar
  118. 118.
    Potyrailo, R. A.; McCloskey, P. J.; Wroczynski, R. J.; Morris, W. G., High-throughput determination of quantitative structure-property relationships using resonant multisensor system: Solvent-resistance of bisphenol a polycarbonate copolymers, Anal. Chem. 2006, 78, 3090–3096Google Scholar
  119. 119.
    Potyrailo, R. A.; Morris, W. G., Wireless resonant sensor array for high-throughput screening of materials, Rev. Sci. Instrum. 2007, 78, 072214Google Scholar
  120. 120.
    Wu, X.; Kim, J.; Dordick, J. S., Enzymatically and combinatorially generated array-based polyphenol metal ion sensor, Biotechnol. Prog. 2000, 16, 513–516Google Scholar
  121. 121.
    Kim, D.-Y.; Wu, X.; Dordick, J. S., Generation of environmentally compatible polymer libraries via combinatorial biocatalysis, In Biocatalysis in Polymer Science. American Chemical Society, Washington, DC, 2003, Vol. 840, 34–49Google Scholar
  122. 122.
    Mirsky, V. M.; Kulikov, V., Combinatorial electropolymerization: Concept, equipment and applications, In High-Throughput Analysis: A Tool for Combinatorial Materials Science; Potyrailo, R. A.; Amis, E. J., Eds.; Kluwer Academic/Plenum Publishers, New York, NY, 2003, Chap. 20Google Scholar
  123. 123.
    Kulikov, V.; Mirsky, V. M., Equipment for combinatorial electrochemical polymerization and high-throughput investigation of electrical properties of the synthesized polymers, Meas. Sci. Technol. 2004, 15, 49–54Google Scholar
  124. 124.
    Kulikov, V.; Mirsky, V. M.; Delaney, T. L.; Donoval, D.; Koch, A. W.; Wolfbeis, O. S., High-throughput analysis of bulk and contact conductance of polymer layers on electrodes, Meas. Sci. Technol. 2005, 16, 95–99Google Scholar
  125. 125.
    Xiang, Y.; LaVan, D., Parallel microfluidic synthesis of conductive biopolymers, In Proceedings of the 2nd IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, 2006; 1–5Google Scholar
  126. 126.
    Mirsky, V. M.; Hirsch, T.; Piletsky, S. A.; Wolfbeis, O. S., A spreader-bar approach to molecular architecture: Formation of stable artificial chemoreceptors, Angew. Chem. Int. Ed. 1999, 38, 1108–1110Google Scholar
  127. 127.
    Lahav, M.; Katz, E.; Willner, I., Photochemical imprint of molecular recognition sites in two-dimensional monolayers assembled on au electrodes: Effects of the monolayer structures on the binding affinities and association kinetics to the imprinted interfaces, Langmuir. 2001, 17, 7387–7395Google Scholar
  128. 128.
    Prodromidis, M. I.; Hirsch, T.; Mirsky, V. M.; Wolfbeis, O. S., Enantioselective artificial receptors formed by the spreader-bar technique, Electroanalysis. 2003, 15, 1795–1798Google Scholar
  129. 129.
    Tappura, K.; IVikholm-Lundin, I.; Albers, W. M., Lipoate-based imprinted self-assembled molecular thin films for biosensor applications, Biosens. Bioelectron. 2007, 22, 912–919Google Scholar
  130. 130.
    Cho, E. J.; Tao, Z.; Tehan, E. C.; Bright, F. V., Multianalyte pin-printed biosensor arrays based on protein-doped xerogels, Anal. Chem. 2002, 74, 6177–6184Google Scholar
  131. 131.
    de Gans, B.-J.; Wijnans, S.; Woutes, D.; Schubert, U. S., Sector spin coating for fast preparation of polymer libraries, J. Comb. Chem. 2005, 7, 952–957Google Scholar
  132. 132.
    Egger, S.; Higuchi, S.; Nakayama, T., A method for combinatorial fabrication and characterization of organic/inorganic thin film devices in UHV, J. Comb. Chem. 2006, 8, 275–279Google Scholar
  133. 133.
    Potyrailo, R. A.; Morris, W. G.; Leach, A. M.; Hassib, L.; Krishnan, K.; Surman, C.; Wroczynski, R.; Boyette, S.; Xiao, C.; Shrikhande, P.; Agree, A.; Cecconie, T., Theory and practice of ubiquitous quantitative chemical analysis using conventional computer optical disk drives, Appl. Opt. 2007, 46, 7007–7017Google Scholar
  134. 134.
    Frenzer, G.; Frantzen, A.; Sanders, D.; Simon, U.; Maier, W. F., Wet chemical synthesis and screening of thick porous oxide films for resistive gas sensing applications, Sensors. 2006, 6, 1568–1586Google Scholar
  135. 135.
    Villoslada, F. N.; Takeuchi, T., Multivariate analysis and experimental design in the screening of combinatorial libraries of molecular imprinted polymers, Bull. Chem. Soc. Japan. 2005, 78, 1354–1361Google Scholar
  136. 136.
    Mijangos, I.; Navarro-Villoslada, F.; Guerreiro, A.; Piletska, E.; Chianella, I.; Karim, K.; Turner, A.; Piletsky, S., Influence of initiator and different polymerisation conditions on performance of molecularly imprinted polymers, Biosens. Bioelectron. 2006, 22, 381–387Google Scholar
  137. 137.
    Potyrailo, R. A. High-throughput experimentation in early 21st century: Searching for materials descriptors, not for a needle in the haystack, 6th DPI Workshop on Combinatorial and High-Throughput Approaches in Polymer Science, September 10–11, Darmstadt, Germany, 2007 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Chemical and Biological Sensing Laboratory, Materials Analysis and Chemical Sciences, General Electric CompanyGlobal Research CenterNew YorkUSA
  2. 2.Department of NanobiotechnologyLausitz University of Applied SciencesSenftenbergGermany

Personalised recommendations