Electromechanical and Chemical Sensing at the Nanoscale: DFT and Transport Modeling

Part of the Integrated Analytical Systems book series (ANASYS)


Of the many nanoelectronic applications proposed for near to medium-term commercial deployment, sensors based on carbon nanotubes (CNT) and metal-oxide nanowires are receiving significant attention from researchers. Such devices typically operate on the basis of the changes of electrical response characteristics of the active component (CNT or nanowire) when subjected to an externally applied mechanical stress or the adsorption of a chemical or bio-molecule. Practical development of such technologies can greatly benefit from quantum chemical modeling based on density functional theory (DFT), and from electronic transport modeling based on non-equilibrium Green's function (NEGF). DFT can compute useful quantities like possible bond-rearrangements, binding energy, charge transfer, and changes to the electronic structure, while NEGF can predict changes in electronic transport behavior and contact resistance. Effects of surrounding medium and intrinsic structural defects can also be taken into account. In this work we review some recent DFT and transport investigations on (1) CNT-based nano-electromechanical sensors (NEMS) and (2) gas-sensing properties of CNTs and metal-oxide nanowires. We also briefly discuss our current understanding of CNT–metal contacts which, depending upon the metal, the deposition technique, and the masking method can have a significant effect on device performance.


Schottky Barrier Chiral Angle Universal Force Field Critical Cluster Size Zigzag Tube 



The author would like to acknowledge collaborations with M. P. Anantram, A. Svizhenko, and A. Ricca (NASA, Ames), J. Andzelm, N. Govind, and P. Kung (Accelrys), J. Rodriguez (Brookhaven National Lab), and Prof. P.Yang (UC, Berkeley). Stimulating discussions with Prof. H. Dai and Dr. A. Javey (Stanford) are also greatly appreciated. The work was performed under the auspices of the U.S. Department of Energy by the UC LLNL under Contract W-7405-Eng-48.


  1. 1.
    Mintmire, J. W.; Dunlap, B. I.; White, C. T., Are fullerene tubules metallic, Phys. Rev. Lett. 1992, 68, 631–634Google Scholar
  2. 2.
    Hamada, N.; Sawada, S.; Oshiyama, A., New one-dimensional conductors: Graphitic microtubules, Phys. Rev. Lett. 1992, 68, 1579–1582Google Scholar
  3. 3.
    Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S., Electronic structure of chiral graphene tubules, Appl. Phys. Lett. 1992, 60, 2204–2206Google Scholar
  4. 4.
    White, C. T.; Robertson, D. H.; Mintmire, J. W., Helical and rotational symmetries of nanoscale graphitic tubules, Phys. Rev. B 1993, 47, 5485–5488Google Scholar
  5. 5.
    Jishi, R. A.; Inomata, D.; Nakao, K.; Dresselhaus, M. S.; Dresselhaus, G., Electronic and lattice properties of carbon nanotubes, J. Phys. Soc. Jpn 1994, 63, 2252–2260Google Scholar
  6. 6.
    White, C. T.; Mintmire, J. W.; Mowrey, R. C.; Brenner, D. W.; Robertson, D. H.; Harrison, J. A.; Dunlap, B. I., In Buckminsterfullerenes; Billups, W. E.; Ciufolini, M. A., Eds.; VCH Pub-lishers, Deerfield Beach, FL, 1993Google Scholar
  7. 7.
    Articles in Phys. World 2000, 13, 29–53Google Scholar
  8. 8.
    Terrones, M., Science and technology of the twenty-first century: Synthesis, properties, and applications of carbon nanotubes, Annu. Rev. Mater. Res. 2003, 33, 419–501Google Scholar
  9. 9.
    Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A., Carbon nanotubes - The route toward applications, Science 2002, 297, 787–792Google Scholar
  10. 10.
    Ajayan, P. M.; Zhou, O., in Carbon Nanotubes Synthesis, Structure, Properties and Applications; Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P., Eds.; Springer, Berlin, 2001, 391–425Google Scholar
  11. 11.
    Meyyappan, M., Ed., Carbon Nanotubes – Science and Applications, CRC, Boca Raton, FL, 2004 Google Scholar
  12. 12.
    Iijima, S., Helical microtubules of graphitic carbon, Nature 1991, 354, 56–58Google Scholar
  13. 13.
    Articles in NSTI Technical Proceedings, NSTI Publications, Cambridge, MA, Vol. 2, 2001 Google Scholar
  14. 14.
    Articles in NSTI Technical Proceedings, NSTI Publications, Cambridge, MA, Vol. 2, 2002 Google Scholar
  15. 15.
    Articles in NSTI Technical Proceedings, NSTI Publications, Cambridge, MA, Vol. 3, 2003 Google Scholar
  16. 16.
    Bernholc, J.; Brenner, D.; Nardelli, M. B.; Meunier, V.; Roland, C., Mechanical and electrical properties of nanotubes, Annu. Rev. Mater. Res. 2002, 32, 347–375Google Scholar
  17. 17.
    Tománek, D.; Enbody, R., Eds., Science and Applications of Nanotubes, Kluwer, Netherlands, 2000 Google Scholar
  18. 18.
    Articles in Phys. B: Condensed Matter 2002, 323, No. 1–4Google Scholar
  19. 19.
    Tombler, T. W.; Zhou, C.; Alexseyev, L.; Kong, J.; Dai, H.; Liu, L.; Jayanthi, C. S.; Tang, M.; Wu, S. Y., Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation, Nature 2000, 405, 769–772Google Scholar
  20. 20.
    Nardelli, M.; Bernholc, J., Mechanical deformations and coherent transport in carbon nanotubes, Phys. Rev. B 1999, 60, R16338–R16341Google Scholar
  21. 21.
    Rochefort, A.; Avouris, P.; Lesage, F.; Salahub, D., Electrical and mechanical properties of distorted carbon nanotubes, Phys. Rev. B 1999, 60, 13824–13830Google Scholar
  22. 22.
    Liu, L.; Jayanthi, C. S; Dai, H., Controllable reversibility of an sp2 to sp3 transition of a single wall nanotube under the manipulation of an AFM tip: A nanoscale electromechanical switch, Phys. Rev. Lett. 2000, 84, 4950–4953Google Scholar
  23. 23.
    Parr, R. G.; Yang, W., Density Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, 1989 Google Scholar
  24. 24.
    Hohenberg, P.; Kohn, W., Inhomogeneous electron gas, Phys. Rev. 1964, 136, B864–B871Google Scholar
  25. 25.
    Kohn, W.; Sham, L. J., Self-consistent equations including exchange and correlation effects, Phys. Rev. 1965, 140, A1133–A1138Google Scholar
  26. 26.
    Jensen, F., Introduction to Computational Chemistry, Wiley, New York, 1999 Google Scholar
  27. 27.
    Hill, J.-R.; Subramanian, L.; Maiti, A., Molecular Modeling Techniques in Material Sciences, CRC/Taylor & Francis, Boca Raton, FL/London, 2005 Google Scholar
  28. 28.
    Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M., UFF: A full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc. 1992, 114, 10024–10039Google Scholar
  29. 29.
    Delley, B., An all-electron numerical method for solving the local density functional for polyatomic molecules, J. Chem. Phys. 1990, 92, 508–517Google Scholar
  30. 30.
    Delley, B., Fast calculation of electrostatics in crystals and large molecules, J. Phys. Chem. 1996, 100, 6107–6110Google Scholar
  31. 31.
    Delley, B., A scattering theoretic approach to scalar relativistic corrections on bonding, Int. J. Quantum Chem. 1998, 69, 423–433Google Scholar
  32. 32.
    Delley B., From molecules to solids with the DMol3 approach, J. Chem. Phys. 2000, 113, 7756–7764Google Scholar
  33. 33.
    Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett. 1996, 77, 3865–3868Google Scholar
  34. 34.
    Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations, Phys. Rev. B 1976, 13, 5188–5192Google Scholar
  35. 35.
    Szabo, A.; Ostlund, N. S., Modern Quantum Chemistry, Dover, New York, 1996 Google Scholar
  36. 36.
    Maiti, A., Application of carbon nanotubes as electromechanical sensors – Results from First-Principles simulations, Phys. Stat. Sol. B 2001, 226, 87–93Google Scholar
  37. 37.
    Datta, S., Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, 1997 Google Scholar
  38. 38.
    Datta, S., Quantum Transport: Atom to Transistor, Cambridge University Press, Cambridge, 2005 Google Scholar
  39. 39.
    Imry, Y., Introduction to Mesoscopic Physics, Oxford University Press, Oxford, 1997 Google Scholar
  40. 40.
    Brandbyge, M.; Mozos, J.; Ordejón, P.; Taylor, J.; Stokbro, K., Density-functional method for nonequilibrium electron transport, Phys. Rev. B 2002, 65, 165401.1–165401.17Google Scholar
  41. 41.
    Ferry, D. K.; Goodnick, S. M., Transport in Nanostructures, Cambridge University Press, Cambridge, 1997 Google Scholar
  42. 42.
    Beenakker, C. W. J., Random-matrix theory of quantum transport, Rev. Mod. Phys. 1997, 69, 731–808Google Scholar
  43. 43.
    Büttiker, M., Four-terminal phase-coherent conductance, Phys. Rev. Lett. 1986, 57, 1761–1764Google Scholar
  44. 44.
    Landauer, R., Conductance determined by transmission: Probes and quantised constriction resistance, J. Phys.: Condens: Matter 1989, 1, 8099–8110Google Scholar
  45. 45.
    Papaconstantopoulos, D. A.; Mehl, M. J.; Erwin, S. C.; Pederson, M. R., Tight-binding approach to computational materials science, In MRS Proceedings 491; Turchi, P.E.A.; Gonis, A.; Colombo, L., Eds.; Materials Research Society, Warrendale, PA, 1998 Google Scholar
  46. 46.
    Maiti, A.; Svizhenko, A.; Anantram, M. P., Electronic transport through carbon nanotubes: Effects of structural deformation and tube chirality, Phys. Rev. Lett. 2002, 88, 126805.1–126805.4Google Scholar
  47. 47.
    Kane, C. L.; Mele, E. J., Size, shape, and low energy electronic structure of carbon nanotubes, Phys. Rev. Lett. 1997, 78, 1932–1935Google Scholar
  48. 48.
    Heyd, R.; Charlier, A.; McRae, E., Uniaxial-stress effects on the electronic properties of carbon nanotubes, Phys. Rev. B 1997, 55, 6820–6824Google Scholar
  49. 49.
    Yang, L.; Anantram, M. P.; Han, J.; Lu, J. P., Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain, Phys. Rev. B 1999, 60, 13874–13878Google Scholar
  50. 50.
    Yang, L.; Han, J., Electronic structure of deformed carbon nanotubes, Phys. Rev. Lett. 2000, 85, 154–157Google Scholar
  51. 51.
    Kleiner, A.; Eggert, S., Band gaps of primary metallic carbon nanotubes, Phys. Rev. B 2001, 63, 073408.1–073408.4Google Scholar
  52. 52.
    Lammert, P. E.; Zhang, P.; Crespi, V. H., Gapping by squashing: Metal–insulator and insulator-metal transitions in collapsed carbon nanotubes, Phys. Rev. Lett. 2000, 84, 2453–2456Google Scholar
  53. 53.
    Lu, J-Q.; Wu, J.; Duan, W.; Liu, F.; Zhu, B. F.; Gu, B. L., Metal-to-semiconductor transition in squashed armchair carbon nanotubes, Phys. Rev. Lett. 2003, 90, 156601.1–156601.4Google Scholar
  54. 54.
    Svizhenko, A.; Mehrez, H.; Anantram, M. P.; Maiti, A., Sensing mechanical deformation in carbon nanotubes by electrical response: A computational study, Proc. SPIE 2005, 5593, 416–428Google Scholar
  55. 55.
    Minot, E. D.; Yaish, Y.; Sazonova, V.; Park, J-Y.; Brink, M.; McEuen, P. L., Tuning carbon nanotube band gaps with strain, Phys. Rev. Lett. 2003, 90, 156401.1–156401.4Google Scholar
  56. 56.
    Cao, J.; Wang, Q.; Dai, H., Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching, Phys. Rev. Lett. 2003, 90, 157601.1–157601.4Google Scholar
  57. 57.
    Maiti, A., Carbon nanotubes: Band gap engineering with strain, Nat. Mater. (London) 2003, 2, 440–442Google Scholar
  58. 58.
    Baughman, R. H., et al., Carbon nanotube actuators, Science 1999, 284, 1340–1344Google Scholar
  59. 59.
    Sazonova, V.; Yaish, Y.; Ustunel, H.; Roundy, D.; Arias, T. A.; McEuen P. L., A tunable carbon nanotube electromechanical oscillator, Nature 2004, 431, 284–287Google Scholar
  60. 60.
    Hartman, A. Z.; Jouzi, M.; Barnett, R. L.; Xu, J. M, Theoretical and experimental studies of carbon nanotube electromechanical coupling, Phys. Rev. Lett. 2004, 92, 236804.1–236804.4Google Scholar
  61. 61.
    Zhang, Y.; Franklin, N. W.; Chen, R. J.; Dai, H., Metal coating on suspended carbon nanotubes and its implication to metal–tube interaction, Chem. Phys. Lett. 2000, 331, 35–41Google Scholar
  62. 62.
    Mann, D.; Javey, A.; Kong, J.; Wang, Q.; Dai, H., Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts, Nano Lett. 2003, 3, 1541–1544Google Scholar
  63. 63.
    Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H., Ballistic carbon nanotube field-effect transistors, Nature 2003, 424, 654–657Google Scholar
  64. 64.
    Durgun, E.; Dag, S.; Bagci, V. M. K.; Gülseren, O.; Yildirim, T.; Ciraci, S., Systematic study of adsorption of single atoms on a carbon nanotube, Phys. Rev. B 2003, 67, 201401.1–201401.4Google Scholar
  65. 65.
    Maiti, A.; Ricca, A., Metal–nanotube interactions – binding energies and wetting properties, Chem. Phys. Lett. 2004, 395, 7–11Google Scholar
  66. 66.
    Heinze, S.; Tersoff, J.; Martel, R.; Derkcke, V.; Appenzeller, J.; Avouris, P., Carbon nanotubes as Schottky barrier transistors, Phys. Rev. Lett. 2002, 89, 106801.1–106801.4Google Scholar
  67. 67.
    Guo, J.; Datta, S.; Lundstrom, M., A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors, IEEE Trans. Electron Devices 2004, 51, 172–177Google Scholar
  68. 68.
    Shan, B.; Cho, K. J., Ab initio study of Schottky barriers at metal-nanotube contacts, Phys. Rev. B 2004, 70, 233405.1–233405.4Google Scholar
  69. 69.
    Nemec, N.; Tomanek, D.; Cuniberti, G., Contact dependence of carrier injection in carbon nanotubes: An ab initio study, Phys. Rev. Lett. 2006, 96, 076802.1–076802.4Google Scholar
  70. 70.
    Auvray, S. et al., Chemical optimization of self-assembled carbon nanotube transistors, Nano Lett. 2005, 5, 451–455Google Scholar
  71. 71.
    Charlier, J. C.; Blasé, X.; Roche, S., Electronic and transport properties of nanotubes, Rev. Mod. Phys. 2007, 79, 677–732Google Scholar
  72. 72.
    Kong, J.; Franklin, N.R; Zhou, C.; Chapline, M.G.; Peng, S.; Cho, K.; Dai, H., Nanotube molecular wires as chemical sensors, Science 2000, 287, 622–625Google Scholar
  73. 73.
    Collins, P.G.; Bradley, K.; Ishigami, M.; Zettl, A., Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science 2000, 287, 1801–1804Google Scholar
  74. 74.
    Valentini, L.; Armentano, I.; Kenny, J. M.; Cantalini, C.; Lozzi, L.; Santucci, S., Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin films, Appl. Phys. Lett. 2003, 82, 961–963Google Scholar
  75. 75.
    Chopra, S.; McGuire, K.; Gothard, N.; Rao, A. M.; Pham, A., Selective gas detection using a carbon nanotube sensor, Appl. Phys. Lett. 2003, 83, 2280–2282Google Scholar
  76. 76.
    Klinke, C.; Chen, J.; Afzali, A.; Avouris, P., Charge transfer induced polarity switching in carbon nanotube transistors, Nano Lett. 2005, 5, 555–558Google Scholar
  77. 77.
    Snow, E. S.; Perkins, F. K.; Houser, E. J.; Badescu, S. C.; Reinecke, T. L., Chemical detection with a single-walled carbon nanotube capacitor, Science 2005, 307, 1942–1945Google Scholar
  78. 78.
    Sumanasekera, G. U.; Pradhan, B. K.; Romero, H. E.; Adu, K. W.; Eklund, P. C., Giant thermopower effects from molecular physisorption on carbon nanotubes, Phys. Rev. Lett. 2002, 89, 166801.1–166801.4Google Scholar
  79. 79.
    Qi, P.; Vermesh, O.; Grecu, M.; Javey, A.; Wang, Q.; Dai, H.; Peng, S.; Cho, K., Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection, Nano Lett. 2003, 3, 347–351Google Scholar
  80. 80.
    Staii, C.; Johnson, A. T.; Chen, M.; Gelperin, A., DNA-decorated carbon nanotubes for chemical sensing, Nano Lett. 2005, 5, 1774–1778Google Scholar
  81. 81.
    Dai, H., Carbon nanotubes: Synthesis, integration, and properties, Acc. Chem. Res. 2002, 35, 1035–1044Google Scholar
  82. 82.
    Chen, R.; Zhang, Y.; Wang, D.; Dai, H., Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization, J. Am. Chem. Soc. 2001, 123, 3838–3839Google Scholar
  83. 83.
    Grüner, G., Carbon nanotube transistors for biosensing applications, Anal. Bioanal. Chem. 2006, 384, 322–335Google Scholar
  84. 84.
    Heath, J. R. In Nanobiotechnology II; Mirkin, C.; Niemeyer, C. M., Eds.; Wiley, New York, 2007, Chap. 12, 213Google Scholar
  85. 85.
    Asuri, P.; Bale, S. S.; Pangule R. C.; Shah, D. A.; Kane, R. S.; Dordick, J. S., Structure, function, and stability of enzymes covalently attached to single-walled carbon nanotubes, Langmuir 2007, 23, 12318–12321Google Scholar
  86. 86.
    Peng, S.; Cho, K. J.; Qi, P.; Dai, H., Ab initio study of CNT NO2 gas sensor, Chem. Phys. Lett. 2004, 387, 271–276Google Scholar
  87. 87.
    Rodriguez, J. A.; Jirsak, T.; Sambasiban, S.; Fischer, D.; Maiti, A., Chemistry of NO2 on CeO2 and MgO: Experimental and theoretical studies on the formation of NO3, J. Chem. Phys. 2000, 112, 9929–9939Google Scholar
  88. 88.
    Rodriguez, J. A.; Jirsak, T.; Liu, G.; Hrbek, J.; Dvorak, J.; Maiti, A., Chemistry of NO2 on oxide surfaces: Formation of NO3 on TiO2(110) and NO2:O vacancy interactions, J. Am. Chem. Soc. 2001, 123, 9597–9605Google Scholar
  89. 89.
    Chang, H.; Lee, J. D.; Lee, S. M.; Lee, Y. H., Adsorption of NH3 and NO2 molecules on carbon nanotubes, Appl. Phys. Lett. 2001, 79, 3863–3865Google Scholar
  90. 90.
    Zhao, J.; Buldum, A.; Han, J.; Lu, J. P., Gas molecule adsorption in carbon nanotubes and nanotube bundles, Nanotechnology 2002, 13, 195–200Google Scholar
  91. 91.
    Valentini, L.; Mercuri, F.; Armentano, I.; Cantalini, C.; Picozzi, S.; Lozzi, L.; Santucci, S.; Sgamellotti, A.; Kenny, A., Role of defects on the gas sensing properties of carbon nanotubes thin films: Experiment and theory, Chem. Phys. Lett. 2004, 387, 356–361Google Scholar
  92. 92.
    Robinson, J. A.; Snow, E. S.; Bǎdescu, S. C.; Reinecke, T. L.; Perkins, F. K., Role of defects in single-walled carbon nanotube chemical sensors, Nano Lett. 2006, 6, 1747–1751Google Scholar
  93. 93.
    Yamada, T., Modeling of carbon nanotube Schottky barrier modulation under oxidizing conditions, Phys. Rev. B 2004, 69, 125408.1–125408.8Google Scholar
  94. 94.
    Andzelm, J.; Govind, N.; Maiti, A., Carbon nanotubes as gas sensors – Role of structural defects, Chem. Phys. Lett. 2006, 421, 58–62Google Scholar
  95. 95.
    Stone, A. J.; Wales, D. J., Theoretical studies of icosahedral C60 and some related species, Chem. Phys. Lett. 1986, 128, 501–503Google Scholar
  96. 96.
    Ellison, M. D.; Crotty, M. J.; Koh, D.; Spray, R. L.; Tate, K. E., Adsorption of NH3 and NO2 on single-walled carbon nanotubes, J. Phys. Chem. B 2004, 108, 7938–7943Google Scholar
  97. 97.
    Maiti, A., Multiscale modeling with carbon nanotubes, Microelectron. J. 2008, 39, 208–221Google Scholar
  98. 98.
    Latil, S.; Roche, S.; Charlier, J. C., Electronic transport in carbon nanotubes with random coverage of physisorbed molecules, Nano Lett. 2005, 5, 2216–2219Google Scholar
  99. 99.
    Santucci, S.; Picozzi, S.; Di Gregorio; F., Lozzi; L., Cantalini, C., L'Aquila, C.; Valentini, L.; Kenny, J. M.; Delley, B., NO2 and CO gas adsorption on carbon nanotubes: Experiment and theory, J. Chem. Phys. 2003, 119, 10904–10910Google Scholar
  100. 100.
    Ulbricht, H.; Kriebel, J.; Moos, G.; Hertel, T., Desorption kinetics and interaction of Xe with single-wall carbon nanotube bundles, Chem. Phys. Lett. 2002, 363, 252–260Google Scholar
  101. 101.
    Wang, Z. L., Ed., Nanowires and Nanobelts: Materials, Properties, and Devices, Kluwer, Netherlands, 2003 Google Scholar
  102. 102.
    Dai, Z. R.; Pan, Z. W.; Wang, Z. L., Ultra-long single crystalline nanoribbons of tin oxide, Solid State Commun. 2001, 118, 351–354Google Scholar
  103. 103.
    Huang, M.; Wu, Y.; Feick, H.; Tran, N.; Weber, E.; Yang, P., Catalytic growth of zinc oxide nanowires by vapor transport, Adv. Mater. 2001, 13, 113–116Google Scholar
  104. 104.
    Huang, M.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P., Room-temperature ultraviolet nanowire nanolasers, Science 2001, 292, 1897–1899Google Scholar
  105. 105.
    Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z.; Wang, Z. L., Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts, Appl. Phys. Lett. 2002, 81, 1869–1871Google Scholar
  106. 106.
    Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M., Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science 2001, 293, 1289–1292Google Scholar
  107. 107.
    Favier, F.; Walter, E. C.; Zach, M. P.; Benter, T.; R. M. Penner, Hydrogen sensors and switches from electrodeposited palladium mesowire arrays, Science 2001, 293, 2227–2231Google Scholar
  108. 108.
    Founstadt, C. G.; Rediker, R. H., Electrical properties of high-quality stannic oxide crystals, J. Appl. Phys. 1971, 42, 2911–2918Google Scholar
  109. 109.
    Law, M.; Kind, H.; Kim, F.; Messer, B.; Yang, P., Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature, Angew. Chem. Int. Ed. 2002, 41, 2405–2408Google Scholar
  110. 110.
    Maiti, A.; Rodriguez, J.; Law, M.; Kung, P.; McKinney, J.; Yang, P., SnO2 nanoribbons as NO2 sensors: insights from First-Principles calculations, Nano Lett. 2003, 3, 1025–1028Google Scholar
  111. 111.
    Kind, H.; Yan, H.; Law, M.; Messer, B.; Yang, P., Nanowire ultraviolet photodetectors and optical switches, Adv. Mater. 2002, 14, 158–160Google Scholar
  112. 112.
    Lieber, C. M.; Wang, Z. L., Functional nanowires, MRS Bull. 2007, 32, 99–104Google Scholar
  113. 113.
    Law, M.; Goldberger, J.; Yang, P., Semiconductor nanowires and nanotubes, Annu. Rev. Mater. Res. 2004, 34, 83–122Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations