Computer-Aided Design of Organic Host Architectures for Selective Chemosensors

  • Benjamin P. Hay
  • Vyacheslav S. Bryantsev
Part of the Integrated Analytical Systems book series (ANASYS)


Selective organic hosts provide the foundation for the development of many types of sensors. The deliberate design of host molecules with predetermined selectivity, however, remains a challenge in supramolecular chemistry. To address this issue, we have developed a de novo structure-based design approach for the unbiased construction of complementary host architectures. This chapter summarizes recent progress including improvements on a computer software program, HostDesigner, specifically tailored to discover host architectures for small guest molecules. HostDesigner is capable of generating and evaluating millions of candidate structures in minutes on a desktop personal computer, allowing a user to rapidly identify three-dimensional architectures that are structurally organized for binding a targeted guest species. The efficacy of this computational methodology is illustrated with a search for cation hosts containing aliphatic ether oxygen groups and anion hosts containing urea groups.


Dihedral Angle Rotatable Bond Host Structure Bonding Vector Structural Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



BPH was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy under contract number DE-AC05–00OR22725 with Oak Ridge National Laboratory (managed by UT-Battelle, LLC).


  1. 1.
    Desvergne, J. P.; Czarnik, A. W.; Eds., Chemosensors of Ion and Molecule Recognition; Kluwer, Dordrecht, Netherlands, 1997 Google Scholar
  2. 2.
    Beer, P. D.; Gale, P. A., Anion recognition and sensing: The state of the art and future perspectives, Angew. Chem. Int. Ed. 2001, 40, 486–516CrossRefGoogle Scholar
  3. 3.
    Manez-Martinez, R.; Sancenon, F., New advances in fluorogenic anion chemosensors, J. Fluoresc. 2005, 15, 267–285CrossRefGoogle Scholar
  4. 4.
    Suksai, C.; Tuntulani, T., Chromogenic anion sensors, Chem. Soc. Rev. 2003, 32, 192–202CrossRefGoogle Scholar
  5. 5.
    Gunnlaugsson, T.; Glynn, M.; Tocci, G. M. (nee Hussey); Kruger, P. E.; Pfeffer, F. M., Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors, Coord. Chem. Rev. 2006, 250, 3094–3117CrossRefGoogle Scholar
  6. 6.
    Nguyen, B. T.; Anslyn, E. V., Indicator-displacement assays, Coord. Chem. Rev. 2006, 250, 3118–3127CrossRefGoogle Scholar
  7. 7.
    Li, Y. Q.; Bricks, J. L.; Resch-Genger, U.; Spieles, M., Rettig, Bifunctional charge transfer operated fluorescent probes with acceptor and donor Receptors. 2. Bifunctional cation coordination behavior of biphenyl-type sensor molecules incorporating 2,2′:6′,2′′-terpyridine acceptors, J. Phys. Chem. A 2006, 110, 10972–10984CrossRefGoogle Scholar
  8. 8.
    Rurack, K.; Resch-Genger, U., Rigidization, preorientation and electronic decoupling - the ‘magic triangle’ for the design of highly efficient fluorescent sensors and switches, Chem. Soc. Rev. 2002, 31, 116–127CrossRefGoogle Scholar
  9. 9.
    Gardner, J. W.; Bartlett, P. N., Electronic Noses: Principles and Applications; Oxford University Press, Oxford, 1999 Google Scholar
  10. 10.
    Pearce, T. C.; Schiffman, S. S.; Nagle, H. T.; Gardner, J. W., Eds., Handbook of Machine Olfaction: Electronic Nose Technology; Willey-VCH, Weinheim, 2003 Google Scholar
  11. 11.
    James, D.; Scott, S. M.; Ali, Z.; O'Hare, W. T., Chemical Sensors for electronic nose systems, Microchim. Acta 2005, 149, 1–17CrossRefGoogle Scholar
  12. 12.
    Wolfbeis, O. S., Materials for fluorescent-based optical chemical sensors, J. Mater. Chem. 2005, 15, 2657–2669CrossRefGoogle Scholar
  13. 13.
