Advertisement

A Statistical Approach to Materials Evaluation and Selection for Chemical Sensor Arrays

  • Baranidharan Raman
  • Douglas C. Meier
  • Steve Semancik
Chapter
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

We present a generic approach for designing sensor arrays for a given chemical sensing task. First, we present a correlation-based metric to systematically assess the analytical information obtained from the conductometric responses of chemiresistive films as a function of their operating temperatures and material composition. We illustrate how this measure can also be used to test the reproducibility of signals obtained from sensors of equal manufacture. Next, complementing the correlation-based analysis, we employ a statistical dimensionality-reduction algorithm to visualize the multivariate sensor response obtained from sensor arrays. We adapt this method to quantify the discriminability of chemical fingerprints. Finally, we show how to determine an optimal set of material compositions to be incorporated within an array for individual species' recognition when practical constraints/tradeoffs on fabrication are also considered. We validate our approach by designing a microsensor array for the task of recognizing a chemical hazard at sub-lethal concentrations in complex environments.

Keywords

Linear Discriminant Analysis TiO2 Film Sensor Array Array Size Chemical Vapor Deposition Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We acknowledge partial financial support of this project by the U.S. Department of Homeland Security, Science and Technology Directorate. BR was supported by a NIH(NIBIB)-NIST Joint Postdoctoral Associateship Award administered through the National Research Council. We thank Kurt Benkstein, Mike Carrier, Steve Fick, Jim Melvin, Wyatt Miller, Chip Montgomery, Casey Mungle, Jim Yost, Blaine Young, and Li Zhang for their valuable contributions to this project. We are grateful to Mark Stopfer for his helpful comments on an earlier version of this manuscript.

References

  1. 1.
    Mention of these and any other commercial products is strictly for provision of proper experimental definition, and does not constitute an endorsement by the National Institute of Standards and TechnologyGoogle Scholar
  2. 2.
    Hierlemann, A.; Gutierrez-Osuna, R., Higher-order chemical sensing, Chem. Rev. 2008, 108, 563–613CrossRefGoogle Scholar
  3. 3.
    Pearce, T. C.; Sanchez-Montanes, M., Chemical sensor array optimization: geometric and information theoretic approaches, In Handbook of Machine Olfaction: Electronic Nose Technology; Pearce, T. C.; Schiffman, S. S.; Nagle, H. T.; Gardner, J. W., Eds. Wiley-VCH, Weinheim, 2002, 347–376.CrossRefGoogle Scholar
  4. 4.
    Wilson, D.; Garrod, S.; Hoyt, S.; McKennoch, S.; Booksh, K. S., Array optimization and preprocessing techniques for chemical sensing microsystems, Sens. Update 2002, 10, 77–106CrossRefGoogle Scholar
  5. 5.
    Semancik, S.; Cavicchi, R. E.; Wheeler, M. C.; Tiffany, J. E.; Poirier, G. E.; Walton, R. M.; Suehle, J. S.; Panchapakesan, B.; Devoe, D. L., Microhotplate platforms for chemical sensor research, Sens. Actuators B 2001, 77, 579–591CrossRefGoogle Scholar
  6. 6.
    Semancik, S.; Cavicchi, R., Kinetically controlled chemical sensing using micromachined structures, Acc. Chem. Res. 1998, 31, 279–287CrossRefGoogle Scholar
  7. 7.
    Cavicchi, R. E.; Suehle, J. S.; Kreider, K. G.; Gaitan, M.; Chaparala, P., Fast temperature programmed sensing for micro-hotplate gas sensors, IEEE Electron Device Lett. 1995, 16, 286–288CrossRefGoogle Scholar
  8. 8.
    Batzill, M.; Diebold, U., The surface and materials science of tin oxide, Sens. Actuators B 1997, 43, 45–51CrossRefGoogle Scholar
  9. 9.
    Martinez, C. J.; Hockey, B.; Montgomery, C. B.; Semancik, S., Porous tin oxide nanostructured microspherers for sensor applications, Langmuir 2005, 21, 7937–7944CrossRefGoogle Scholar
  10. 10.
    Raman, B.; Hertz, J.; Benkstein, K.; Semancik, S., A bioinspired methodology for artificial olfaction, Anal. Chem. 2008, 80, 8364–8371CrossRefGoogle Scholar
  11. 11.
    Meier, D. C.; Taylor, C. J.; Cavicchi, R. E.; White, E.; Semancik, S.; Ellzy, M. W.; Sumpter, K. B., Chemical warfare agent detection using MEMS-compatible microsensor arrays, IEEE Sens. J. 2005, 5, 712–725CrossRefGoogle Scholar
  12. 12.
    Bârsan, N.; Weimar, U., Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity, J. Phys. Condens Matter 2003, 15, R813–R819CrossRefGoogle Scholar
  13. 13.
    Tomchenko, A. A.; Harmer, G. P.; Marquis, B. T., Detection of chemical warfare agents using nanostructured metal-oxide sensors, Sens. Actuators B 2005, 108, 41–55CrossRefGoogle Scholar
  14. 14.
    Vaid, T. P.; Burl, M. C.; Lewis, N. S., Comparison of the performance of different discriminant algorithms in analyte discrimination tasks using an array of carbon black-polymer composite vapor detectors, Anal. Chem. 2001, 73, 321–331CrossRefGoogle Scholar
  15. 15.
    Albert, K. J.; Lewis, N.; Schauer, C.; Sotzing, G. A.; Stitzel, S. E.; Vaid, T. P.; Walt, D. R., Cross-reactive chemical sensor arrays, Chem. Rev. 2000, 100, 2595–2626CrossRefGoogle Scholar
  16. 16.
    Ding, J.; McAvoy, T. J.; Cavicchi, R. E.; Semancik, S., Surface state trapping models for SnO2-based microhotplate sensors, Sens. Actuators B 2001, 77, 597–613CrossRefGoogle Scholar
  17. 17.
    Gaggiotti, G.; Galdikas, A.; Kačiulis, S.; Mattogno, G.; Šetkus, A., Temperature dependencies of sensitivity and surface chemical composition of SnOx gas sensors, Sens. Actuators B 1995, 24–25, 516–519CrossRefGoogle Scholar
  18. 18.
    White, N.; Turner, J., Thick-film sensors: Past, present and future, Meas. Sci. Technol. 1997, 8, 1–20CrossRefGoogle Scholar
  19. 19.
    Panchapekesan, B.; Cavicchi, R.; Semancik, S.; DeVoe, D. L., Sensitivity, selectivity and stability of tin oxide nanostructures on large area arrays of microhotplates, Nanotechnology 2006, 17, 415–425CrossRefGoogle Scholar
  20. 20.
    Meier, D. C.; Semancik, S., Effects of Materials Chemistry on Conductometric Sensor Signals. In 2005 Materials Research Society Meeting Boston, 2005 Google Scholar
  21. 21.
    Raman, B.; Meier, D.; Evju, J.; Semancik, S., Designing and optimizing microsensor arrays for recognizing chemical hazards in complex environments, Sens. Actuators B 2009, 137, 617–629CrossRefGoogle Scholar
  22. 22.
    Duda, R. O.; Hart, P. E.; Stork, D. G., Pattern Classification, 2nd edn.; Wiley-Interscience, New York, 2000, 115–121Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Baranidharan Raman
    • 1
  • Douglas C. Meier
    • 1
  • Steve Semancik
    • 1
  1. 1.Chemical Science and Technology LaboratoryNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations