Advertisement

Introduction: Experimental Methods in Chemical Sensor and Sensor Array Evaluation and Development

  • Joseph R. Stetter
Chapter
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

Sensors are devices, sensor arrays are collections of sensors, and it is through experimentation and computation that we obtain the knowledge we need to make useful analytical measurements. Gas and liquid chemical sensor arrays provide a new multidimensional analytical technique not unlike Gas Chromatography, Liquid chromatography, or GC/MS [gas chromatography mass spectrometry]. Exciting possibilities for advanced analytical measurements are emerging with the development and use of chemical sensor arrays. The multidisciplinary nature of sensor development and the diversity of the types of sensors, analytes, and applications provide a rich venue for research and development as well as the complex issues that lead to lively debates. Progress in developing arrays for analytical purposes is coming from applying new knowledge about biosystems that use sensor arrays, advanced predictive chemical computational capabilities, and significant increases in experimental materials and methods. The protocols for the experimental understanding of sensor arrays provides the foundation for present strategies and future models that will enable realization of the contributions of sensor arrays to analytical measurement science and technology.

Keywords

Feature Space Sensor Array Olfactory Epithelium Electrochemical Sensor Electronic Nose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Acronyms and Definitions

Analyte

Substance or chemical constituent whose identity or quantity is determined by conducting the analytical procedure

ANN

Artificial neural network

Ar

Argon

atm

Atmosphere (pressure)

As

Analytical sensitivity

BAW

Bulk acoustic wave

C

Capacitance

CGS

Combustible gas sensor

Chembio

Chemical–biological

CI

Chemical interface

Cl2

Molecular chlorine

cm3

Cubic centimeter

CO

Carbon monoxide

CO2

Carbon dioxide

CPS-100

Chemical Parameter Spectrometer – 100

E

Electromotive Force or Voltage

GC

Gas chromatography

H2

Hydrogen

HCN

Hydrogen cyanide

H2S

Hydrogen sulfide

I

Current – charge per unit time

IMCS2

International Meeting on Chemical Sensors 2

IR

Infrared

K or k

Sensitivity – signal per unit concentration

KNN or k-NN

k-nearest neighbor

L

Liter

LOD

Limit of detection

M

Mass

mL

Milliliter

MOSES II

Laboratory electronic nose by Lennertz

MS

Mass spectrometry

mV

Millivolt

nA

Nanoampere

N2

Nitrogen

Ne

Neon

NH3

Ammonia

NO2

Nitrogen dioxide

O2

Oxygen

OR

Olfactory Receptor – a G-receptor protein used in olfaction

pA

Picoampere

ppb

Parts per billion – by volume

ppq

Parts per quadrillion

ppt

Parts per trillion

R

Resistance – ohms

S

Sensor signal

SAW

Surface acoustic wave

SPME

Solid-phase microextraction

SSTUF

Shared sensor testing user facility

TAS

Total analytical system

TCD

Thermal conductivity sensor

TIC

Toxic industrial chemical

TIM

Toxic industrial material

VOC

Volatile organic compound

Z

Impedance

Notes

Acknowledgments

I would like to thank all of my colleagues for their tremendously stimulating work and discussions that helped me remain dedicated, inspired, and diligent in my pursuit of the understanding of sensors and arrays and their analytical utility and application for the common good. Also, special appreciation to Susan Creamer, Lee Gerans, and editors at SRI for their help with the organization and presentation of this work.

References

  1. 1.
    Buck, L., Unraveling the Sense of Smell, Nobel Lecture, Stockholm, Sweden, Dec. 8, 2004Google Scholar
  2. 2.
    Rolfe, B. M., Toward nanometer-scale sensing systems: Natural and artificial noses as models for ultra-small, ultra-dense sensing systems, Adv. Comput. 2007, 71Google Scholar
  3. 3.
    Schiffman, S. S.; Pearce, T. C., Introduction to olfaction: Perception, anatomy, physiology, and molecular biology, In Handbook of Machine Olfaction: Electronic Nose Technology; Pearch, T. C.; Schiffman, S. S., et al., Eds.; Wiley, New York, 2006, 1–26Google Scholar
  4. 4.
    Crasto, C.; Marenco, L.; Miller, P. L.; Shepherd, G. S., Olfactory receptor database: A metadata-driven automated population from sources of gene and protein sequences, Nucleic Acids Res. 2002, 1, 354–360CrossRefGoogle Scholar
  5. 5.
    Crasto, C.; Marenco, L.; Skoufos, E.; Healy, M. D.; Singer, M. S.; Nadkarni, P. M.; Miller, P. L.; Shepherd, G. S., The Olfactory Receptor Database. Available at http://senselab.med.yale.edu/senselab/ORDB
  6. 6.
    Kurosawa, S.; Park, J. W.; Aizawa, H.; Wakida, S.; Tao, H.; Ishihara, K., Quartz crystal microbalance immunosensors for environmental monitoring, Biosens. Bioelectron. 2006, 22, 473–481CrossRefGoogle Scholar
  7. 7.
    Ricci, F.; Volpe, G.; Micheli, L.; Palleschi, G., A review on novel developments and applications of immunosensors in food analysis, Anal. Chim. Acta. 2007, 605, 111–129; and Mendoza, A., et al., Scalable fabrication of immunosensors based on CNT polymer composites, Nanotechnology 2008, 19, 075102Google Scholar
  8. 8.
    Kauer, J. S.; White, J., Representation of odor information in the olfactory system: From biology to an artificial nose, In Sensors and Sensing in Biology and Engineering; Barth, F. G.; Humphrey, J. A. C.; Secomb, T. W., Eds.; Springer Verlag, Berlin, 2002 Google Scholar
  9. 9.
    Craven, B.; Neuberg, T.; Paterson, E. G.; Webb, A. G.; Josephson, E. M.; Morrison, E. E.; Settles, G. S., Reconstruction and morphometric analysis of the nasal airway of the dog (Canis familiaris) and implications regarding olfactory airflow, Anat. Rec. 2007, 209, 1325–1340CrossRefGoogle Scholar
  10. 10.
    Stetter, J. R.; Penrose, W. R., Understanding Chemical Sensors and Chemical Sensor Arrays (Electronic Noses): Past, Present, and Future, Chapter 2.3 in Sensors Update, Wiley-VCH, Weinheim, Germany, 2002, Vol. 10, 189–229Google Scholar
  11. 11.
    Stetter, J. R.; Zaromb, S.; Penrose, W. R.; Otagawa, T.; Sinclair, J.; Stull, J., Portable instrument for the detection and identification of air pollutants, J US Environ Prot Agency, Res. Dev., (Rep.) EPA (1984) Number: EPA/600/9–84/019, Proc. Natl. Symp. Recent Adv. Pollut. Monit. Ambient Air Stationary Sources 1984, 73–81Google Scholar
  12. 12.
    Lavner, G. I.; Bloch, Y. G.; Azulai, O.; Goldblatt, A.; Terkel, J., A simple system for the remote detection and analysis of sniffing in explosives detection dogs, Behav. Res. Methods Instrum. Comput. 2003, 35, 82–89. Also see http://k9.fgcu.edu/articles/gazit1.pdf)CrossRefGoogle Scholar
  13. 13.
    Pauling, L.; Robinson, A. B.; Terashi, R., et al., Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography, Proc. Natl Acad. Sci. USA 1971, 68, 2374–2376CrossRefGoogle Scholar
  14. 14.
    Phillips, M., Method for the collection and assay of volatile organic compounds in breath, Thesis intro chapter, Anal. Biochem. 1997, 247, 272–278CrossRefGoogle Scholar
  15. 15.
    Göpel, W., Chemical imaging: I. Concepts and visions for electronic and bioelectronic noses, Sensors Actuat. B 1998, 52, 125–142CrossRefGoogle Scholar
  16. 16.
    Stetter, J. R.; Zaromb, S.; Penrose, W. R.; Findlay, M. W.; Otagawa, T.; Sincali, A. J., Portable device for detecting and identifying hazardous vapors, In Journal: Hazardous Materials Spills Conference Proceedings, Prevention Behaviour Control Cleanup Spills Waste Sites, Paper 116; Ludwigson, J., Ed.; Government Institutes Inc., Rockville, MD, 1984, 183–190Google Scholar
  17. 17.
    Stetter, J. R.; Jurs, P. C.; Rose, S. L., Detection of hazardous gases and vapors: Pattern recognition analysis of data from an electrochemical sensor arrays, Anal. Chem. 1986, 58, 860–866CrossRefGoogle Scholar
  18. 18.
    Stetter, J. R.; Otagawa, T., A chemical concentration – Modulation sensor for the selective detection of airborne chemicals, Sensors Actuat. 1987, 11, 251–264CrossRefGoogle Scholar
  19. 19.
    Janata, J., Modern topics in chemical sensing, Chem. Rev. 2008, 108, 327–844CrossRefGoogle Scholar
  20. 20.
    Vaihinger, S.; Göpel, W.; Stetter, J. R., Detection of halogenated and other hydrocarbons in air: response functions of catalyst/electrochemical sensor systems, Sensors Actuat. 1991, B4, 337–343CrossRefGoogle Scholar
  21. 21.
    Stratheropoulos, M.; Agapiou, A.; Spiliopoulou, C.; Pallis, G. C.; Sianos, E., Environmental aspects of VOCs evolved in the early stages of human decomposition, Sci. Total Environ. 2007, 385, 221–227CrossRefGoogle Scholar
  22. 22.
    Stratheropoulos, M.; Agapiou, A.; Spiliopoulou, C., A study of VOCs evolved from the decaying human body, Forensic Sci. Int. 2005, 153, 147–155CrossRefGoogle Scholar
  23. 23.
    Bhushan, A.; Yemane, D.; Overton, E. B.; Goettert, J.; Murphy, M. C., Fabrication and preliminary results for LiGA fabricated nickel micro gas chromatograph columns, J. Microelectromech. Syst. 2007, 16, 383–393CrossRefGoogle Scholar
  24. 24.
    Iqbal, J.; Overton, E. B.; Gisclair, D., Polycyclic aromatic hydrocarbons in Louisiana rivers and coastal environments: Source fingerprinting and forensic analysis, Environ. Forensics 2008, 9, 63–74CrossRefGoogle Scholar
  25. 25.
    Machado, R. F.; Laskowski, D.; Deffenderfer, O.; Burch, T.; Zheng, S.; Mazzone, P. J.; Mekhail, T.; Jennings, C.; Stoller, J. K.; Pyle, J.; Duncan, J.; Dweik, R. A.; Erzurum, S. C., Detection of lung cancer by sensor array analyses of exhaled breath, Am. J. Respir. Crit. Care Med. 2005, 171, 1286–1291CrossRefGoogle Scholar
  26. 26.
    Mitrovics, J.; Ulmer, H.; Weimar, U.; Göpel, W., Modular sensor systems for gas sensing and odor monitoring: The MOSES concept, In ACS Symposium Series: Chemical Sensors and Interfacial Design, 1998, Vol. 31, 307–315Google Scholar
  27. 27.
    Eckenrode, B. A.; Ramsey, S. A; Stockham, R. A.; Van Berkel, G. J.; Asano, K. G.; Wolf, D. A., Performance evaluation of the scent transfer unit (STU-100) for organic compound collection and release, J. Forensic Sci. 2006, 51, 780–789, doi:10.1111/j.1556–4029.2006.00178CrossRefGoogle Scholar
  28. 28.
    Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, S. R., Fundamentals of Analytical Chemistry, 7th edn.; Thomas Learning, Belmont, CA, 1996, 870 pages, ISBN 0030059380 or Skoog, D. A.; Leary, J., Principles of Instrumental Analysis, Saunders, Fort Worth, TX, 1992 Google Scholar
  29. 29.
    Willard, H.; Merritt, L.; Dean, J.; Settle, F., Instrumental Methods of Analysis, 7th edn.; Wadsworth, Belmont, CA, 1998 Google Scholar
  30. 30.
    Strobel, H.; Heineman, W., Chemical Instrumentation: A Systematic Approach 3rd edn.; Wiley, New York, 1989, Validity is discussed in HeinemanGoogle Scholar
  31. 31.
    Barsan, N.; Stetter, J. R.; Findlay, M.; Göpel, W., High performance gas sensing of CO: Comparative tests for semiconducting (SnO2-based) and for amperometric gas sensors, Anal. Chem. 1999, 71, 2512–2517CrossRefGoogle Scholar
  32. 32.
    Stetter, J. R., Amperometric electrochemical gas sensors: Description and applications, In NIST Workshop on Gas Sensors: Strategies for Future Technologies, Sept. 8–9, 1993, 61–64 (NIST Pub. #865)Google Scholar
  33. 33.
    Cao, Z.; Buttner, W. J.; Stetter, J. R., The properties and applications of amperometric gas sensors, Electroanalysis 1992, 4, 253–266CrossRefGoogle Scholar
  34. 34.
    Chang, S. C.; Stetter, J. R.; Cha, C. S., Amperometric gas sensors, Talanta 1993, 40, 461–467CrossRefGoogle Scholar
  35. 35.
    Stetter, J. R.; Li, J., Modern topics in chemical sensing: Chapter 4, Amperometric gas sensors – A review, Chem. Rev. 2008, 108, 352–366CrossRefGoogle Scholar
  36. 36.
    Chao, Y.-T.; Buttner, W. J.; Gupta, K.; Penrose, W. R.; Stetter, J. R., Shared sensor technology user facility at IIT. Hydrogen amperometric gas sensor: Performance evaluation by SSTUF, In Chemical Sensors VI: Chemical and Biological Sensors and Analytical Methods Proceedings of the International Symposium (as part of the 206th Meeting of the Electrochemical Society); Bruckner-Lea, C.; Hunter, G.; Miura, N.; Vanysek, P.; Egashira, M.; Mizutani, F., Eds.; Honolulu, Hawaii, 2004, 117–121, http://www.iit.edu/stetter/SSTUFOverview.html
  37. 37.
    Zellers, E. T.; Park, J.; Hsu, T.; Groves, W. A., Establishing a limit of recognition for a vapor sensor array, Anal. Chem. 1998, 70, 4191–4201CrossRefGoogle Scholar
  38. 38.
    Hsieh, M-D.; Zellers, E. T., Adaptation and evaluation of a personal electronic nose for selective multivapor analysis, J. Occup. Environ. Hygiene 2004, 1, 149–160Google Scholar
  39. 39.
    Willis, C. M.; Church, S. M.; Guest, C. M.; Cook, W. A.; McCarthy, N.; Bransbury, A. J.; Church, M. R. T.; Church, J. C. T., Olfactory detection of human bladder cancer by dogs: Proof of principle study, Br Med J 2004, 329, 712CrossRefGoogle Scholar
  40. 40.
    Stetter, J. R.; Penrose, W. R., Eds., Artificial Chemical Sensing: Proceedings of Eighth International Symposium on Olfaction and the Electronic Nose (ISOEN8 - ISOEN 2001), Washington, DC, March 20–24, 2001, ECS Publishing, Pennington, NJ, 2001, 229 pages, ISBN 1–56677–321–0Google Scholar
  41. 41.
    Pardo, M.; Kwong, L. G.; Sberveglieri, G.; Brubaker, K.; Schneider, J. F.; Penrose, W. R.; Stetter, J. R., Data analysis for a hybrid sensor array, Sensors Actuat. B 2005, 106, 136–143CrossRefGoogle Scholar
  42. 42.
    Penrose, W. R.; Penrose, S. E., Designing Portable Computerized Instruments, TAB Books, Inc., Blue Ridge Summit, PA, 1987, 262Google Scholar
  43. 43.
    Lorber, A.; Faber, K.; Kowalski, B. R., Net analyte signal calculation in multivariate calibration, Anal. Chem. 1997, 69, 1620–1626, 10.1021/ac960862b S0003–2700(96)00862–1CrossRefGoogle Scholar
  44. 44.
    Stetter, J. R., Instrumentation to monitor chemical exposure in the synfuel industry, Ann. Am. Conf. Govern. Ind. Hygienists 1984, 11, 225–269Google Scholar
  45. 45.
    Stetter, J. R.; Zaromb, S.; Findlay, M. W., Jr., Monitoring of electrochemically inactive compounds by amperometric gas sensors, Sensors Actuat. 1985, 6, 269Google Scholar
  46. 46.
    Stetter, J. R., New toxic-gas detector could save lives, prevent disasters, logos, In C&ENews, Argonne National Lab, Argonne, IL, 1984, Vol. 3, 2; Sensor array for toxic gas detection, US Patent 4670405, filing date 1984Google Scholar
  47. 47.
    Stetter, J. R.; Zaromb, S.; Penrose, W. R.; Otagawa, T.; Sinclair, J.; Stull, J., Portable instrument for the detection and identification of air pollutants, In Proceedings of Fourth National Symposium on Recent Advances in Pollutant Monitoring of Ambient Air and Stationary Sources, U.S. EPA, Research Triangle Park, NC, May 1984 Google Scholar
  48. 48.
    Stetter, J. R.; Zaromb, S.; Penrose, R.; Otagawa, T.; Sincali, A. J.; Stull, J. O., Selective monitoring of hazardous chemicals in emergency situations, In Proceedings of 1984 JANNAF Safety and Environmental Protection Annual Meeting, Las Cruces, NM, May 1984 Google Scholar
  49. 49.
    Vaihinger, S.; Stetter, J. R.; Göpel, W., Detection of Halogenated and Other Hydrocarbons in Air: Response Functions of Catalyst/Electrochem. Sensor Systems, Proc. of Eurosensors IV, Karlsruhe, Federal Republic of Germany, October 1–3, 1990 Google Scholar
  50. 50.
    Stetter, J. R.; Penrose, W. R.; Zaromb, S.; Stull, J. O., et al., A portable toxic vapor detector and analyzer using an electrochemical sensor array, In Analysis Instrumentation; Herbst, K. S., Ed.; ISA, RTP, NC 27709, 1985, Vol. 21, 163–170Google Scholar
  51. 51.
    Stull, J. O.; Stetter, J. R.; Penrose, W. R.; Zaromb, S., Development and evaluation of a portable personal monitor for detection and identification of hazardous chemical vapors, In Proceedings of 1985 of Hazardous Materials Management Conference and Exhibit, Long Beach Convention Center, CA, Dec. 3–5, 1985, Tower Conf. Mgt. Co., Wheaton, IL, 1985Google Scholar
  52. 52.
    Buttner, W. J.; Stetter, J. R., et al., A portable instrument for multiple compound detection and analysis, In Proceedings of Fourth Annual Technical Seminar on Chemical Spills, Feb 10–12, Toronto, ON, Sponsored by Environment Canada, 1987 Google Scholar
  53. 53.
    Buttner, W. J.; Stetter, J. R., et al., Portable Instrumentation for On-Site Analysis of Toxic Vapors, Technical Seminar on Chemical Spills, Toronto, ON, Canada, 1988, 295–301Google Scholar
  54. 54.
    Stetter, J. R.; Penrose, W. R.; Zaromb, S.; Stull, J. O., et al., A portable toxic vapor detector and analyzer using an electrochemical sensor array, In Analysis Instrumentation; Herbst, K. S., Ed.; ISA, RTP, NC 27709, 1985, Vol. 21, 163–170Google Scholar
  55. 55.
    Stetter, J. R.; Zaromb, S.; Penrose, W., [ARCH] Sensor array for toxic gas detection, US Patent 4,670,405: 6/2/87Google Scholar
  56. 56.
    Stetter, J. R.; Penrose, W. R.; Zaromb, S.; Christian, D.; Hampton, D. M.; Nolan, M.; Billings, M. W.; Steinke, K.; Otagawa, T., Evaluating the effectiveness of chemical parameter spectrometry in analyzing vapors of industrial chemicals, In Proceedings of Second Annual Technical Seminar on Chemical Spills, Toronto, ON, 1985 Google Scholar
  57. 57.
    Vaihinger, S.; Stetter, J. R.; Göpel, W., Detection of halogenated and other hydrocarbons in air: Response functions of catalyst/electrochemical sensor systems, In Proceedings of Eurosensors IV, Karlsruhe, Federal Republic of Germany, October 1–3, 1990 Google Scholar
  58. 58.
    Stetter, J. R., Method and apparatus for identifying and quantifying simple and complex chemicals, US Patent 4,818,348: Apr. 4, 1989 Google Scholar
  59. 59.
    Stetter, J. R., Electrochemical gas sensors for identification of solid and liquid compounds, Transducers ‘87, In Proceedings of the Fourth International Conference on Solid-State Sensors and Actuators, Institute of EE of Japan, Tokyo, Japan, June 2–5, 1987, 557–560Google Scholar
  60. 60.
    Strathmann, S.; Penrose, W. R.; Stetter, J. R.; Göpel, W., Detection of TNT with chemical sensors, In Proceedings of International Symposium on Olfaction and the Electronic Nose, (ISOEN 99), Tuebingen, Germany, September 20–22, 1999 Google Scholar
  61. 61.
    Stetter, J. R.; Findlay, M. W.; Maclay, G. J.; Zhang, J.; Vaihinger, S.; Göpel, W., Sensor array and catalytic filament for chemical analysis of vapors and mixtures, Sensors Actuat. 1990, B1, 43–47CrossRefGoogle Scholar
  62. 62.
    Stetter, J. R.; Penrose, W. R.; Strathmann, S.; Göpel, W., Approaches to a more versatile electronic nose, In Proceedings of International Symposium on Olfaction and the Electronic Nose (ISOEN 99), Tuebingen, Germany, September 20–22, 1999 Google Scholar
  63. 63.
    Stetter, J. R.; Jurs, P. C.; Rose, S. L.; Stull, J. O., Enhancement of the toxic vapor identification capability of portable sensors using pattern recognition techniques, In Proceedings of 1985 JANNAF Safety and Environmental Protection Subcommittee, Naval Postgraduate School, Monterey, CA, CPIA, John Hopkins Univ. APL, Baltimore, MD, Nov. 4–8, 1985 Google Scholar
  64. 64.
    Weimar, U.; Göpel, W., Chemical imaging: II. Trends in practical multiparameter sensor systems, Sensors Actuat. B 1998, 52, 143–161CrossRefGoogle Scholar
  65. 65.
    Stetter, J. R., Electrochemical sensors, sensor arrays, and computer algorithms, In Fundamentals and Applications of Chemical Sensors; Schuetzle, D.; Hammerle, R.; Butler, J., Eds.; ACS Symposium Series, No. 309, 1986, 299–308CrossRefGoogle Scholar
  66. 66.
    Zaromb, S.; Battin, R.; Penrose, W. R.; Stetter, J. R.; Stamoudis, V. C.; Stull, J. O., Extending the capabilities of the portable chemical parameter spectrometer to the identification of up to 100 compounds, In Proceedings of the Second International Meeting on Chemical Sensors, Bordeaux, France, July 7–10; Aucouturier, J. L., et al., Eds.; 1986, 739–742Google Scholar
  67. 67.
    Findlay, M. W.; Penrose, W. R.; Stetter, J. R., Quality classification of grain using a sensor array and pattern recognition, Anal. Chim. Acta 1993, 284, 1–11CrossRefGoogle Scholar
  68. 68.
    Stetter, J. R.; Otagawa, T., Selective detection of chemicals using energy modulated signals, In Proceedings of the Third International Conference on Solid-State Sensors and Actuators, Philadelphia, PA, June 10–14, IEEE, Piscataway, NJ 08854 (IEEE Cat. #85CH2127–9 and LC #84–62799), 1985, 77–81Google Scholar
  69. 69.
    Stetter, J. R.; Otagawa, T., Selective detection of chemicals using energy modulated signals, In Proceedings of the Third International Conference on Solid-State Sensors and Actuators, Philadelphia, PA, June 10–14, IEEE, Piscataway, NJ 08854 (IEEE Cat. #85CH2127–9 and LC #84–62799), 1985, 77–81Google Scholar
  70. 70.
    Stetter, J. R.; Otagawa, T., Chemical Detection by Energy Modulation of Sensors. USP# 5047352; 9/10/91Google Scholar
  71. 71.
    Maclay, G. J.; Stetter, J. R., Use of time-dependent chemical sensor signals for selective identification, Transducers ‘87, In Proceedings of the Fourth International Conference on Solid-State Sensors and Actuators, Institute of EE of Japan, Tokyo, Japan, June 2–5, 1987, Vol. 28, 557–560Google Scholar
  72. 72.
    Stetter, J. R.; Maclay, G. J.; Christesen, S., Time dependent signals, In Proceedings of 1987 US Army Conference on Scientific Defense Research, APG MD, Nov. 16–21, 1987 Google Scholar
  73. 73.
    Stetter, J. R., Neural network approach to identify signatures from electrochemical sensor arrays, In Proceedings of NATO Advanced Research Workshop on Sensors and Sensory Systems for an Electronic Nose, University of Iceland, Reykjavik, Iceland, August 5–9, 1991 Google Scholar
  74. 74.
    Stetter, J. R., Chemical sensor arrays: Practical insights and examples, In Sensors and Sensory Systems for an Electronic Nose; Gardner, J.; Bartlett, P. N., Eds.; Kluwer, Dordrecht, 1992, 273–301Google Scholar
  75. 75.
    Ni, M.; Stetter, J. R.; Buttner, W. J., Orthogonal gas sensor arrays with intelligent algorithms for early warning of electrical fires, Sensors Actuat. B 2008, 130, 889–899CrossRefGoogle Scholar
  76. 76.
    Röck, F.; Barsan, N.; Weimar, U., Electronic nose: Current status and future trends, Chem. Rev. 2008, 108, 705–725CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Ecosensors TTD, KWJ Engineering Inc.NewarkUSA

Personalised recommendations