High-Throughput Screening of Vapor Selectivity of Multisize CdSe Nanocrystal/Polymer Composite Films

Part of the Integrated Analytical Systems book series (ANASYS)


We have achieved selective gas sensing based on different size semiconductor nanocrystals incorporated into rationally selected polymer matrices. From the high-throughput screening experiments, we have found that when CdSe nanocrystals of different size (2.8 and 5.6 nm diameter) were incorporated into different types of polymer films, the photoluminescence (PL) response patterns upon laser excitation at 407-nm and exposure to polar and nonpolar solvent vapors were dependent on the nature of polymer. We analyzed the spectral PL response from both sizes of CdSe nanocrystals using multivariate analysis tools. Results of this multivariate analysis demonstrate that a single film with different size CdSe nanocrystals serves as a selective sensor. The stability of PL response to vapors was evaluated upon 16 h of continuous exposure to laser excitation.


Semiconductor Nanocrystals Principal Component Analysis Model Sensor Film CdSe Nanocrystals PMMA Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by GE Corporate long-term research funds. Authors are grateful to Fasila Seker for helpful discussions.


  1. 1.
    Potyrailo, R. A., Polymeric sensor materials: Toward an alliance of combinatorial and rational design tools?, Angew. Chem. Int. Ed. 2006, 45, 702–723CrossRefGoogle Scholar
  2. 2.
    Wolfbeis, O. S., Fiber-optic chemical sensors and biosensors, Anal. Chem. 2004, 76, 3269–3284CrossRefGoogle Scholar
  3. 3.
    Janata, J., Electrochemical sensors and their impedances: A tutorial, Crit. Rev. Anal. Chem. 2002, 32, 109–120CrossRefGoogle Scholar
  4. 4.
    Bakker, E., Electrochemical sensors, Anal. Chem. 2004, 76, 3285–3298CrossRefGoogle Scholar
  5. 5.
    Kooser, A.; Gunter, R. L.; Delinger, W. D.; Porter, T. L.; Eastman, M. P., Gas sensing using embedded piezoresistive microcantilever sensors, Sens. Actuators B 2004, 99, 474–479CrossRefGoogle Scholar
  6. 6.
    Kröger, S.; Danielsson, B., Calorimetric biosensors, In Handbook of Biosensors and Electronic Noses. Medicine, Food, and the Environment; Kress-Rogers, E., Ed.; CRC: Boca Raton, FL, 1997; 279–298Google Scholar
  7. 7.
    Fiber Optic Chemical Sensors and Biosensors; Wolfbeis, O. S., Ed.; CRC: Boca Raton, FL, 1991 Google Scholar
  8. 8.
    Potyrailo, R. A.; Hobbs, S. E.; Hieftje, G. M., Optical waveguide sensors in analytical chemistry: Today’s instrumentation, applications and future development trends, Fresenius’ J. Anal. Chem. 1998, 362, 349–373CrossRefGoogle Scholar
  9. 9.
    Hierlemann, A.; Weimar, U.; Kraus, G.; Schweizer-Berberich, M.; Göpel, W., Polymer-based sensor arrays and multicomponent analysis for the detection of hazardous organic vapours in the environment, Sens. Actuators B 1995, 26, 126–134CrossRefGoogle Scholar
  10. 10.
    Potyrailo, R. A.; Sivavec, T. M., Boosting sensitivity of organic vapor detection with silicone block polyimide polymers, Anal. Chem. 2004, 76, 7023–7027CrossRefGoogle Scholar
  11. 11.
    Wohltjen, H., A journey: From sensor ideas to sensor products, In Plenary Talk at the 11th International Meeting on Chemical Sensors, University of Brescia, Italy, July 16–19, 2006*** Elsevier Science: 2006 Google Scholar
  12. 12.
    Shortreed, M.; Monson, E.; Kopelman, R., Lifetime enhancement of ultrasmall fluorescent liquid polymeric film based optodes by diffusion-induced self-recovery after photobleaching, Anal. Chem. 1996, 68, 4015–4019CrossRefGoogle Scholar
  13. 13.
    Bencic-Nagale, S.; Walt, D. R., Extending the longevity of fluorescence-based sensor arrays using adaptive exposure, Anal. Chem. 2005, 77, 6155–6162CrossRefGoogle Scholar
