Skip to main content

High-Throughput Screening of Vapor Selectivity of Multisize CdSe Nanocrystal/Polymer Composite Films

  • Chapter
Combinatorial Methods for Chemical and Biological Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 962 Accesses

Abstract

We have achieved selective gas sensing based on different size semiconductor nanocrystals incorporated into rationally selected polymer matrices. From the high-throughput screening experiments, we have found that when CdSe nanocrystals of different size (2.8 and 5.6 nm diameter) were incorporated into different types of polymer films, the photoluminescence (PL) response patterns upon laser excitation at 407-nm and exposure to polar and nonpolar solvent vapors were dependent on the nature of polymer. We analyzed the spectral PL response from both sizes of CdSe nanocrystals using multivariate analysis tools. Results of this multivariate analysis demonstrate that a single film with different size CdSe nanocrystals serves as a selective sensor. The stability of PL response to vapors was evaluated upon 16 h of continuous exposure to laser excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Potyrailo, R. A., Polymeric sensor materials: Toward an alliance of combinatorial and rational design tools?, Angew. Chem. Int. Ed. 2006, 45, 702–723

    Article  CAS  Google Scholar 

  2. Wolfbeis, O. S., Fiber-optic chemical sensors and biosensors, Anal. Chem. 2004, 76, 3269–3284

    Article  CAS  Google Scholar 

  3. Janata, J., Electrochemical sensors and their impedances: A tutorial, Crit. Rev. Anal. Chem. 2002, 32, 109–120

    Article  CAS  Google Scholar 

  4. Bakker, E., Electrochemical sensors, Anal. Chem. 2004, 76, 3285–3298

    Article  CAS  Google Scholar 

  5. Kooser, A.; Gunter, R. L.; Delinger, W. D.; Porter, T. L.; Eastman, M. P., Gas sensing using embedded piezoresistive microcantilever sensors, Sens. Actuators B 2004, 99, 474–479

    Article  Google Scholar 

  6. Kröger, S.; Danielsson, B., Calorimetric biosensors, In Handbook of Biosensors and Electronic Noses. Medicine, Food, and the Environment; Kress-Rogers, E., Ed.; CRC: Boca Raton, FL, 1997; 279–298

    Google Scholar 

  7. Fiber Optic Chemical Sensors and Biosensors; Wolfbeis, O. S., Ed.; CRC: Boca Raton, FL, 1991

    Google Scholar 

  8. Potyrailo, R. A.; Hobbs, S. E.; Hieftje, G. M., Optical waveguide sensors in analytical chemistry: Today’s instrumentation, applications and future development trends, Fresenius’ J. Anal. Chem. 1998, 362, 349–373

    Article  CAS  Google Scholar 

  9. Hierlemann, A.; Weimar, U.; Kraus, G.; Schweizer-Berberich, M.; Göpel, W., Polymer-based sensor arrays and multicomponent analysis for the detection of hazardous organic vapours in the environment, Sens. Actuators B 1995, 26, 126–134

    Article  Google Scholar 

  10. Potyrailo, R. A.; Sivavec, T. M., Boosting sensitivity of organic vapor detection with silicone block polyimide polymers, Anal. Chem. 2004, 76, 7023–7027

    Article  CAS  Google Scholar 

  11. Wohltjen, H., A journey: From sensor ideas to sensor products, In Plenary Talk at the 11th International Meeting on Chemical Sensors, University of Brescia, Italy, July 16–19, 2006*** Elsevier Science: 2006

    Google Scholar 

  12. Shortreed, M.; Monson, E.; Kopelman, R., Lifetime enhancement of ultrasmall fluorescent liquid polymeric film based optodes by diffusion-induced self-recovery after photobleaching, Anal. Chem. 1996, 68, 4015–4019

    Article  CAS  Google Scholar 

  13. Bencic-Nagale, S.; Walt, D. R., Extending the longevity of fluorescence-based sensor arrays using adaptive exposure, Anal. Chem. 2005, 77, 6155–6162

    Article  CAS  Google Scholar 

  14. Bruchez, M., Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P., Semiconductor nanocrystals as fluorescent biological labels, Science 1998, 281, 2013–2016

    Article  CAS  Google Scholar 

  15. Chan, W. C. W.; Nie, S., Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science 1998, 281, 2016–2018

    Article  CAS  Google Scholar 

  16. Nazzal, A. Y.; Qu, L.; Peng, X.; Xiao, M., Photoactivated CdSe nanocrystals as nanosensors for gases, Nano Lett. 2003, 3, 819–822

    Article  CAS  Google Scholar 

  17. Holtz, J. H.; Asher, S. A., Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials, Nature 1997, 389, 829–832

    Article  CAS  Google Scholar 

  18. Convertino, A.; Capobianchi, A.; Valentini, A.; Cirillo, E. N. M., A new approach to organic solvent detection: High-reflectivity bragg reflectors based on a gold nanoparticle/teflon-like composite material, Adv. Mater. 2003, 15, 1103–1105

    Article  CAS  Google Scholar 

  19. Jiang, P.; Smith, D. W. J.; Ballato, J. M.; Foujger, S. H., Multicolor pattern generation in photonic bandgap composites, Adv. Mater. 2005, 17, 179–184

    Article  CAS  Google Scholar 

  20. Handley, J., Stretching the wire frontier, Anal. Chem. 2002, 74, 196A–199A

    CAS  Google Scholar 

  21. Zhou, Y.; Freitag, M.; Hone, J.; Staii, C.; Johnson, A. T.; Pinto, N. J.; MacDiarmid, A. G., Fabrication and electrical characterization of polyaniline-based nanofibers with diameter below 30 nm, Appl. Phys. Lett. 2003, 83, 3800–3802

    Article  CAS  Google Scholar 

  22. Chakrabarti, R.; Klibanov, A. M., Nanocrystals modified with peptide nucleic acids (PNAS) for selective self-assembly and DNA detection, J. Am. Chem. Soc. 2003, 125, 12531–12540

    Article  CAS  Google Scholar 

  23. Zhang, M.; Gorski, W., Electrochemical sensing based on redox mediation at carbon nanotubes, Anal. Chem. 2005, 77, 3960–3965

    Article  CAS  Google Scholar 

  24. Potyrailo, R. A.; Leach, A. M., Gas sensor materials based on semiconductor nanocrystal/ polymer composite films, In Proceedings of Transducers ‘05, the 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Seoul, Korea, June 5–9, 2005; 1292–1295

    Google Scholar 

  25. Potyrailo, R. A.; Leach, A. M., Selective gas nanosensors with multisize CdSe nanocrystal/ polymer composite films and dynamic pattern recognition, Appl. Phys. Lett. 2006, 88, 134110

    Article  Google Scholar 

  26. Leach, A. M.; Potyrailo, R. A., Gas sensor materials based on semiconductor nanocrystal/polymer composite films, In Combinatorial Methods and Informatics in Materials Science. MRS Symposium Proceedings, Wang, Q.; Potyrailo, R. A.; Fasolka, M.; Chikyow, T.; Schubert, U. S.; Korkin, A. Eds.; Materials Research Society: Warrendale, PA, 2006; Vol. 894; 237–243

    Google Scholar 

  27. Murray, C. B.; Norris, D. J.; Bawendi, M. G., Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc. 1993, 115, 8706–8715

    Article  CAS  Google Scholar 

  28. Kovalevskij, V.; Gulbinas, V.; Piskarskas, A.; Hines, M. A.; Scholes, G. D., Surface passivation in CdSe nanocrystal-polymer films revealed by ultrafast excitation relaxation dynamics, Phys. Stat. Sol. B 2004, 241, 1986–1993

    Article  CAS  Google Scholar 

  29. Potyrailo, R. A.; Lemmon, J. P.; Leib, T. K., High-throughput screening of selectivity of melt polymerization catalysts using fluorescence spectroscopy and two-wavelength fluorescence imaging, Anal. Chem. 2003, 75, 4676–4681

    Article  CAS  Google Scholar 

  30. Potyrailo, R. A.; Chisholm, B. J.; Olson, D. R.; Brennan, M. J.; Molaison, C. A., Development of combinatorial chemistry methods for coatings: High-throughput screening of abrasion resistance of coatings libraries, Anal. Chem. 2002, 74, 5105–5111

    Article  CAS  Google Scholar 

  31. Potyrailo, R. A.; Ezbiansky, K.; Chisholm, B. J.; Morris, W. G.; Cawse, J. N.; Hassib, L.; Medford, G.; Reitz, H., Development of combinatorial chemistry methods for coatings: High-throughput weathering evaluation and scale-up of combinatorial leads, J. Comb. Chem. 2005, 7, 190–196

    Article  CAS  Google Scholar 

  32. Potyrailo, R. A.; Pickett, J. E., High-throughput multilevel performance screening of advanced materials, Angew. Chem. Int. Ed. 2002, 41, 4230–4233

    Article  CAS  Google Scholar 

  33. Potyrailo, R. A.; Wroczynski, R. J.; Pickett, J. E.; Rubinsztajn, M., High-throughput fabrication, performance testing, and characterization of one-dimensional libraries of polymeric compositions, Macromol. Rapid Comm. 2003, 24, 123–130

    Article  CAS  Google Scholar 

  34. Potyrailo, R. A.; Hassib, L., Analytical instrumentation infrastructure for combinatorial and high-throughput development of formulated discrete and gradient polymeric sensor materials arrays, Rev. Sci. Instrum. 2005, 76, 062225

    Article  Google Scholar 

  35. Sivavec, T. M.; Potyrailo, R. A. Polymer coatings for chemical sensors; US Patent 6,357,278 B1: 2002

    Google Scholar 

  36. Nazzal, A. Y.; Wang, X.; Qu, L.; Yu, W.; Wang, Y.; Peng, X.; Xiao, M., Environmental effects on photoluminescence of highly luminescent CdSe and CdSe/ZnS core/shell nanocrystals in polymer thin films, J. Phys. Chem. B 2004, 108, 5507–5515

    Article  CAS  Google Scholar 

  37. Wang, X.; Qu, L.; Zhang, J.; Peng, X.; Xiao, M., Surface-related emission in highly luminescent CdSe quantum dots, Nano Lett. 2003, 3, 1103–1106

    Article  CAS  Google Scholar 

  38. Asami, H.; Abe, Y.; Ohtsu, T.; Kamiya, I.; Hara, M., Surface state analysis of photobrightening in CdSe nanocrystal thin films, J. Phys. Chem. B. 2003, 107, 12566–12568

    Article  CAS  Google Scholar 

  39. Lisensky, G. C.; Meyer, G. J.; Ellis, A. B., Selective detector for gas chromatography based on adduct-modulated semiconductor photoluminescence, Anal. Chem. 1988, 60, 2531–2534

    Article  CAS  Google Scholar 

  40. Seker, F.; Meeker, K.; Kuech, T. F.; Ellis, A. B., Surface chemistry of prototypical bulk ii–vi and iii–v semiconductors and implications for chemical sensing, Chem. Rev. 2000, 100, 2505–2536

    Article  CAS  Google Scholar 

  41. Rabani, E.; Hetényi, B.; Berne, B. J.; Brus, L. E., Electronic properties of CdSe nanocrystals in the absence and presence of a dielectric medium, J. Chem. Phys. 1999, 110, 5355–5369

    Article  CAS  Google Scholar 

  42. Leatherdale, C. A.; Bawendi, M. G., Observation of solvatochromism in CdSe colloidal quantum dots, Phys. Rev. B 2001, 63, 165315 165311–165316

    Google Scholar 

  43. Potyrailo, R. A.; Wroczynski, R. J.; Lemmon, J. P.; Flanagan, W. P.; Siclovan, O. P., Multivariate tools for real-time monitoring and optimization of combinatorial materials and process conditions, In Analysis and Purification Methods in Combinatorial Chemistry, B. Yan, Ed.; Wiley-Interscience: Hoboken, NJ, 2004; 87–123

    Google Scholar 

  44. Wise, B. M.; Gallagher, N. B. PLS_toolbox Version 2.1 for Use with Matlab; Eigenvector Research, Inc.: Manson, WA, 2000

    Google Scholar 

  45. Wise, B. M.; Gallagher, N. B.; Bro, R.; Shaver, J. M.; Windig, W.; Koch, R. S. PLS_Toolbox Version 4.0 for Use with Matlab; Eigenvector Research, Inc.: Manson, WA, 2006

    Google Scholar 

Download references

Acknowledgments

This work has been supported by GE Corporate long-term research funds. Authors are grateful to Fasila Seker for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radislav A. Potyrailo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Potyrailo, R.A., Leach, A.M. (2009). High-Throughput Screening of Vapor Selectivity of Multisize CdSe Nanocrystal/Polymer Composite Films. In: Potyrailo, R.A., Mirsky, V.M. (eds) Combinatorial Methods for Chemical and Biological Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73713-3_5

Download citation

Publish with us

Policies and ethics