Skip to main content

Quantum Mechanics and First-Principles Molecular Dynamics Selection of Polymer Sensing Materials

  • Chapter
  • First Online:
Computational Methods for Sensor Material Selection

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

We present two first-principles methods, density functional theory (DFT) and a molecular dynamics (MD) computer simulation protocol, as computational means for the selection of polymer sensing materials. The DFT methods can yield binding energies of polymer moieties to specific vapor bound compounds, quantities that were found useful in materials selection for sensing of organic and inorganic compounds for designing sensors for the electronic nose (ENose) that flew on the International Space Station (ISS) in 2008–2009. Similarly, we present an MD protocol that offers high consistency in the estimation of Hildebrand and Hansen solubility parameters (HSP) for vapor bound compounds and amorphous polymers. HSP are useful for fitting measured polymer sensor responses with physically rooted analytical models. We apply the method to the JPL electronic nose (ENose), an array of sensors with conducting leads connected through thin film polymers loaded with carbon black. Detection relies on a change in electric resistivity of the polymer film as function of the amount of swelling caused by the presence of the analyte chemical compound. The amount of swelling depends upon the chemical composition of the polymer and the analyte molecule. The pattern is unique and it unambiguously identifies the compound. Experimentally determined changes in relative resistivity of fifteen polymer sensor materials upon exposure to ten vapors were modeled with the first-principles HSP model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ryan, M. A.; Shevade, A. V.; Zhou, H.; Homer, M. L., Polymer-carbon black composite sensors in an electronic nose for air-quality monitoring, Mrs Bull. 2004, 29, 714–719

    Article  CAS  Google Scholar 

  2. Ryan, M. A.; Zhou, H. Y.; Buehler, M. G.; Manatt, K. S.; Mowrey, V. S.; Jackson, S. R.; Kisor, A. K.; Shevade, A. V.; Homer, M. L., Monitoring space shuttle air quality using the jet propulsion laboratory electronic nose, IEEE Sensors J. 2004, 4, 337–347

    Article  CAS  Google Scholar 

  3. Zhou, H. Y.; Homer, M. L.; Shevade, A. V.; Ryan, M. A., Nonlinear least-squares based method for identifying and quantifying single and mixed contaminants in air with an electronic nose, Sensors 2006, 6, 1–18

    Article  CAS  Google Scholar 

  4. Shevade, A. V.; Homer, M. L.; Taylor, C. J.; Zhou, H. Y.; Jewell, A. D.; Manatt, K. S.; Kisor, A. K.; Yen, S. P. S.; Ryan, M. A., Correlating polymer–carbon composite sensor response with molecular descriptors, J. Electrochem. Soc. 2006, 153, H209–H216

    Article  CAS  Google Scholar 

  5. Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Kisor, A. K.; Manatt, K. S.; Lin, B.; Fleurial, J. P.; Manfreda, A. M.; Yen, S. P. S., Calorimetric measurements of heat of sorption in polymer films: A molecular modeling and experimental study, Anal. Chim. Acta 2005, 543, 242–248

    Article  CAS  Google Scholar 

  6. Shevade, A. V., Developing sensor activity relationships for the JPL electronic nose sensors using molecular modeling and QSAR techniques, 2005 IEEE Sensors (IEEE Cat. No.05CH37665C) 2005, 4 pp.

    Google Scholar 

  7. Cozmuta, I.; Blanco, M.; Goddard, W. A., Gas sorption and barrier properties of polymeric membranes from molecular dynamics and Monte Carlo simulations, J. Phys. Chem. B 2007, 111, 3151–3166

    Article  CAS  Google Scholar 

  8. Belmares, M.; Blanco, M.; Goddard, W. A.; Ross, R. B.; Caldwell, G.; Chou, S. H.; Pham, J.; Olofson, P. M.; Thomas, C., Hildebrand and Hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors, J. Comput. Chem. 2004, 25, 1814–1826

    Article  CAS  Google Scholar 

  9. Lin, S. T.; Blanco, M.; Goddard, W. A., The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of Lennard-Jones fluids, J. Chem. Phys. 2003, 119, 11792–11805

    Article  CAS  Google Scholar 

  10. Becke, A. D., Density-functional thermochemistry. 3. The role of exact exchange, J. Chem. Phys. 1993, 98, 5648–5652

    Article  CAS  Google Scholar 

  11. Lee, C. T.; Yang, W. T.; Parr, R. G., Development of the Colle–Salvetti correlation-energy formula into a functional of the electron-density, Phys. Rev. B 1988, 37, 785–789

    Article  CAS  Google Scholar 

  12. Xu, X.; Goddard, W. A., The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties, Proc. Natl Acad. Sci. USA 2004, 101, 2673–2677

    Article  CAS  Google Scholar 

  13. Zhao, Y., Development and assessment of a new hybrid density functional model for thermochemical kinetics, J. Phys. Chem. A 2004, 108, 2715–2719

    Article  CAS  Google Scholar 

  14. Zhao, Y., A density functional that accounts for medium-range correlation energies in organic chemistry, Org. Lett. 2006, 8, 5753–5755

    Article  CAS  Google Scholar 

  15. Zhao, Y., Comparative DFT study of van der Waals complexes: Rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers, J. Phys. Chem. A 2006, 110, 5121–5129

    Article  CAS  Google Scholar 

  16. Zhao, Y., Density functionals with broad applicability in chemistry. Acc. Chem. Res. 2008, 41, 157–167

    Article  CAS  Google Scholar 

  17. Mayo, S. L.; Olafson, B. D.; Goddard, W. A., Dreiding – A generic force-field for molecular simulations. J. Phys. Chem. 1990, 94, 8897–8909

    Article  CAS  Google Scholar 

  18. Blanco, M., Molecular silverware.1. General-solutions to excluded volume constrained problems. J. Comput. Chem. 1991, 12, 237–247

    Article  CAS  Google Scholar 

  19. Ryan, M. A.; Shevade, A. V.; Taylor, C. J.; Homer, M. L.; Jewell, A. D.; Kisor, A. K.; Manatt, K. S.; Yen, S. P. S.; Blanco, M.; Goddard III, W. A. In expanding the capabilities of the JPL electronic nose for an international space station technology demonstration, In Proceedings of 36th International Conference on Environmental Systems 2006, 2006–01–2179, Norfolk, Virginia, USA

    Google Scholar 

  20. Allen, M. P.; Tildesley, D. J., Computer Simulations of Liquids, Oxford University Press, Oxford, 1987

    Google Scholar 

  21. Frenkel, D., Computer Simulation in Chemical Physics, Kjeuver, New York, 1993

    Google Scholar 

  22. van Krevelen, D. W., Properties of Polymers: Their Correlation with Chemical Structure; their Numerical Estimation and Prediction from Group Contributions, Elsevier Science, New York, 1990

    Google Scholar 

  23. Hansen, C. M., The three dimensional solubility parameter – Key to paint component affinities I. – Solvents, plasticizers, polymers, and resins. J. Paint Technol. 1967, 39, 104–117

    CAS  Google Scholar 

  24. Jaguar, 7.207; Schrodinger, LLC, NY, 2007

    Google Scholar 

  25. Accelrys, I. Cerius2, 4.01, Accelrys, Inc.: San Diego, CA, 2005

    Google Scholar 

  26. Lin, S. T.; Blanco, M. Rotational Isomeric State Table Algorithm, California Institute of Technology, Pasadena, CA, 2003

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Materials and Process Simulation Center, Beckman Institute at the California Institute of Technology and by a grant from NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Blanco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Blanco, M., Shevade, A.V., Ryan, M.A. (2009). Quantum Mechanics and First-Principles Molecular Dynamics Selection of Polymer Sensing Materials. In: Ryan, M., Shevade, A., Taylor, C., Homer, M., Blanco, M., Stetter, J. (eds) Computational Methods for Sensor Material Selection. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73715-7_3

Download citation

Publish with us

Policies and ethics