    Brogan, K. L.; Walt, D. R., Optical fiber-based sensors: Application to chemical biology, Curr. Opin. Chem. Biol. 2005, 9, 494–500CrossRefGoogle Scholar
  14. 14.
    Wolfbeis, O. S., Fiber-optic chemical sensors and biosensors, Anal. Chem. 2006, 78, 3859–3874CrossRefGoogle Scholar
  15. 15.
    Polymeric sensor materials: Toward an alliance of combinatorial and rational design tools? Angew. Chem. Int. Ed. 2006, 45, 702–723CrossRefGoogle Scholar
  16. 16.
    Frost, M.; Meyerhoff, M. E., Sensors: Tackling biocompatibility, Anal. Chem. 2006, 7371–7377Google Scholar
  17. 17.
    Mohr, G. J., Covalent bond formation as an analytical tool to optically detect neutral and anionic analytes, Sens. Actuators B 2005, 107, 2–13CrossRefGoogle Scholar
  18. 18.
    Toma, H. E., Molecular materials and devices: Developing new functional systems based on the coordination chemistry approah, J. Braz. Chem. Soc. 2003, 14, 845–869CrossRefGoogle Scholar
  19. 19.
    Yang, R. H.; Wang, K. M.; Xiao, D.; Yang, X. H., A host-guest optical sensor for aliphatic amines based on lipophilic cyclodextrin, Fresenius J. Anal. Chem. 2000, 367, 429–435CrossRefGoogle Scholar
  20. 20.
    Finney, N. S., Combinatorial discovery of fluorophores and fluorescent probes, Curr. Opin. Chem. Biol. 2006, 10, 238–245CrossRefGoogle Scholar
  21. 21.
    Steed, J.; Atwood, J., Supramolecular Chemistry; Wiley, LTD, Chichester, 2000 Google Scholar
  22. 22.
    Schneider, H.-J.; Yatsimirsky, A., Principles and Methods in Supramolecular Chemistry; Wiley, LTD, Chichester, 2000 Google Scholar
  23. 23.
    Cram, D. J.; Lein, G. M. Host-guest complexation. 36. Spherand and lithium and sodium ion complexation rates and equilibria, J. Am. Chem. Soc. 1985, 107, 3657–3668CrossRefGoogle Scholar
  24. 24.
    Busch, D. H.; Farmery, K.; Goedken, V.; Katovic, V.; Melnyk, A.C.; Sperati, C. R.; Tokel, N., Chemical foundations for understanding of natural macrocyclic complexes, Adv. Chem. Ser. 1971, 100, 44CrossRefGoogle Scholar
  25. 25.
    McDougall, G. J.; Hancock, R. D.; Boeyens, J. C. A., Empirical force-field calculations of strain-energy contributions to the thermodynamics of complex formation. Part 1. The difference in stability between complexes containing five- and six-membered chelate rings, J. Chem. Soc. Dalton Trans. 1978, 1438–1444Google Scholar
  26. 26.
    Anicini, A.; Fabbrizzi, L.; Paoletti, P.; Clay, R. M., A microcalorimetric study of the macrocyclic effect. Enthalpies of formation of copper(II) and zinc(II) complexes with some tetra-aza macrocyclic ligands in aqueous solution, J. Chem. Soc. Dalton Trans. 1978, 577–583Google Scholar
  27. 27.
    Cram, D. J.; Kaneda, T.; Helgeson, R.C.; Brown, S. B.; Knobler, C. B.; Maverick, E.; Trueblood, K. N., Host-guest complexation. 35. Spherands, the first completely preorganized ligand systems, J. Am. Chem. Soc. 1985, 107, 3645–3657CrossRefGoogle Scholar
  28. 28.
    Stack, T. D. P.; Hou, Z.; Raymond, K. N., Rational reduction of the conformational space of a siderophore analog through nonbonded interactions: the role of entropy in enterobactin, J. Am. Chem. Soc. 1993, 115, 6466–6467CrossRefGoogle Scholar
  29. 29.
    Bianchi, A.; Bowman-James, K.; García-España, E., Eds., Supramolecular Chemistry of Anions; Wiley-VHC, New York, 1997 Google Scholar
  30. 30.
    Schmidtchen, F. P.; Berger, M., Artificial organic host molecules for anions, Chem. Rev. 1997, 97, 1609–1646CrossRefGoogle Scholar
  31. 31.
    Gale, P. A., Anion coordination and anion-directed assembly: Highlights from 1997 and 1998, Coord. Chem. Rev. 2000, 199, 181–233CrossRefGoogle Scholar
  32. 32.
    Gale, P. A., Anion receptor chemistry: highlights from 1999, Coord. Chem. Rev. 2001, 213, 79–128CrossRefGoogle Scholar
  33. 33.
    Fitzmaurice, R. J.; Kyne, G. M.; Douheret, D.; Kilburn, J. D., Synthetic receptors for carboxylic acids and carboxylates, J. Chem. Soc.; Perkin Trans. 2002, 1, 841–864CrossRefGoogle Scholar
  34. 34.
    Martínez-Máñez, R.; Sacenón, F., Fluorogenic and chromogenic chemosensors and reagents for anions, Chem. Rev. 2003, 103, 4419–4476CrossRefGoogle Scholar
  35. 35.
    Choi, K.; Hamilton, A. D., Macrocyclic anion receptors based on directed hydrogen bonding interactions, Coord. Chem. Rev. 2003, 240, 101–110CrossRefGoogle Scholar
  36. 36.
    Lambert, T. N.; Smith, B. D., Synthetic receptors for phospholipid headgroups, Coord. Chem. Rev. 2003, 240, 129–141CrossRefGoogle Scholar
  37. 37.
    Davis, A. P.; Joos, J.-B., Steroids as organising elements in anion receptors, Coord. Chem. Rev. 2003, 240, 143–156CrossRefGoogle Scholar
  38. 38.
    Gale, P. A., Anion and ion-pair receptor chemistry: Highlights from 2000 and 2001, Coord. Chem. Rev. 2003, 240, 191–221CrossRefGoogle Scholar
  39. 39.
    Moyer, B. A.; Singh, R. P., Eds., Fundamentals and Applications of Anion Separations; Kluwer, New York, 2004 Google Scholar
  40. 40.
    Severin, K., Supramolecular chemistry with organometallic half-sandwich complexes, Chem. Commun. 2006, 3859–3867Google Scholar
  41. 41.
    Wright, A. T.; Anslyn, E. V., Differential receptor arrays and assays for solution-based molecular recognition, Chem. Soc. Rev. 2006, 35, 14–28CrossRefGoogle Scholar
  42. 42.
    Kuntz, I. D.; Meng, E. C.; Shoichet, B. K., Structure-based molecular design, Acct. Chem. Res. 1994, 27, 117–123CrossRefGoogle Scholar
  43. 43.
    Lybrand, T. P., Ligand-protein docking and rational drug design, Curr. Opin. Struct. Biol. 1995, 5, 224–228CrossRefGoogle Scholar
  44. 44.
    Böhm, H.-J., Computational tools for structure-based ligand design, Prog. Biophys. Mol. Biol. 1996, 66, 197–210CrossRefGoogle Scholar
  45. 45.
    Ajay, Murcko, M. A., Computational methods to predict binding free energy in ligand-receptor complexes, J. Med. Chem. 1995, 38, 4953–4967CrossRefGoogle Scholar
  46. 46.
    Eldridge, M. D.; Murray, C. W.; Auton, T. R.; Paolini, G. V.; Mee, R. P., Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes, J. Comput. Aided Mol. Des. 1997, 11, 425–445CrossRefGoogle Scholar
  47. 47.
    Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J., Docking and scoring in virtual screening for drug discovery: methods and applications, Nature Rev. Drug Discov. 2004, 3, 935–949CrossRefGoogle Scholar
  48. 48.
    Nishibata, Y.; Itai, A., Automatic creation of drug candidate structures based on receptor structure. Starting point for artificial lead generation, Tetrahedron 1991, 47, 8985–8990CrossRefGoogle Scholar
  49. 49.
    Nishibata, Y.; Itai, A., Confirmation of usefulness of a structure construction program based on three-dimensional receptor structure for rational lead generation, J. Med. Chem. 1993, 36, 2921–2928CrossRefGoogle Scholar
  50. 50.
    Rotstein, S. H.; Murcko, M. A., GenStar: A method for de novo drug design, J. Comput. Aided Mol. Des. 1993, 7, 23–43CrossRefGoogle Scholar
  51. 51.
    Bohecek, R. S.; McMartin, C., Multiple highly diverse structures complementary to enzyme binding sites: Results of extensive application of a de novo design method incorporating combinatorial growth, J. Am. Chem. Soc. 1994, 116, 5560–5571CrossRefGoogle Scholar
  52. 52.
    Gehlhaar, D. K.; Moerder, K. E.; Zichi, D.; Sherman, C. J.; Ogden, R. C.; Freer, S. T., De novo design of enzyme inhibitors by Monte Carlo ligand generation, J. Med. Chem. 1995, 38, 466–472CrossRefGoogle Scholar
  53. 53.
    Luo, Z.; Wang, R.; Lai, L., RASSE: A new method for structure-based drug design J. Chem. Inf. Comput. Sci. 1996, 36, 1187–1194CrossRefGoogle Scholar
  54. 54.
    Böhm, H.-J., The computer program LUDI: A new method for the de novo design of enzyme inhibitors, J. Comput. Aided Mol. Des. 1992, 6, 61–78CrossRefGoogle Scholar
  55. 55.
    Lawrence, M. C.; Davis, P. C., CLIX: A search algorithm for finding novel ligands capable of binding proteins of known three-dimensional structure, Proteins: Struct. Funct. Genet. 1992, 12, 31–41CrossRefGoogle Scholar
  56. 56.
    Ho, C. M. W.; Marshall, G. R., SPLICE: A program to assemble partial query solutions from three-dimensional database searches into novel ligands, J. Comput.-Aided Mol. Des. 1993, 7, 623–647CrossRefGoogle Scholar
  57. 57.
    Rotstein, S. H.; Murcko, M. K., GroupBuild: A fragment-based method for de novo drug design, J. Med. Chem. 1993, 36, 1700–1710CrossRefGoogle Scholar
  58. 58.
    Tschinke, V.; Cohen, N. C., The NEWLEAD program: A new method for the design of candidate structures from pharmacophoric hypotheses, J. Med. Chem. 1993, 36, 3863–3870.CrossRefGoogle Scholar
  59. 59.
    Gillet, V. J.; Newell, W.; Mata, P.; Myatt, G. J.; Sike, S.; Zsoldos, Z.; Johnson, A. P., SPROUT: Recent developments in the de novo design of molecules, J. Chem. Inf. Comput. Sci. 1994, 34, 207–217.CrossRefGoogle Scholar
  60. 60.
    Leach, A. R.; Kilvington, S. R., Automated molecular design: A new fragment-joining algorithm, J. Comput.-Aided Mol. Des. 1994, 8, 283–298.CrossRefGoogle Scholar
  61. 61.
    Mata, P.; Gillet, V. J.; Johnson, A. P.; Lampreia, J.; Myatt, G. J.; Sike, S.; Stebbings, A. L., SPROUT: 3D structure generation using templates, J. Chem. Inf. Comp. Sci. 1995, 35, 479–493.CrossRefGoogle Scholar
  62. 62.
    Roe, D. C.; Kuntz, I. D., BUILDER v.2: Improving the chemistry of a de novo design strategy, J. Comput.-Aided Mol. Des. 1995, 9, 269–282.CrossRefGoogle Scholar
  63. 63.
    Wang, R. X.; Gao, Y.; Lai, L. H., LigBuilder: A multi-purpose program for structure-based drug design, J. Mol. Mod. 2000, 6, 498–516.CrossRefGoogle Scholar
  64. 64.
    Head, R. D.; Smythe, M. L.; Oprea, T. I.; Waller, C. L.; Green, S. M.; Marshall, G. R., VALIDATE: A new method for the receptor-based prediction of binding affinities of novel ligands, J. Am. Chem. Soc. 1996, 118, 3959–3969.CrossRefGoogle Scholar
  65. 65.
    Baxter, C. A.; Murray, C. W.; Clark, D. E.; Westhead, D. R.; Eldridge, M. D., Flexible docking using tabu search and an empirical estimate of binding affinity, Proteins: Struct. Funct. Genet. 1998, 33, 367–382.CrossRefGoogle Scholar
  66. 66.
    Wang, R.; Liu, L.; Lai, L.; Tang, Y., SCORE: A new empirical method for estimating the binding affinity of a protein-ligand complex, J. Mol. Model. 1998, 4, 379–394.CrossRefGoogle Scholar
  67. 67.
    Böhm, H.-J.; Schneider, G., Virtual screening and fast automated docking methods, Drug Discov. Today 2002, 7, 64–70.Google Scholar
  68. 68.
    Hay, B. P.; Firman, T. K., HostDesigner: A program for the de novo structure-based design of molecular receptors with binding sites that complement metal ion guests, Inorg. Chem. 2002, 41, 5502–5512.CrossRefGoogle Scholar
  69. 69.
    Hay, B. P.; Firman, T. K.; Bryantsev, V. S., HostDesigner User's Manual, PNNL-13850, Pacific Northwest National Laboratory, Richland, WA, 2006. HostDesigner software and User's Manual can be obtained free of charge by contacting BPH ( Google Scholar
  70. 70.
    Allinger, N. L.; Lii, J.-H., Molecular mechanics. The MM3 force field for hydrocarbons. 1, J. Am. Chem. Soc. 1989, 111, 8551–8566.CrossRefGoogle Scholar
  71. 71.
    Eblinger, F.; Schneider, H.-J., Stabilities of hydrogen-bonded supramolecular complexes with various numbers of single bonds: Attempts to quantify a dogma in host-guest chemistry, Angew. Chem. Int. Ed. 1998, 37, 826–829.CrossRefGoogle Scholar
  72. 72.
    Mammen, M.; Shakhnovich, E. I.; Whitesides, G. M., Using a convenient, quantitative model for torsional entropy to establish qualitative trends for molecular processes that restrict conformational freedom, J. Org. Chem. 1998, 63, 3168–3175.CrossRefGoogle Scholar
  73. 73.
    Houk, K. N.; Leach, A. G.; Kim, S. P.; Zhang, X., Binding affinities of host-guest, protein-ligand, and protein-transition-state complexes, Angew. Chem. Int. Ed. 2003, 42, 4872–4897.CrossRefGoogle Scholar
  74. 74.
    Deanda, F.; Smith, K. M.; Liu, J.; Pearlman, R. S., GSSI, a general model for solute−solvent interactions. 1. Description of the model, Mol. Pharm. 2004, 1, 23–39.CrossRefGoogle Scholar
  75. 75.
    Hay, B. P.; Oliferenko, A. A.; Uddin, J.; Zhang, C.; Firman, T. K., Search for improved host architectures: Application of the de novo structure-based design and high-throughput screening methods to identify optimal binding blocks for multidentate ethers, J. Am. Chem. Soc. 2005, 127, 17043–17053.CrossRefGoogle Scholar
  76. 76.
    Bryantsev, V. S.; Hay, B. P., De novo structure-based design of bisurea hosts for tetrahedral oxoanion guests, J. Am. Chem. Soc. 2006, 128, 2035–2042.CrossRefGoogle Scholar
  77. 77.
    Hay, B. P.; Firman, T. K.; Moyer, B. A., Structural design criteria for anion hosts: Strategies for achieving anion shape recognition through the complementary placement of urea donor groups, J. Am. Chem. Soc. 2005, 127, 1810–1819.CrossRefGoogle Scholar
  78. 78.
    Bryantsev V. S.; Hay, B. P., Using the MMFF94 model to predict structures and energies for hydrogen–bonded urea–anion complexes, J. Mol. Struct. (THEOCHEM) 2005, 725, 177–182.CrossRefGoogle Scholar
  79. 79.
    Albert, J. S.; Hamilton, A. D., Synthetic analogs of the ristocetin binding site: Neutral, multidentate receptors for carboxylate recognition, Tetrahedron Lett. 1993, 34, 7363–7366.CrossRefGoogle Scholar
  80. 80.
    Nishizawa, S.; Bühlmann, P.; Iwao, M.; Umezawa, Y., Anion recognition by urea and thiourea groups: Remarkably simple neutral receptors for dihydrogenphosphate, Tetrahedron Lett. 1995, 36, 6483–6486.CrossRefGoogle Scholar
  81. 81.
    Kwon, J. Y.; Jang, Y. J.; Kim, S. K.; Lee, K.-H.; Kim, J. S.; Yoon, J., Unique hydrogen bonds between 9-anthracenyl hydrogen and anions, J. Org. Chem. 2004, 69, 5155–5157.CrossRefGoogle Scholar
  82. 82.
    Brooks, S. J.; Gale, P. A.; Light, M. E., Carboxylate complexation by 1,1′-(1,2-phenylene)bis(3-phenylurea) in solution and the solid state, Chem. Commun. 2005, 4696–4698.Google Scholar
  83. 83.
    Amendola, V.; Boicchi, M.; Esteban-Gomez, D.; Fabbrizzi, L.; Monzani, E., Chiral receptors for phosphate ions, Org. Biomol. Chem. 2005, 3, 2632–2639.CrossRefGoogle Scholar
  84. 84.
    Hamann, B. C.; Branda, N. R.; Rebek, J., Jr., Multipoint recognition of carboxylates by neutral hosts in non-polar solvents, Tetrahedron Lett. 1993, 34, 6837–6840.CrossRefGoogle Scholar
  85. 85.
    Bühlmann, P.; Nishizawa, S.; Xiao, K. P.; Umezawa, Y., Strong hydrogen bond-mediated complexation of H2PO4 by neutral bis-thiourea hosts, Tetrahedron 1997, 53, 1647–1654.CrossRefGoogle Scholar
  86. 86.
    Tobe, Y.; Sasaki, S.; Mizuno, M.; Naemura, K., Synthesis and anion binding ability of metacyclophane-based cyclic thioureas, Chem. Lett. 1998, 8, 835–836.CrossRefGoogle Scholar
  87. 87.
    Nishizawa, S.; Kamaishi, T.; Yokobori, T.; Kato, R.; Cui, Y.-Y.; Shioya, T.; Teramae, N., Facilitated sulfate transfer across the nitrobenzene-water interface as mediated by hydrogen-bonding ionophores, Anal. Sci. 2004, 20, 1559–1566.CrossRefGoogle Scholar
  88. 88.
    Nishizawa, S.; Rokobori, T.; Kato, R.; Yoshimoto, K.; Kamaishi, T.; Teramae, N., Hydrogen-bond forming ionophore for highly efficient transport of phosphate anions across the nitrobenzene-water interface, Analyst 2003, 128, 663–669.CrossRefGoogle Scholar
  89. 89.
    Lauri, G.; Bartlett, P. A., CAVEAT: A program to facilitate the design of organic molecules, J. Comp. Aided Mol. Design 1994, 8, 51–66.CrossRefGoogle Scholar
  90. 90.
    Herges, R.; Dikmans, A.; Jana, U.; Köhler, F.; Jones, P. G.; Dix, I.; Fricke, T.; König, B., Design of a neutral macrocyclic ionophore: Synthesis and binding properties for nitrate and bromide anions, Eur. J. Org. Chem. 2002, 3004–3014.Google Scholar
  91. 91.
    Dietrich, B; Fyles, T. M.; Lehn, J. M.; Pease L. G.; Fyles, D. L., Anion receptor molecules - synthesis and some anion binding properties of macrocyclic guanidinium salts, J. Chem. Soc. Chem. Comm. 1978, 934–936.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Chemical Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations