Combinatorial Libraries of Fluorescent Monolayers on Glass

  • Lourdes Basabe-Desmonts
  • David N. Reinhoudt
  • Mercedes Crego-Calama
Part of the Integrated Analytical Systems book series (ANASYS)


Fluorescent self-assembled monolayers (SAMs) on glass surfaces are discussed as new sensing materials for metal ions and inorganic anions. The sensing SAMs are created by sequential deposition of two building blocks, a fluorophore and a ligand molecule onto an amino terminated SAM on glass slides. A large number of different systems can be fabricated by combinatorial techniques and parallel synthesis. A collection of sensing SAMs constitute a cross-reactive sensor array, with which analytes can be identified by differential sensing using the collective response of the SAMs array, instead of the individual response of a single SAM. Arrays of fluorescent SAMs have been produced both in microtiter plate and in multichannel microfluidic chip formats. Additionally, the glass substrates coated with fluorescent SAMs have been used as substrates for chemical patterning.


Glass Surface Sensor Array Sulfonyl Chloride Fluorescent Pattern Laser Scanning Confocal Microscopy Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Royal Netherlands Academy of Arts and Sciences (KNAW), and the MESA+ Institute for Nanotechnology.


  1. 1.
    Encyclopedia of Sensors, 10-Volumen Set; Grimes, C. A.; Dickey, E. C.; Pishko, M. V.; The Pennsylvania State University: University Park,USA, 2005Google Scholar
  2. 2.
    Topics in Fluorescence Spectroscopy; Lakowicz, J. R.; Kluwer: New York, N Y, 2002; Vol.1Google Scholar
  3. 3.
    Lakowicz, J. R. Probe Design and Chemical Sensing; Lakowicz, J. R., Eds; Topics in Fluorescence Spectroscopy. Kluwer: New York, NY, 2002; Vol. 4Google Scholar
  4. 4.
    Basabe-Desmonts, L.; Reinhoudt, D. N.; Crego-Calama, M. Design of Fluorescent Materials for Chemical Sensing. Chem. Soc. Rev. 2007, 36, 993–1017CrossRefGoogle Scholar
  5. 5.
    Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum Dot Bioconjugates for Imaging, Labelling and Sensing. Nat. Mater. 2005, 4, 435–446CrossRefGoogle Scholar
  6. 6.
    Bell, J. W.; Hext, N. M. Supramolecular Optical Chemosensors for Organic Analytes. Chem. Soc. Rev. 2004, 33, 589–598Google Scholar
  7. 7.
    Lavigne, J. J.; Anslyn, E. V. Sensing a Paradigm Shift in the Field of Molecular Recognition: From Selective to Differential Receptors. Angew. Chem. Int. Ed. 2001, 40, 3119–3130CrossRefGoogle Scholar
  8. 8.
    Gauglitz, G. Optical Detection Methods for Combinatorial Libraries. Curr. Opin. Chem. Biol. 2000, 4, 351–355CrossRefGoogle Scholar
  9. 9.
    Dickinson, T. A.; White, J.; Kauer, J. S.; Walt, D. R. Current Trends in ‘artificial-Nose’ Technology. Trends Biotechnol. 1998, 16, 250–258CrossRefGoogle Scholar
  10. 10.
    Goodey, A.; Lavigne, J. J.; Savoy, S. M.; Rodríguez, M. D.; Curey, T.; Tsao, A.; Simmons, G.; Wright, J.; Yoo, S. J.; Sohn, Y.; Anslyn, E. V.; Shear, J. B.; Neikirk, D. P.; McDevitt, J. T. Development of Multianalyte Sensor Arrays Composed of Chemically Derivatized Polymeric Microspheres Localized in Micromachined Cavities. J. Am. Chem. Soc. 2001, 123, 2559–2570CrossRefGoogle Scholar
  11. 11.
    C. M., B. Neural Networks for Pattern Recognition; Oxford University Press: New York, N Y, 2004Google Scholar
  12. 12.