  14. 14.
    Bruchez, M., Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P., Semiconductor nanocrystals as fluorescent biological labels, Science 1998, 281, 2013–2016CrossRefGoogle Scholar
  15. 15.
    Chan, W. C. W.; Nie, S., Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science 1998, 281, 2016–2018CrossRefGoogle Scholar
  16. 16.
    Nazzal, A. Y.; Qu, L.; Peng, X.; Xiao, M., Photoactivated CdSe nanocrystals as nanosensors for gases, Nano Lett. 2003, 3, 819–822CrossRefGoogle Scholar
  17. 17.
    Holtz, J. H.; Asher, S. A., Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials, Nature 1997, 389, 829–832CrossRefGoogle Scholar
  18. 18.
    Convertino, A.; Capobianchi, A.; Valentini, A.; Cirillo, E. N. M., A new approach to organic solvent detection: High-reflectivity bragg reflectors based on a gold nanoparticle/teflon-like composite material, Adv. Mater. 2003, 15, 1103–1105CrossRefGoogle Scholar
  19. 19.
    Jiang, P.; Smith, D. W. J.; Ballato, J. M.; Foujger, S. H., Multicolor pattern generation in photonic bandgap composites, Adv. Mater. 2005, 17, 179–184CrossRefGoogle Scholar
  20. 20.
    Handley, J., Stretching the wire frontier, Anal. Chem. 2002, 74, 196A–199AGoogle Scholar
  21. 21.
    Zhou, Y.; Freitag, M.; Hone, J.; Staii, C.; Johnson, A. T.; Pinto, N. J.; MacDiarmid, A. G., Fabrication and electrical characterization of polyaniline-based nanofibers with diameter below 30 nm, Appl. Phys. Lett. 2003, 83, 3800–3802CrossRefGoogle Scholar
  22. 22.
    Chakrabarti, R.; Klibanov, A. M., Nanocrystals modified with peptide nucleic acids (PNAS) for selective self-assembly and DNA detection, J. Am. Chem. Soc. 2003, 125, 12531–12540CrossRefGoogle Scholar
  23. 23.
    Zhang, M.; Gorski, W., Electrochemical sensing based on redox mediation at carbon nanotubes, Anal. Chem. 2005, 77, 3960–3965CrossRefGoogle Scholar
  24. 24.
    Potyrailo, R. A.; Leach, A. M., Gas sensor materials based on semiconductor nanocrystal/ polymer composite films, In Proceedings of Transducers ‘05, the 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Seoul, Korea, June 5–9, 2005; 1292–1295Google Scholar
  25. 25.
    Potyrailo, R. A.; Leach, A. M., Selective gas nanosensors with multisize CdSe nanocrystal/ polymer composite films and dynamic pattern recognition, Appl. Phys. Lett. 2006, 88, 134110CrossRefGoogle Scholar
  26. 26.
    Leach, A. M.; Potyrailo, R. A., Gas sensor materials based on semiconductor nanocrystal/polymer composite films, In Combinatorial Methods and Informatics in Materials Science. MRS Symposium Proceedings, Wang, Q.; Potyrailo, R. A.; Fasolka, M.; Chikyow, T.; Schubert, U. S.; Korkin, A. Eds.; Materials Research Society: Warrendale, PA, 2006; Vol. 894; 237–243Google Scholar
  27. 27.
    Murray, C. B.; Norris, D. J.; Bawendi, M. G., Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc. 1993, 115, 8706–8715CrossRefGoogle Scholar
  28. 28.
    Kovalevskij, V.; Gulbinas, V.; Piskarskas, A.; Hines, M. A.; Scholes, G. D., Surface passivation in CdSe nanocrystal-polymer films revealed by ultrafast excitation relaxation dynamics, Phys. Stat. Sol. B 2004, 241, 1986–1993CrossRefGoogle Scholar
  29. 29.
    Potyrailo, R. A.; Lemmon, J. P.; Leib, T. K., High-throughput screening of selectivity of melt polymerization catalysts using fluorescence spectroscopy and two-wavelength fluorescence imaging, Anal. Chem. 2003, 75, 4676–4681CrossRefGoogle Scholar
  30. 30.
    Potyrailo, R. A.; Chisholm, B. J.; Olson, D. R.; Brennan, M. J.; Molaison, C. A., Development of combinatorial chemistry methods for coatings: High-throughput screening of abrasion resistance of coatings libraries, Anal. Chem. 2002, 74, 5105–5111CrossRefGoogle Scholar
  31. 31.
    Potyrailo, R. A.; Ezbiansky, K.; Chisholm, B. J.; Morris, W. G.; Cawse, J. N.; Hassib, L.; Medford, G.; Reitz, H., Development of combinatorial chemistry methods for coatings: High-throughput weathering evaluation and scale-up of combinatorial leads, J. Comb. Chem. 2005, 7, 190–196CrossRefGoogle Scholar
  32. 32.
    Potyrailo, R. A.; Pickett, J. E., High-throughput multilevel performance screening of advanced materials, Angew. Chem. Int. Ed. 2002, 41, 4230–4233CrossRefGoogle Scholar
  33. 33.
    Potyrailo, R. A.; Wroczynski, R. J.; Pickett, J. E.; Rubinsztajn, M., High-throughput fabrication, performance testing, and characterization of one-dimensional libraries of polymeric compositions, Macromol. Rapid Comm. 2003, 24, 123–130CrossRefGoogle Scholar
  34. 34.
    Potyrailo, R. A.; Hassib, L., Analytical instrumentation infrastructure for combinatorial and high-throughput development of formulated discrete and gradient polymeric sensor materials arrays, Rev. Sci. Instrum. 2005, 76, 062225CrossRefGoogle Scholar
  35. 35.
    Sivavec, T. M.; Potyrailo, R. A. Polymer coatings for chemical sensors; US Patent 6,357,278 B1: 2002 Google Scholar
  36. 36.
    Nazzal, A. Y.; Wang, X.; Qu, L.; Yu, W.; Wang, Y.; Peng, X.; Xiao, M., Environmental effects on photoluminescence of highly luminescent CdSe and CdSe/ZnS core/shell nanocrystals in polymer thin films, J. Phys. Chem. B 2004, 108, 5507–5515CrossRefGoogle Scholar
  37. 37.
    Wang, X.; Qu, L.; Zhang, J.; Peng, X.; Xiao, M., Surface-related emission in highly luminescent CdSe quantum dots, Nano Lett. 2003, 3, 1103–1106CrossRefGoogle Scholar
  38. 38.
    Asami, H.; Abe, Y.; Ohtsu, T.; Kamiya, I.; Hara, M., Surface state analysis of photobrightening in CdSe nanocrystal thin films, J. Phys. Chem. B. 2003, 107, 12566–12568CrossRefGoogle Scholar
  39. 39.
    Lisensky, G. C.; Meyer, G. J.; Ellis, A. B., Selective detector for gas chromatography based on adduct-modulated semiconductor photoluminescence, Anal. Chem. 1988, 60, 2531–2534CrossRefGoogle Scholar
  40. 40.
    Seker, F.; Meeker, K.; Kuech, T. F.; Ellis, A. B., Surface chemistry of prototypical bulk ii–vi and iii–v semiconductors and implications for chemical sensing, Chem. Rev. 2000, 100, 2505–2536CrossRefGoogle Scholar
  41. 41.
    Rabani, E.; Hetényi, B.; Berne, B. J.; Brus, L. E., Electronic properties of CdSe nanocrystals in the absence and presence of a dielectric medium, J. Chem. Phys. 1999, 110, 5355–5369CrossRefGoogle Scholar
  42. 42.
    Leatherdale, C. A.; Bawendi, M. G., Observation of solvatochromism in CdSe colloidal quantum dots, Phys. Rev. B 2001, 63, 165315 165311–165316Google Scholar
  43. 43.
    Potyrailo, R. A.; Wroczynski, R. J.; Lemmon, J. P.; Flanagan, W. P.; Siclovan, O. P., Multivariate tools for real-time monitoring and optimization of combinatorial materials and process conditions, In Analysis and Purification Methods in Combinatorial Chemistry, B. Yan, Ed.; Wiley-Interscience: Hoboken, NJ, 2004; 87–123Google Scholar
  44. 44.
    Wise, B. M.; Gallagher, N. B. PLS_toolbox Version 2.1 for Use with Matlab; Eigenvector Research, Inc.: Manson, WA, 2000 Google Scholar
  45. 45.
    Wise, B. M.; Gallagher, N. B.; Bro, R.; Shaver, J. M.; Windig, W.; Koch, R. S. PLS_Toolbox Version 4.0 for Use with Matlab; Eigenvector Research, Inc.: Manson, WA, 2006 Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Chemical and Biological Sensing Laboratory, Chemistry Technologies and Material CharacterizationGeneral Electric Global Research, NiskayunaNew YorkUSA
  2. 2.Global Research CenterGeneral Electric CompanyNiskayunaUSA

Personalised recommendations