Hybrid Arrays for Chemical Sensing

  • Kirsten E. Kramer
  • Susan L. Rose-Pehrsson
  • Kevin J. Johnson
  • Christian P. Minor
Part of the Integrated Analytical Systems book series (ANASYS)


In recent years, multisensory approaches to environment monitoring for chemical detection as well as other forms of situational awareness have become increasingly popular. A hybrid sensor is a multimodal system that incorporates several sensing elements and thus produces data that are multivariate in nature and may be significantly increased in complexity compared to data provided by single-sensor systems. Though a hybrid sensor is itself an array, hybrid sensors are often organized into more complex sensing systems through an assortment of network topologies. Part of the reason for the shift to hybrid sensors is due to advancements in sensor technology and computational power available for processing larger amounts of data. There is also ample evidence to support the claim that a multivariate analytical approach is generally superior to univariate measurements because it provides additional redundant and complementary information (Hall, D. L.; Linas, J., Eds., Handbook of Multisensor Data Fusion, CRC, Boca Raton, FL, 2001). However, the benefits of a multisensory approach are not automatically achieved. Interpretation of data from hybrid arrays of sensors requires the analyst to develop an application-specific methodology to optimally fuse the disparate sources of data generated by the hybrid array into useful information characterizing the sample or environment being observed. Consequently, multivariate data analysis techniques such as those employed in the field of chemometrics have become more important in analyzing sensor array data. Depending on the nature of the acquired data, a number of chemometric algorithms may prove useful in the analysis and interpretation of data from hybrid sensor arrays. It is important to note, however, that the challenges posed by the analysis of hybrid sensor array data are not unique to the field of chemical sensing. Applications in electrical and process engineering, remote sensing, medicine, and of course, artificial intelligence and robotics, all share the same essential data fusion challenges. The design of a hybrid sensor array should draw on this extended body of knowledge. In this chapter, various techniques for data preprocessing, feature extraction, feature selection, and modeling of sensor data will be introduced and illustrated with data fusion approaches that have been implemented in applications involving data from hybrid arrays. The example systems discussed in this chapter involve the development of prototype sensor networks for damage control event detection aboard US Navy vessels and the development of analysis algorithms to combine multiple sensing techniques for enhanced remote detection of unexploded ordnance (UXO) in both ground surveys and wide area assessments.


Data Fusion Sensor Array Probabilistic Neural Network Electronic Nose Hybrid Array 



The Office of Naval Research provided funding for the Early Warning Fire Detector and the Volume Sensor. Funding for the UXO research was provided by the Strategic Environmental Research and Development Program (SERDP). Dr. Kirsten Kramer is a Post-Doctoral Fellow with the National Research Council.


  1. 1.
    Stetter, J. R.; Jurs, P. C.; Rose, S. L., Detection of hazardous gases and vapors: Pattern recognition analysis of data from electrochemical sensor array, Anal. Chem. 1986, 58, 860–866CrossRefGoogle Scholar
  2. 2.
    Müller, R.; Lange, E. Multidimensional sensor for gas analysis, Sensors Actuat. 1986, 9, 39–48CrossRefGoogle Scholar
  3. 3.
    Albert, K. J.; Lewis, N. S.; Schauer, C. L.; Sotzing, G. A.; Stitzel, S. E.; Vaid, T. P.; Walt, D. R., Cross-reactive chemical sensor arrays, Chem. Rev. 2000, 100, 2595–2626CrossRefGoogle Scholar
  4. 4.
    Jurs, P. C.; Bakken, G. A.; McClelland, H. E., Computational methods for the analysis of chemical sensor array data from volatile analytes, Chem. Rev. 2000, 100, 2649–2678CrossRefGoogle Scholar
  5. 5.
    Bourgeois, W.; Romain, A.; Nicolas, J.; Stuetz, R. M., The use of sensor arrays for environmental monitoring: interests and limitations, J. Environ. Monit. 2003, 5, 852–860CrossRefGoogle Scholar
  6. 6.
    Niessner, R., Chemical sensors for environmental analysis, TrAC 1991, 10, 310–316Google Scholar
  7. 7.
    Di Natale, C.; Macagnano, A.; Paolesse, R.; D'Amico, A., Artificial olfaction systems: Principles and applications to food analysis, Biotechnol. Agron. Soc. Environ. 2001, 5, 159–165Google Scholar
  8. 8.
    Deisingh, A. K.; Stone, D. C. Thompson, M., Applications of electronic noses and tongues in food analysis, Int. J. Food Sci. Technol. 2004, 39, 587–604CrossRefGoogle Scholar
  9. 9.
    Pavlou, A. K.; Turner, A. P., Sniffing out the truth: Clinical diagnosis using the electronic nose, Clin. Chem. Lab. Med. 2000, 38, 99–112CrossRefGoogle Scholar
  10. 10.
    Wilson, D. M.; Hoyt, S.; Janata, J.; Booksh, K.; Obando, L., Chemical sensors for portable, handheld field instruments, IEEE Sensors J. 2001, 1, 256–274CrossRefGoogle Scholar
  11. 11.
    Gardner, J. W.; Shurmer, H. V.; Corcoran, P., Integrated tin oxide odour sensors, Sensors Actuat. 1991, B4, 117–121CrossRefGoogle Scholar
  12. 12.
    Tomchenko, A. A.; Harmer, G. P.; Marquis, B. T.; Allen, J. W., Semiconducting metal oxide sensor array for the selective detection of combustion gases, Sensors Actuat. 2003, B93, 126–134CrossRefGoogle Scholar
  13. 13.
    Reinhoudt, D. N., Durable chemical sensors based on field-effect transistors, Sensors Actuat. 1995, B24–25, 197–200CrossRefGoogle Scholar
  14. 14.
    Ballantine, D. S., Jr.; Rose, S. L.; Grate, J. W.; Wohltjen, H., Correlation of surface acoustic wave device coating responses with solubility properties and chemical structure using pattern recognition, Anal. Chem. 1986, 58, 3058–3066CrossRefGoogle Scholar
  15. 15.
    Rose-Pehrsson, S. L.; Grate, J. W.; Ballantine, B. S., Jr.; Jurs, P. C., Detection of hazardous vapors including mixtures using pattern recognition analysis of responses from surface acoustic wave devices, Anal. Chem. 1988, 60, 2801–2811CrossRefGoogle Scholar
  16. 16.
    Grate, J. W., Acoustic wave microsensor arrays for vapor sensing, Chem. Rev. 2000, 100, 2627–2648CrossRefGoogle Scholar
  17. 17.
    Grate, J. W.; Patrash, S. J.; Kaganove, S. N.; Wise, B. M., Hydrogen bond acidic polymers for surface acoustic wave vapor sensors and arrays, Anal. Chem. 1999, 71, 1033–1040CrossRefGoogle Scholar
  18. 18.
    Grate, J. W.; Rose-Pehrsson, S.; Barger, W. R., Langmuir-blodgett films of a nickel dithiolene complex on chemical microsensors for the detection of hydrazine, Langmuir 1988, 4, 1293–1301CrossRefGoogle Scholar
  19. 19.
    Bartlett, P. N.; Archer, P. B. M.; Ling-Chung, S. K., Conducting polymer gas sensors - Part 1: Fabrication and characterization, Sensors Actuat. 1989, 19, 125–140CrossRefGoogle Scholar
  20. 20.
    Bartlett, P. N; Ling-Chung, S. K, Conducting polymer gas sensors - Part II: Response of polypyrrole to methanol vapor, Sensors Actuat. 1989, 19, 141–150CrossRefGoogle Scholar
  21. 21.
    Shurmer, H. V.; Corcoran, P.; Gardner, J. W., Integrated arrays of gas sensors using conducting polymers with molecular sieves, Sensors Actuat. 1991, B4, 29–33CrossRefGoogle Scholar
  22. 22.
    Walt, D. R.; Dickinson, T.; White, J.; Kauer, J.; Johnson, S.; Engelhardt, H.; Sutter, J.; Jurs, P., Optical sensor arrays for odor recognition, Biosens. Bioelectron. 1998, 13, 697–699CrossRefGoogle Scholar
  23. 23.
    Persaud, K.; Dodd, G. H., Analysis of discrimination mechanisms of the mammalian olfactory system using a model nose, Nature 1982, 299, 352–355CrossRefGoogle Scholar
  24. 24.
    Dickinson, T. A.; White, J.; Kauer, J. S.; Walt, D. R., Current trends in ‘artificial-nose’ technology, Trends Biotechnol. 1998, 16, 250–258CrossRefGoogle Scholar
  25. 25.
    Ziegler, C.; Gopel, W.; Hammerle, H.; Hatt, H.; Jung, G.; Laxhuber, L.; Schmidt, H. L.; Schutz, S.; Vogtle, F.; Zell, A., Bioelectronic noses: A status report. Part II, Biosens. Bioelectron. 1998, 13, 539–571CrossRefGoogle Scholar
  26. 26.
    Gardner, J. W.; Bartlett, P. N., Eds., Sensors and Sensory Systems for an Electronic Nose, Kluwer, Dordrecht, 1992 Google Scholar
  27. 27.
    Gardner, J. W.; Bartlett, P. N., A brief history of electronic noses, Sensors Actuat. 1994, B18–19, 211–220Google Scholar
  28. 28.
    Strike, D. J.; Meijerink, M. G. H.; Koudelka-Hep, M., Electronic noses - A mini-review, Fresenius J. Anal. Chem. 1999, 364, 499–505CrossRefGoogle Scholar
  29. 29.
    Vlasov, Y.; Legin, A.; Rudnitskaya, A.; Di Natale, C.; D'Amico, A., Nonspecific sensor arrays (“electronic tongue”) for chemical analysis of liquids, (IUPAC Technical Report), Pure Appl. Chem. 2005, 77, 1965–1983CrossRefGoogle Scholar
  30. 30.
    Shurmer, H. V.; Corcoran, P.; James, M. K., Sensitivity enhancement for gas sensing and electronic nose applications, Sensors Actuat. 1993, B15–16, 256–259CrossRefGoogle Scholar
  31. 31.
    Göpel, W., New materials and transducers for chemical sensors, Sensors Actuat. 1994, B18–19, 1–21CrossRefGoogle Scholar
  32. 32.
    He, L.; Toh, C., Review: Recent advances in analytical chemistry - A material approach, Anal. Chim. Acta 2006, 556, 1–15CrossRefGoogle Scholar
  33. 33.
    Walmsley, A. D.; Haswell, S. J.; Metcalfe, E., Methodology for the selection of suitable sensors for incorporation into a gas sensor array, Anal. Chim. Acta 1991, 242, 31–36CrossRefGoogle Scholar
  34. 34.
    Guadarrama, A.; Fernández, J. A.; Iniguez, M.; Souto, J.; de Saja, J. A., Discrimination of wine aroma using an array of conducting polymer sensors in conjunction with solid-phase micro-extraction (SPME) technique, Sensors Actuat. 2001, B77, 401–408CrossRefGoogle Scholar
  35. 35.
    James, D.; Scott, S. M.; Ali, Z; O'Hare, W. T., Review: Chemical sensors for electronic nose systems, Microchim. Acta 2005, 149, 1–17CrossRefGoogle Scholar
  36. 36.
    Craven, M. A.; Gardner, J. W; Bartlett, P. N., Electronic noses - development and future prospects, TrAC 1996, 15, 486–493Google Scholar
  37. 37.
    Hall, D. L.; Llinas, J., An introduction to multisensor data fusion, Proc. IEEE 1997, 85, 6–23CrossRefGoogle Scholar
  38. 38.
    Winquist, F.; Hörnsten, E. G.; Sundgren, H.; Lundström, I., Performance of an electronic nose for quality estimation of ground meat, Meas. Sci. Technol. 1993, 4, 1493–1500CrossRefGoogle Scholar
  39. 39.
    Holmberg, M.; Winquist, F.; Lundström, I.; Gardner, J. W.; Hines, E. L., Identification of paper quality using a hybrid electronic nose, Sensors Actuat. 1995, B26–27, 246–249CrossRefGoogle Scholar
  40. 40.
    Börjesson, T.; Eklöv, T.; Jonsson, A.; Sundgren, H.; Schnürer, J., Electronic nose for odor classification of grains, Cereal Chem. 1996, 73, 457–461Google Scholar
  41. 41.
    Mandenius, C.-F.; Hagman, A.; Dunås, F.; Sundgren, H.; Lundström, I., A multisensor array for visualizing continuous state transitions in biopharmaceutical processes using principal component analysis, Biosens. Bioelectron. 1998, 13, 193CrossRefGoogle Scholar
  42. 42.
    Mandenius, C.-F.; Eklöv, T.; Lundström, I., Sensor fusion with on-line gas emission multisensor arrays and standard process measuring devices in baker's yeast manufacturing process, Biotechnol. Bioeng 1997, 55, 427–438CrossRefGoogle Scholar
  43. 43.
    Lidén, H.; Mandenius, C.-F.; Gorton, L.; Meinander, N. Q.; Lundström, I.; Winquist, F., On-line monitoring of a cultivation using an electronic nose, Anal. Chim. Acta 1998, 361, 223–231CrossRefGoogle Scholar
  44. 44.
    Holmberg, M.; Gustafsson, F.; Hörnsten, E. G.; Winquist, F.; Nilsson, L. E.; Ljung, L.; Lundström, I., Bacteria classification based on feature extraction from sensor data, Biotechnol. Tech. 1998, 12, 319–324CrossRefGoogle Scholar
  45. 45.
    Mitrovics, J.; Weimar, U.; Göpel, W., Linearisation in multicomponent analysis based on a hybrid sensor array with 19 sensor elements, Proc. Transducers '95 1995, 1, 25–29Google Scholar
  46. 46.
    Mitrovics, J.; Ulmer, H.; Weimar, U.; Göpel, W., Modular sensor systems for gas sensing and odor monitoring: The MOSES concept, Acc. Chem. Res. 1998, 31, 307–315CrossRefGoogle Scholar
  47. 47.
    Ulmer, H.; Mitrovics, J.; Noetzel, G.; Weimar, U.; Göpel, W., Odors and flavours identified with hybrid modular sensing systems, Sensors Actuat. 1997, B43, 24–33CrossRefGoogle Scholar
  48. 48.
    Sauter, D.; Weimar, U.; Noetzel, G.; Mitrovics, J.; Göpel, W., Development of modular ozone sensor system for application in practical use, Sensors Actuat. 2000, B69, 1–9CrossRefGoogle Scholar
  49. 49.
    Ulmer, H.; Mitrovics, J.; Weimar, U.; Göpel, W., Sensor arrays with only one or several transducer principles? The advantage of hybrid modular systems, Sensors Actuat. 2000, B65, 79–81CrossRefGoogle Scholar
  50. 50.
    Ulmer, H.; Mitrovics, J.; Weimar, U.; Göpel, W., Detection of off-odors using a hybrid modular sensor system, In Conference on Proceedings of Transducers '97, Chicago, USA, 555–558Google Scholar
  51. 51.
    Frank, M.; Ulmer, H; Ruiz, J.; Visani, P.; Weimar, U., Complementary analytical measurements based upon gas chromatography-mass spectrometry, sensor system and human sensory panel: a case study dealing with packaging materials, Anal. Chim. Acta 2001, 431, 11–29CrossRefGoogle Scholar
  52. 52.
    Pardo, M.; Kwong, L. G.; Sberveglieri, G.; Schneider, J.; Penrose, W. R.; Stetter, J. R., Detection of contraband food products with a hybrid chemical sensor system, Proc. IEEE Sensors 2003, 2, 1073–1076Google Scholar
  53. 53.
    Pardo, M.; Kwong, L. G.; Sberveglieri, G.; Brubaker, K.; Schneider, J. F.; Penrose, W. R.; Stetter, J. R., Data analysis for a hybrid sensor array, Sensors Actuat. 2005, B106, 136–143CrossRefGoogle Scholar
  54. 54.
    Benedetti, S.; Mannino, S.; Sabatini, A. G.; Marcazzan, G. L., Electronic nose and neural network use for the classification of honey, Apidologie 2004, 35, 397–402CrossRefGoogle Scholar
  55. 55.
    Morvan, M.; Talou, T.; Beziau, J.-F., MOS-MOSFET gas sensors array measurements versus sensory and chemical characterisation of VOC's emissions from car seat foams, Sensors Actuat. 2003, B95, 212–223CrossRefGoogle Scholar
  56. 56.
    Heilig, A.; Bârsan, N.; Weimar, U.; Schweizer-Berberich, M.; Gardner, J. W.; Göpel, W., Gas identification by modulating temperatures of SnO2-based thick film sensors, Sensors Actuat. 1997, B43, 45–51CrossRefGoogle Scholar
  57. 57.
    Sundgren, H.; Lundström, I.; Winquist, F.; Lukkari, I.; Carlsson, R.; Wold, S., Evaluation of a multiple gas mixture with a simple MOSFET gas sensor array and pattern recognition, Sensors Actuat. 1990, B2, 115–123CrossRefGoogle Scholar
  58. 58.
    Wilson, D. M.; Roppel, T.; Kalim, R., Aggregation of sensory input for robust performance in chemical sensing Microsystems, Sensors Actuat. 2000, B64, 107–117CrossRefGoogle Scholar
  59. 59.
    Corcoran, P.; Lowery, P.; Anglesea, J., Optimal configuration of a thermally cycled gas sensor array with neural network pattern recognition, Sensors Actuat. 1998, B48, 448–455CrossRefGoogle Scholar
  60. 60.
    Llobet, E.; Brezmes, J.; Vilanova, X.; Sueiras, J. E.; Correig, X., Qualitative and quantitative analysis of volatile organic compounds using transient and steady-state responses of a thick-film tin oxide gas sensor array, Sensors Actuat. 1997, B41, 13–21CrossRefGoogle Scholar
  61. 61.
    Wide, P., A human-knowledge-based sensor implemented in an intelligent fermentation-sensor system, Sensors Actuat. 1996, B32, 227–231CrossRefGoogle Scholar
  62. 62.
    Janata, J.; Josowicz, M.; Vanysek, P.; Devaney, D. M., Chemical sensors, Anal. Chem. 1998, 70, 179R–208RCrossRefGoogle Scholar
  63. 63.
    Zhou, R.; Hierlemann, A.; Weimar, U.; Göpel, W., Gravimetric, dielectric and calorimetric methods for the detection of organic solvent vapours using poly(ether urethane) coatings, Sensors Actuat. 1996, B34, 356–360CrossRefGoogle Scholar
  64. 64.
    Topart, P.; Josowicz, M., Transient effects in the interaction between polypyrrole and methanol vapor, J. Phys. Chem. 1992, 96, 8662–8666CrossRefGoogle Scholar
  65. 65.
    Haug, M.; Schierbaum, K. D.; Gauglitz, G.; Göpel, W., Chemical sensors based upon polysiloxanes: Comparison between optical, quartz microbalance, calorimetric, and capacitance sensors, Sensors Actuat. 1993, B11, 383–391CrossRefGoogle Scholar
  66. 66.
    Heilig, A.; Bârsan, N.; Weimar, U.; Göpel, W., Selectivity enhancement of SnO2 gas sensors: Simultaneous monitoring of resistances and temperatures, Sensors Actuat. 1999, B58, 302–309CrossRefGoogle Scholar
  67. 67.
    Kurzawski, P.; Hagleitner, C.; Hierlemann, A., Detection and discrimination capabilities of a multitransducer single-chip gas sensor system, Anal. Chem. 2006, 78, 6910–6920CrossRefGoogle Scholar
  68. 68.
    Langereis, G. R.; Olthuis, W.; Bergveld, P., Using a single structure for three sensor operations and two actuator operations, Sensors Actuat. 1998, B53, 197–203CrossRefGoogle Scholar
  69. 69.
    Poghossian, A.; Schultze, J. W.; Schöning, M. J., Multi-parameter detection of (bio-)chemical and physical quantities using an identical transducer principle, Sensors Actuat. 2003, B91, 83–91CrossRefGoogle Scholar
  70. 70.
    Poghossian, A.; Lüth, H.; Schultze, J. W.; Schöning, M. J., (Bio-)chemical and physical microsensor arrays using an identical transducer principle, Electrochim. Acta 2001, 47, 243–249CrossRefGoogle Scholar
  71. 71.
    Hall, D. L; Llinas, J., Eds., Handbook of Multisensor Data Fusion, CRC, Boca Raton, FL, 2001 Google Scholar
  72. 72.
    Hall, D. L; McMullen, S. A., Mathematical Techniques in Multisensor Data Fusion, 2nd edn.; Artech House, Inc., Norwood, MA, 2004 Google Scholar
  73. 73.
    Klein, L. A., Sensor and Data Fusion: A Tool for Information Assessment and Decision Making, SPIE, Bellingham, WA, 2006 Google Scholar
  74. 74.
    Naidu, P. S., Sensor Array Signal Processing, CRC, Boca Raton, FL, 2000 CrossRefGoogle Scholar
  75. 75.
    Huyberechts, G.; Szecówka, P.; Roggen, J.; Licznerski, B. W., Simultaneous quantification of carbon monoxide and methane in humid air using a sensor array and an artificial neural network, Sensors Actuat. 1997, B45, 123–130CrossRefGoogle Scholar
  76. 76.
    Macagnano, A.; Careche, M.; Herrero, A.; Paolesse, R.; Martinelli, E.; Pennazza, G.; Carmona, P.; D'Amico, A.; Di Natale, C., A model to predict fish quality from instrumental features, Sensors Actuat 2005, B111–112, 293–298CrossRefGoogle Scholar
  77. 77.
    Mandenius, C.-F.; Lidén, H.; Eklöv, T.; Taherzadeh, M. J.; Lidén G., Predicting fermentability of wood hydrolyzates with responses from electronic noses, Biotechnol. Prog. 1999, 15, 617–621CrossRefGoogle Scholar
  78. 78.
    Di Natale, C.; Macagnano, A.; Nardis, S.; Paolesse, R.; Falconi, C.; Proietti, E.; Siciliano, P.; Rella, R.; Taurino, A.; D'Amico, A., Comparison and integration of arrays of quartz resonators and metal-oxide semiconductor chemoresistors in the quality evaluation of olive oils, Sensors Actuat. 2001, B78, 303–309CrossRefGoogle Scholar
  79. 79.
    Boilot, P.; Hines, E. L.; Gongora, M. A.; Folland, R. S., Electronic noses inter-comparison, data fusion and sensor selection in discrimination of standard fruit solutions, Sensors Actuat. 2003, B88, 80–88CrossRefGoogle Scholar
  80. 80.
    Winquist, F.; Wide, P.; Lundström, I., The combination of an electronic tongue and an electronic nose for improved classification of fruit juices, In Technical Digest of Eurosensors XII Conference, Southampton, UK, IOP, Bristol, 1998Google Scholar
  81. 81.
    Wide, P.; Winquist, F.; Bergsten, P.; Petriu, E. M., The human-based multisensor fusion method for artificial nose and tongue sensor data, IEEE Trans. Instrum. Measure. 1998, 47, 531–536CrossRefGoogle Scholar
  82. 82.
    Di Natale, C.; Paolesse, R.; Macagnano, A.; Mantini, A.; D'Amico, A.; Legin, A.; Lvova, L.; Rudnitskaya, A.; Vlasov, Y., Electronic nose and electronic tongue integration for improved classification of clinical and food samples, Sensors Actuat. 2000, B64, 15–21CrossRefGoogle Scholar
  83. 83.
    Rong, L.; Ping, W.; Wenlei, H., A novel method for wine analysis based on sensor fusion technique, Sensors Actuat. 2000, B66, 246–250CrossRefGoogle Scholar
  84. 84.
    Luo, R. C.; Yih, C. C.; Su, K. L., Multisensor fusion and integration: Approaches, applications, and future research directions, IEEE Sensors J. 2002, 2, 107–119CrossRefGoogle Scholar
  85. 85.
    Hammond, M. H.; Johnson, K. J.; Rose-Pehrsson, S. L.; Ziegler, J.; Walker, H.; Caudy, K.; Gary, D.; Tillett, D., A novel chemical detector using cermet sensors and pattern recognition methods for toxic industrial chemicals, Sensors Actuat. 2006, B116, 135–144CrossRefGoogle Scholar
  86. 86.
    Hart, S. J.; Shaffer, R. E.; Rose-Pehrsson, S. L.; McDonald, J. R., Using physics-based modeler outputs to train probabilistic neural networks for unexploded ordnance (uxo) classification in magnetometry surveys, IEEE Trans. Geosci. Remote Sensing 2001, 39, 797–804CrossRefGoogle Scholar
  87. 87.
    Bernstein, D. S., The end of false alarms?” National Fire Protection Association Magazine, Jan/Feb 1998 Google Scholar
  88. 88.
    Pfister, G., Multisensor/multicriteria fire detection: A new trend rapidly becomes state of the art, Fire Technol. 1997, 33, 115–139CrossRefGoogle Scholar
  89. 89.
    Jackson, M. A.; Robins, I., Gas sensing for fire detection: Measurements of CO, CO2, H2, O2 and smoke density in European standard fire tests, Fire Safety J. 1994, 23, 181–205CrossRefGoogle Scholar
  90. 90.
    Milke, J. A., Monitoring multiple aspects of fire signatures for discriminating fire detection, Fire Technol. 1999, 35, 195–209CrossRefGoogle Scholar
  91. 91.
    Milke, J. A.; Hulcher, M. E.; Worrel, C. L.; Gottuk, D. T.; Williams, F. W., Investigation of multi-sensor algorithms for fire detection, Fire Technol. 2003, 39, 363–382CrossRefGoogle Scholar
  92. 92.
    Gottuk, D. T.; Hill, S. A.; Schemel, C. F.; Strehlen, B. D.; Rose-Pehrsson, S. L.; Shaffer, R. E.; Tatem, P. A.; Williams, F. A., Identification of fire signatures for shipboard mulit-criteria fire detection systems, In NRL Memorandum Report NRL/MR/6180–99–8386, June 18, 1999 Google Scholar
  93. 93.
    Rose-Pehrsson, S. L.; Shaffer, R. E.; Hart, S. J.; Williams, F. W.; Gottuk, D. T.; Strehlen, B. D.; Hill, S. A., Multi-criteria fire detection systems using a probabilistic neural network, Sensors Actuat. 2000, B69, 325–335CrossRefGoogle Scholar
  94. 94.
    Shaffer, R. E.; Rose-Pehrsson, S. L., Improved probabilistic neural network algorithm for chemical sensor array pattern recognition, Anal. Chem. 1999, 71, 4263–4271CrossRefGoogle Scholar
  95. 95.
    Hammond, M. H.; Riedel, J. C.; Rose-Pehrsson, S. L.; Williams, F. W., Training set optimization methods for a probabilistic neural network, Chemom. Intell. Lab. Syst. 2004, 71, 73–78CrossRefGoogle Scholar
  96. 96.
    Hart, S. J.; Hammond, M. H.; Wong, J. T.; Wright, M. T.; Gottuk, D. T.; Rose-Pehrsson, S. L.; Williams, F. W., Real-time classification performance and failure mode analysis of a physical/chemical sensor array and probabilistic neural network, Field Anal. Chem. Technol. 2001, 5, 244–258CrossRefGoogle Scholar
  97. 97.
    Rose-Pehrsson, S. L.; Hart, S. J.; Street, T. T.; Williams, F. W.; Hammond, M. H.; Gottuk, D. T.; Wright, M. T.; Wong, J. T., Early warning fire detection system using a probabilistic neural network, Fire Technol. 2003, 39, 147–171CrossRefGoogle Scholar
  98. 98.
    JiJi, R. D.; Hammond, M. A.; Williams, F. W.; Rose-Pehrsson, S. L., Multivariate statistical process control for continuous monitoring of networked early warning fire detection (EWFD) systems, Sensors Actuat. 2003, B93, 107–116CrossRefGoogle Scholar
  99. 99.
    Rose-Pehrsson, S. L.; Owrutsky, J. C.; Gottuk, D. T.; Geiman, J. A.; Williams, F. W.; Farley, J. P., Phase I: FY01 investigative study for the advanced volume sensor, In NRL Memorandum Report NRL/MR/6110–03–8688, June 30, 2003 Google Scholar
  100. 100.
    Gottuk, D. T.; Lynch, J. A.; Rose-Pehrsson, S. L.; Owrutsky, J. C.; Williams, F. W., Video image fire detection for shipboard use, Fire Safety J. 2006, 41, 321–326CrossRefGoogle Scholar
  101. 101.
    Owrutsky, J. C.; Steinhurst, D. A.; Nelson, H. H.; Williams, F. W., Spectral based volume sensor component, In NRL Memorandum Report NRL/MR/6110–03–8694, July 30, 2003 Google Scholar
  102. 102.
    Steinhurst, D. A.; Lynch, J. A.; Gottuk, D. T.; Owrutsky, J. C.; Nelson, H. H.; Rose-Pehrsson, S. L.; Williams, F. W., Spectral-based volume sensor testbed algorithm development, test series VS2, In NRL Memorandum Report NRL/MR/6110–05–8856, January 12, 2005 Google Scholar
  103. 103.
    Wales, S. C.; McCord, M. T.; Lynch, J. A.; Rose-Pehrsson, S. L.; Williams, F. W., Acoustic event signatures for damage control: Water events and shipboard ambient noise, In NRL Memorandum Report NRL/MR/7120–04–8445, October 12, 2004 Google Scholar
  104. 104.
    Steinhurst, D. A.; Minor, C. P.; Owrutsky, J. C.; Rose-Pehrsson, S. L. Gottuk, D. T.; Williams, F. W., Long wavelength video-based event detection, preliminary results from the CVNX and VS1 test series, ex-USS SHADWELL, April 7–25, 2003, In NRL Memorandum Report NRL/MR/6110–03–8733, December 31, 2003 Google Scholar
  105. 105.
    Owrutsky, J. C.; Steinhurst, D. A.; Minor, C. P.; Rose-Pehrsson, S. L.; Gottuk, D. T.; Williams, F. W., Long wavelength video detection of fire in ship compartments, Fire Safety J. 2006, 41, 315–320CrossRefGoogle Scholar
  106. 106.
    Rose-Pehrsson, S. L.; Minor, C. P.; Steinhurst, D. A.; Owrutsky, J. C.; Lynch, J. A.; Gottuk, D. T.; Wales, S. C.; Farley, J. P.; Williams, F. W., Volume sensor for damage assessment and situational awareness Fire Safety J. 2006, 41, 301–310CrossRefGoogle Scholar
  107. 107.
    James, P. S., Bayesian Statistics: Principles, Models, and Applications, Wiley, New York, 1989 Google Scholar
  108. 108.
    Roussel, S.; Bellon-Maurel, V.; Roger, J.-M.; Grenier, P., Fusion of aroma, FT-IR and UV sensor data based on Bayesian inference. Application to the discrimination of white grape varieties, Chemom. Intell. Lab. Syst. 2003, 65, 209–219CrossRefGoogle Scholar
  109. 109.
    Minor, C. P.; Johnson, K. J.; Rose-Pehrsson, S. L; Owrutsky, J. C.; Wales, S. C.; Steinhurst, D. A.; Gottuk, D. T., A full-scale prototype multisensor system for damage control and situational awareness, Fire Technol., in pressGoogle Scholar
  110. 110.
    Lynch, J. A.; Gottuk, D. T.; Owrutsky, J. C.; Steinhurst, D. A.; Minor, C. P.; Wales, S. C.; Farley, J. P.; Rose-Pehrsson, S. L; Williams, F. W., Volume sensor development test series 5 – Multi-compartment system, In NRL Memorandum Report NRL/MR/6180–05–8931, December 30, 2005 Google Scholar
  111. 111.
    Collins, L. M.; Zhang, Y.; Li, J.; Wang, H.; Carin, L.; Hart, S. J.; Rose-Pehrsson, S. L.; Nelson, H. H.; McDonald, H. H., A comparison of the performance of statistical and fuzzy algorithms for unexploded ordnance detection, IEEE Trans. Fuzzy Systems 2001, 9, 17–30CrossRefGoogle Scholar
  112. 112.
    Barrow, B.; Nelson, H. H., Model-based characterization of electromagnetic induction signatures obtained with the MTADS electromagnetic array, IEEE Trans. Geosci. Remote Sensing 2001, 39, 1279–1285CrossRefGoogle Scholar
  113. 113.
    Nelson, H. H.; McDonald, J. R., Multisensor towed array detection system for UXOdetection, IEEE Trans. Geosci. Remote Sensing 2001, 39, 1139–1145CrossRefGoogle Scholar
  114. 114.
    Rose-Pehrsson, S. L.; Johnson, K. J.; Minor, C. P., Intelligent data fusion for wide-area assessment of UXO contamination. SERDP Project MM-1510. FY06 Annual Report, In NRL Memorandum Report NRL/MR/6181–07–9039, April 20, 2007 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kirsten E. Kramer
    • 1
  • Susan L. Rose-Pehrsson
    • 2
  • Kevin J. Johnson
    • 2
  • Christian P. Minor
    • 3
  1. 1.Cognis CorporationCincinnati Innovation Concept CenterCincinnatiUSA
  2. 2.Chemistry DivisionNaval Research LaboratoryWashingtonUSA
  3. 3.Nova Research, IncAlexandriaUSA

Personalised recommendations