    Lyons, W. B.; Lewis, E. Neural Networks and Pattern Recognition Techniques Applied to Optical Fibre Sensors. Trans. Inst. Measurm. Control 2000, 22, 385–404Google Scholar
  13. 13.
    Crooks, R. M.; Ricco, A. J. New Organic Materials Suitable for Use in Chemical Sensor Arrays. Acc. Chem. Res. 1998, 31, 219–227CrossRefGoogle Scholar
  14. 14.
    Chechik, V.; Crooks, R. M.; Stirling, C. J. M. Reactions and Reactivity in Self-Assembled Monolayers. Adv. Mater. 2000, 12, 1161–1171CrossRefGoogle Scholar
  15. 15.
    Dulkeith, E.; Morteani, A. C.; Niedereichholz, T.; Klar, T. A.; Feldmann, J.; Levi, S. A.; Van Veggel, F. C. J. M.; Reinhoudt, D. N.; Möller, M.; Gittins, D. I. Fluorescence Quenching of Dye Molecules Near Gold Nanoparticles: Radiative and Nonradiative Effects. Phys. Rev. Lett. 2002, 89, 203002CrossRefGoogle Scholar
  16. 16.
    Imahori, H.; Norieda, H.; Nishimura, Y.; Yamazaki, I.; Higuchi, K.; Kato, N.; Motohiro, T.; Yamada, H.; Tamaki, K.; Arimura, M.; Sakata, Y. Chain Length Effect on the Structure and Photoelectrochemical Properties of Self-Assembled Monolayers of Porphyrins on Gold Electrodes. J. Phys. Chem. B 2000, 104, 1253–1260CrossRefGoogle Scholar
  17. 17.
    Motesharei, K.; Myles, D. C. Molecular Recognition in Membrane Mimics – a Fluorescence Probe. J. Am. Chem. Soc. 1994, 116, 7413–7414CrossRefGoogle Scholar
  18. 18.
    Sun, X. Y.; Liu, B.; Jiang, Y. B. An Extremely Sensitive Monoboronic Acid Based Fluorescent Sensor for Glucose. Anal. Chim. Acta 2004, 515, 285–290CrossRefGoogle Scholar
  19. 19.
    Panicker, R. C.; Huang, X.; Yao, S. Q. Recent Advances in Peptide-Based Microarray Technologies. Comb. Chem. High Throughput Screening 2004, 7, 547–556Google Scholar
  20. 20.
    Walsh, D. P.; Chang, Y. T. Recent Advances in Small Molecule Microarrays: Applications and Technology. Comb. Chem. High Throughput Screening 2004, 7, 557–564Google Scholar
  21. 21.
    Adronov, A.; Robello, D. R.; Frechet, J. M. J. Light Harvesting and Energy Transfer Within Coumarin-Labeled Polymers. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 1366–1373CrossRefGoogle Scholar
  22. 22.
    Chrisstoffels, L. A. J.; Adronov, A.; Frechet, J. M. J. Surface-Confined Light Harvesting, Energy Transfer, and Amplification of Fluorescence Emission in Chromophore-Labeled Self-Assembled Monolayers. Angew. Chem. Int. Ed. 2000, 39, 2163–2167CrossRefGoogle Scholar
  23. 23.
    Saari, L. A.; Seitz, W. R., pH sensor based on immobilized fluores ceinamine. Anal. Chem. 1982, 54, 821CrossRefGoogle Scholar
  24. 24.
    Harper, B. G., Reusable glass-bound pH indicators. Anal. Chem. 1975, 47, 348CrossRefGoogle Scholar
  25. 25.
    Urbano, E.; Offenbacher, H.; Wolfbeis, O. S. Optical Sensor for Continuous Determination of Halides. Anal. Chem. Abstract 1984, 56, 427–429Google Scholar
  26. 26.
    Xavier, M. P.; García-Fresnadillo, D.; Moreno-Bondi, M. C.; Orellana, G. Oxygen Sensing in Nonaqueous Media Using Porous Glass With Covalently Bound Luminescent Ru(II) Complexes. Anal. Chem. 1998, 70, 5184–5189CrossRefGoogle Scholar
  27. 27.
    Sullivan, T. P.; Huck, W. T. S. Reactions on Monolayers: Organic Synthesis in Two Dimensions. Eur. J. Org. Chem. 2003, 17–29Google Scholar
  28. 28.
    Flink, S.; Van Veggel, F. C. J. M.; Reinhoudt, D. N. A Self-Assembled Monolayer of a Fluorescent Guest for the Screening of Host Molecules. Chem. Commun. 1999, 2229–2230Google Scholar
  29. 29.
    Van der Veen, N. J.; Flink, S.; Deij, M. A.; Egberink, R. J. M.; Van Veggel, F. C. J. M.; Reinhoudt, D. N. Monolayer of a Na+-Selective Fluoroionophore on Glass: Connecting the Fields of Monolayers and Optical Detection of Metal Ions. J. Am. Chem. Soc. 2000, 122, 6112–6113CrossRefGoogle Scholar
  30. 30.
    Van der Boom, T.; Evmenenko, G.; Dutta, P.; Wasielewski, M. R. Self-assembly of Photofunctional Siloxane-based Calix[4]arene on Oxide Surfaces. Chem. Mater. 2005, 15, 4068–4074CrossRefGoogle Scholar
  31. 31.
    Cejas, M. A.; Raymo, F. M. Fluorescent Diazapyrenium Films and Their Response to Dopamine. Langmuir 2005, 21, 5795–5802CrossRefGoogle Scholar
  32. 32.
    Mela, P.; Onclin, S.; Goedbloed, M. H.; Levi, S.; García-Parajó, M. F.; Van Hulst, N. F.; Ravoo, B. J.; Reinhoudt, D. N.; Van den Berg, A. Monolayer-Functionalized Microfluidics Devices for Optical Sensing of Acidity. Lab Chip 2005, 5, 163–170CrossRefGoogle Scholar
  33. 33.
    Grandini, P.; Mancin, F.; Tecilla, P.; Scrimin, P.; Tonellato, U. Exploiting the Self-Assembly Strategy for the Design of Selective Cu-Ii Ion Chemosensors. Angew. Chem., Int. Ed. 1999, 38, 3061–3064CrossRefGoogle Scholar
  34. 34.
    Crego-Calama, M.; Reinhoudt, D. N. New Materials for Metal Ion Sensing by Self-Assembled Monolayers on Glass. Adv. Mater. 2001, 13, 1171–1174CrossRefGoogle Scholar
  35. 35.
    Basabe-Desmonts, L.; Beld, J.; Zimmerman, R. S.; Hernando, J.; Mela, P.; Parajó, M. F. G.; Van Hulst, N. F.; Van den Berg, A.; Reinhoudt, D. N.; Crego-Calama, M. A Simple Approach to Sensor Discovery and Fabrication on Self-Assembled Monolayers on Glass. J. Am. Chem. Soc. 2004, 126, 7293–7299CrossRefGoogle Scholar
  36. 36.
    Zimmerman, R. S.; Basabe-Desmonts, L.; Van der Baan, F.; Reinhoudt, D. N.; Crego-Calama, M. A combinatorial approach to surface-confined cation sensors in water. J. Mater. Chem. 2005, 15, 2772–2777CrossRefGoogle Scholar
  37. 37.
    Albert, K. J.; Lewis, N. S.; Schauer, C. L.; Sotzing, G. A.; Stitzel, S. E.; Vaid, T. P.; Walt, D. R. Cross-Reactive Chemical Sensor Arrays. Chem. Rev. 2000, 100, 2595–2626CrossRefGoogle Scholar
  38. 38.
    Lavigne, J. J.; Savoy, S.; Clevenger, M. B.; Ritchie, J. E.; Mcdoniel, B.; Yoo, S. J.; Anslyn, E. V.; Mcdevitt, J. T.; Shear, J. B.; Neikirk, D. Solution-Based Analysis of Multiple Analytes by a Sensor Array: Toward the Development of an “Electronic Tongue”. J. Am. Chem. Soc. 1998, 120, 6429–6430CrossRefGoogle Scholar
  39. 39.
    Pirrung, M. C. Spatially Addressable Combinatorial Libraries. Chem. Rev. 1997, 97, 473–488CrossRefGoogle Scholar
  40. 40.
    Cremer, P. S.; Yang, T. L. Creating Spatially Addressed Arrays of Planar Supported Fluid Phospholipid Membranes. J. Am. Chem. Soc. 1999, 121, 8130–8131CrossRefGoogle Scholar
  41. 41.
    Adamson, A. W. Physical Chemistry of Surfaces, Wiley: Chicester 1993 Google Scholar
  42. 42.
    Azzam, R. M. A.; Bashara, N. M. Ellipsometry and Polarized Light, North-Holland: New York 1987 Google Scholar
  43. 43.
    Mathauer, K.; Frank, C. W. Naphthalene Chromophore Tethered in the Constrained Environment of a Self-Assembled Monolayer. Langmuir 1993, 9, 3002–3008CrossRefGoogle Scholar
  44. 44.
    Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F. Handbook of X-Ray Photoelectron Spectroscopy, Muilenberg, G.E.; Ed., Perkin-Elmer Corporation: Eden Prairie, Minesota 1979 Google Scholar
  45. 45.
    Valeur, B.; Leray, I. Design Principles of Fluorescent Molecular Sensors for Cation Recognition. Coord. Chem. Rev. 2000, 205, 3–40CrossRefGoogle Scholar
  46. 46.
    Antonisse, M. M. G.; Snellink-Ruel, B. H. M.; Lugtenberg, R. J. W.; Engbersen, J. F. J.; Van den Berg, A.; Reinhoudt, D. N. Membrane Characterization of Anion-Selective Chemfets by Impedance Spectroscopy. Anal. Chem. 2000, 72, 343–348CrossRefGoogle Scholar
  47. 47.
    Beer, P. D.; Gale, P. A. Anion Recognition and Sensing: the State of the Art and Future Perspectives. Angew. Chem. Int. Ed. 2001, 40, 487–516CrossRefGoogle Scholar
  48. 48.
    Bierbaum, K.; Kinzler, M.; Woll, C.; Grunze, M.; Hahner, G.; Heid, S.; Effenberger, F. A. Near-Edge X-Ray-Absorption Fine Structure Spectroscopy and X-Ray Photoelectron-Spectroscopy Study of the Film Properties of Self-Assembled Monolayers of Organosilanes on Oxidized Si(100). Langmuir 1995, 11, 512–518CrossRefGoogle Scholar
  49. 49.
    Onclin, S.; Mulder, A.; Huskens, J.; Ravoo, B. J.; Reinhoudt, D. N. Molecular Printboards: Monolayers of Beta-Cyclodextrins on Silicon Oxide Surfaces. Langmuir 2004, 20, 5460–5466CrossRefGoogle Scholar
  50. 50.
    Rakow, N. A.; Suslick, K. S. A Colorimetric Sensor Array for Odour Visualization. Nature 2000, 406, 710–713CrossRefGoogle Scholar
  51. 51.
    Lundstrom, I. Artificial Noses – Picture the Smell. Nature 2000, 406, 682–683CrossRefGoogle Scholar
  52. 52.
    Mayr, T.; Igel, C.; Liebsch, G.; Klimant, I.; Wolfbeis, O. S. Cross-Reactive Metal Ion Sensor Array in a Micro Titer Plate Format. Anal. Chem. 2003, 75, 4389–4396CrossRefGoogle Scholar
  53. 53.
    Andersson, H.; Van den Berg, A. Microfluidic Devices for Cellomics: a Review. Sens. Actuators, B 2003, 92, 315–325CrossRefGoogle Scholar
  54. 54.
    Munro, N. J.; Huhmer, A. F. R.; Landers, J. P. Robust Polymeric Microchannel Coatings for Microchip-Based Analysis of Neat PCR Products. Anal. Chem. 2001, 73, 1784–1794CrossRefGoogle Scholar
  55. 55.
    Auroux, P. A.; Koc, Y.; Demello, A.; Manz, A.; Day, P. J. R. Miniaturised Nucleic Acid Analysis. Lab Chip 2004, 4, 534–546CrossRefGoogle Scholar
  56. 56.
    Schauer, C. L.; Steemers, F. J.; Walt, D. R. A Cross-Reactive, Class-Selective Enzymatic Array Assay. J. Am. Chem. Soc. 2001, 123, 9443–9444CrossRefGoogle Scholar
  57. 57.
    Wolfbeis, O. S. Materials for Fluorescence-Based Optical Chemical Sensors. J. Mater. Chem. 2005, 15, 2657–2669CrossRefGoogle Scholar
  58. 58.
    Basabe-Desmonts, L.; van der Baan, F.; Zimmerman, R. S.; Reinhoudt, D. N.; Crego-Calama, M. Cross-Reactive Sensor Array for Metal Ion Sensing Based on Fluorescent SAMs. Sensors 2007, 7, 1731–1746CrossRefGoogle Scholar
  59. 59.
    Brivio, M.; Oosterbroek, R. E.; Verboom, W.; Goedbloed, M. H.; Van den Berg, A.; Reinhoudt, D. N. Surface Effects in the Esterification of 9-Pyrenebutyric Acid Within a Glass Micro Reactor. Chem. Commun. 2003, 1924–1925Google Scholar
  60. 60.
    Zhao, B.; Moore, J. S.; Beebe, D. J. Surface-Directed Liquid Flow Inside Microchannels. Science 2001, 291, 1023–1026CrossRefGoogle Scholar
  61. 61.
    Smith, E. A.; Thomas, W. D.; Kiessling, L. L.; Corn, R. M. Surface Plasmon Resonance Imaging Studies of Protein-Carbohydrate Interactions. J. Am. Chem. Soc. 2003, 125, 6140–6148CrossRefGoogle Scholar
  62. 62.
    Kobayashi, J.; Mori, Y.; Okamoto, K.; Akiyama, R.; Ueno, M.; Kitamori, T.; Kobayashi, S. A Microfluidic Device for Conducting Gas-Liquid-Solid Hydrogenation Reactions. Science 2004, 304, 1305–1308CrossRefGoogle Scholar
  63. 63.
    Basabe-Desmonts, L.; Benito-Lopez, F.; Gardeniers, H. J. G. E.; Duwel, R.; van den Berg, A.; Reinhoudt, D. N.; Crego-Calama, M. Fluorescent Sensor Array in a Microfluidic Chip. Anal. Bioanal. Chem. 2008, 390, 307–315CrossRefGoogle Scholar
  64. 64.
    Xia, Y. N.; Rogers, J. A.; Paul, K. E.; Whitesides, G. M. Unconventional Methods for Fabricating and Patterning Nanostructures. Chem. Rev. 1999, 99, 1823–1848CrossRefGoogle Scholar
  65. 65.
    Geissler, M.; Xia, Y. N. Patterning: Principles and Some New Developments. Adv. Mater. 2004, 16, 1249–1269CrossRefGoogle Scholar
  66. 66.
    Delamarche, E.; Donzel, C.; Kamounah, F. S.; Wolf, H.; Geissler, M.; Stutz, R.; Schmidt-Winkel, P.; Michel, B.; Mathieu, H. J.; Schaumburg, K. Microcontact Printing Using Poly(Dimethylsiloxane) Stamps Hydrophilized by Poly(Ethylene Oxide) Silanes. Langmuir 2003, 19, 8749–8758CrossRefGoogle Scholar
  67. 67.
    Zheng, H. P.; Rubner, M. F.; Hammond, P. T. Particle Assembly on Patterned “Plus/Minus” Polyelectrolyte Surfaces Via Polymer-on-Polymer Stamping. Langmuir 2002, 18, 4505–4510CrossRefGoogle Scholar
  68. 68.
    Auletta, T.; Dordi, B.; Mulder, A.; Sartori, A.; Onclin, S.; Bruinink, C. M.; Peter, M.; Nijhuis, C. A.; Beijleveld, H.; Schonherr, H.; Vancso, G. J.; Casnati, A.; Ungaro, R.; Ravoo, B. J.; Huskens, J.; Reinhoudt, D. N. Writing Patterns of Molecules on Molecular Printboards. Angew. Chem. Int. Ed. 2004, 43, 369–373CrossRefGoogle Scholar
  69. 69.
    Yang, K. L.; Cadwell, K.; Abbott, N. L. Contact Printing of Metal Ions Onto Carboxylate-Terminated Self-Assembled Monolayers. Adv. Mater. 2003, 15, 1819–1823CrossRefGoogle Scholar
  70. 70.
    Lahiri, J.; Ostuni, E.; Whitesides, G. M. Patterning Ligands on Reactive SAMs by Microcontact Printing. Langmuir 1999, 15, 2055–2060CrossRefGoogle Scholar
  71. 71.
    Bernard, A.; Renault, J. P.; Michel, B.; Bosshard, H. R.; Delamarche, E. Microcontact Printing of Proteins. Adv. Mater. 2000, 12, 1067–1070CrossRefGoogle Scholar
  72. 72.
    Renault, J. P.; Bernard, A.; Juncker, D.; Michel, B.; Bosshard, H. R.; Delamarche, E. Fabricating Microarrays of Functional Proteins Using Affinity Contact Printing. Angew. Chem. Int. Ed. 2002, 41, 2320–2323CrossRefGoogle Scholar
  73. 73.
    Mahalingam, V.; Onclin, S.; Peter, M.; Ravoo, B. J.; Huskens, J.; Reinhoudt, D. N. Directed Self-Assembly of Functionalized Silica Nanoparticles on Molecular Printboards Through Multivalent Supramolecular Interactions. Langmuir 2004, 20, 11756–11762CrossRefGoogle Scholar
  74. 74.
    Mulder, A.; Onclin, S.; Peter, M.; Hoogenboom, J. P.; Beijleveld, H.; Ter Maat, J.; García-Parajě, M. F.; Ravoo, B. J.; Huskens, J.; Van Hulst, N. F.; Reinhoudt, D. N. Molecular Printboards on Silicon Oxide: Lithographic Patterning of Cyclodextrin Monolayers with Multivalent, Fluorescent Guest Molecules. Small 2005, 1, 242–253CrossRefGoogle Scholar
  75. 75.
    Onclin, S.; Huskens, J.; Ravoo B. J.; Reinhoudt, D. N. Molecular Boxes on a Molecular Printboard: Encapsulation of Anionic Dyes in Immobilized Dendrimers. Small 2005, 852–857Google Scholar
  76. 76.
    Ginger, D. S.; Zhang, H.; Mirkin, C. A. The Evolution of Dip-Pen Nanolithography. Angew. Chem. Int. Ed. 2004, 43, 30–45CrossRefGoogle Scholar
  77. 77.
    Tseng, A. A.; Notargiacomo, A.; Chen, T. P. Nanofabrication by Scanning Probe Microscope Lithography: a Review. J. Vac. Sci. Technol. B 2005, 23, 877–894CrossRefGoogle Scholar
  78. 78.
    Lim, J. H.; Mirkin, C. A. Electrostatically Driven Dip-Pen Nanolithography of Conducting Polymers. Adv. Mater. 2002, 14, 1474–1477CrossRefGoogle Scholar
  79. 79.
    Li, Y.; Maynor, B. W.; Liu, J. Electrochemical AFM “Dip-Pen” Nanolithography. J. Am. Chem. Soc. 2001, 123, 2105–2106CrossRefGoogle Scholar
  80. 80.
    Stoll, D.; Templin, M. F.; Schrenk, M.; Traub, P. C.; Vohringer, C. F.; Joos, T. O. Protein Microarray Technology. Frontiers Biosci. 2002, 7, C13–C32CrossRefGoogle Scholar
  81. 81.
    Vossmeyer, T.; Jia, S.; Delonno, E.; Diehl, M. R.; Kim, S. H.; Peng, X.; Alivisatos, A. P.; Heath, J. R. Combinatorial Approaches Toward Patterning Nanocrystals. J. Appl. Phys. 1998, 84, 3664–3670CrossRefGoogle Scholar
  82. 82.
    Shtein, M.; Peumans, P.; Benziger, J. B.; Forrest, S. R. Direct Mask-Free Patterning of Molecular Organic Semiconductors Using Organic Vapor Jet Printing. J. Appl. Phys. 2004, 96, 4500–4507CrossRefGoogle Scholar
  83. 83.
    Wu, T.; Tomlinson, M.; Efimenko, K.; Genzer, J. A Combinatorial Approach to Surface Anchored Polymers. J. Mater. Sci. 2003, 38, 4471–4477CrossRefGoogle Scholar
  84. 84.
    Demers, L. M.; Mirkin, C. A. Combinatorial Templates Generated by Dip-Pen Nanolithography for the Formation of Two-Dimensional Particle Arrays. Angew. Chem., Int. Ed. 2001, 40, 3069–3071CrossRefGoogle Scholar
  85. 85.
    Ivanisevic, A.; Mccumber, K. V.; Mirkin, C. A. Site-Directed Exchange Studies with Combinatorial Libraries of Nanostructures. J. Am. Chem. Soc. 2002, 124, 11997–12001Google Scholar
  86. 86.
    Weinberger, D. A.; Hong, S. G.; Mirkin, C. A.; Wessels, B. W.; Higgins, T. B. Combinatorial Generation and Analysis of Nanometer- and Micrometer-Scale Silicon Features Via “Dip-Pen” Nanolithography and Wet Chemical Etching. Adv. Mater. 2000, 12, 1600–1603CrossRefGoogle Scholar
  87. 87.
    Basabe-Desmonts, L.; Reinhoudt, D. N.; Crego-Calama, M. Combinatorial Fabrication of Fluorescent Patterns with Metal Ions Using Soft Lithography. Adv. Mater. 2006, 18, 1028–1032CrossRefGoogle Scholar
  88. 88.
    Multiple inking is possible using microfluidic networks over the PDMS stamps. Papra, A.; Bernard, A.; Juncker, D.; Larsen, N. B.; Michel, B.; Delamarche, E. Microfluidic Networks Made of Poly(Dimethylsiloxane), Si, and Au Coated With Polyethylene Glycol for Patterning Proteins Onto Surfaces. Langmuir 2001, 17, 4090–4095CrossRefGoogle Scholar
  89. 89.
    Vettiger, P.; Despont, M.; Drechsler, U.; Durig, U.; Haberle, W.; Lutwyche, M. I.; Rothuizen, H. E.; Stutz, R.; Widmer, R.; Binnig, G. K. The “Millipede” – More Than One Thousand Tips for Future AFM Data Storage. IBM J. Res. Dev. 2000, 44, 323–340CrossRefGoogle Scholar
  90. 90.
    Zhang, M.; Bullen, D.; Chung, S. W.; Hong, S.; Ryu, K. S.; Fan, Z. F.; Mirkin, C. A.; Liu, C. A Mems Nanoplotter With High-Density Parallel Dip-Pen Manolithography Probe Arrays. Nanotechnology 2002, 13, 212–217CrossRefGoogle Scholar
  91. 91.
    Deladi, S.; Tas, N. R.; Berenschot, J. W.; Krijnen, G. J. M.; De Boer, M. J.; De Boer, J. H.; Peter, M.; Elwenspoek, M. C. Micromachined Fountain Pen for Atomic Force Microscope-Based Nanopatterning. Appl. Phys. Lett. 2004, 85, 5361–5363CrossRefGoogle Scholar
  92. 92.
    Submitted for publication. Basabe-Desmonts, L.; Wu, C.; van der Werf, K. O.; Peter, M.; Bennik, M.; Otto, C.; Velders, A. H.; Reinhoudt, D. N.; Subramaniam, V.; Crego-Calama, M. Fabrication and Visualization of Metal Ion Patterns on Glass by Dip Pen NanolithographyGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Lourdes Basabe-Desmonts
    • 1
  • David N. Reinhoudt
    • 1
  • Mercedes Crego-Calama
    • 1
  1. 1.Department of Supramolecular Chemistry and Technology, MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations