Skip to main content

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 1016 Accesses

Abstract

In recent years, biosensors and sensor arrays have developed into very important analytical tools, which found applications in many fields such as pharmaceutical (high-throughput) screening, medical diagnosis, or industrial process control. One of the major challenges for material research is the preparation of appropriate sensor surfaces, providing an interface with a high sensitivity and selectivity toward a given analyte. This chapter discusses some straightforward and flexible approaches to study structure and/or composition-function relationships and response characteristics of polymeric and molecular sensor materials. The controlled continuous deposition of self-assembled monolayers (SAMs), e.g. of substituted thiols or silanes, paves the way for the generation of molecular gradients on solid surfaces. These are useful for the preparation of interfaces with spatially controlled chemical composition and/ or physical properties. These tools can help to improve the selectivity and specificity of surfaces for biosensors and biochips. They can also be utilized for the study of fundamental protein adsorption and exchange phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Potyrailo, R. A., Polymeric sensor materials: Toward an alliance of combinatorial and rational design tools?, Angew. Chem. Int. Ed. 2006, 45, 702–723

    Article  CAS  Google Scholar 

  2. Meier M. A. R.; Schubert, U. S., Combinatorial polymer research and high-throughput experimentation: powerful tools for the discovery and evaluation of new materials, J. Mater. Chem. 2004, 14, 3289–3299

    Article  CAS  Google Scholar 

  3. Kohn, J. A., New approaches to biomaterials design, Nat. Mater. 2004, 3, 745–747

    Article  CAS  Google Scholar 

  4. Menger, F. M.; Eliseev, A. V.; Migulin, V. A., Phosphatase catalysis developed via combinatorial organic chemistry, J. Org. Chem. 1995, 60, 6666–6667

    Article  CAS  Google Scholar 

  5. Diaz-Garcia, M. E.; Pina-Luis, G.; Rivero, I., Combinatorial solid-phase organic synthesis for developing materials with molecular recognition properties, Trends Anal. Chem. 2006, 25, 112–121

    Article  CAS  Google Scholar 

  6. Wu, X.; Kim, J.; Dordick, J. S., Biotechnol. Prog. 2000, 10, 513–516

    Article  Google Scholar 

  7. Portyrailo, R. A.; May, R. J.; Sivavec, T. M., Sens. Lett. 2, 2004, 31–36

    Article  Google Scholar 

  8. Hierlemann, A.; Zellers, E. T.; Ricco, A. J., Anal. Chem. 2001, 73, 3458–3466

    Article  CAS  Google Scholar 

  9. Mirsky, V. M.; Kulikov, V.; Hao, Q.; Wolfbeis, O. S., Multiparameter high throughput characterization of combinatorial chemical microarrays of chemosensitive polymers, Macromol. Rapid Comm. 2004, 25, 253–258

    Article  CAS  Google Scholar 

  10. Batra, D.; Shea, K. J., Curr. Opin. Chem. Biol. 2003, 7, 434

    Article  CAS  Google Scholar 

  11. Liedberg, B.; Cooper, J., Bioanalytical applications of self-assembled monolayers, In Immobilized Biomolecules in Analysis: A practical approach; Cass, T.; Liegler, F. S., Eds.; PAS series, Oxford University Press, Oxford 1998

    Google Scholar 

  12. Ulman A., An Introduction to Ultrathin Organic Films, Academic, San Diego, CA 1991

    Google Scholar 

  13. Ulman A, Formation and structure of self-assembled monolayers, Chem. Rev. 1996, 96, 1533–1554

    Article  CAS  Google Scholar 

  14. Schäferling, M.; Kambhampati, D., Protein microarray surface chemistry and coupling schemes, In Protein Microarray Technology; Kambhampati D., Ed.; Wiley, Weinheim 2004

    Google Scholar 

  15. Schäferling, M.; Schiller, S.; Paul, H.; Kruschina, M.; Pavlickova P.; Meerkamp, M.; Giammasi, C.; Kambhampati, D., Application of self-assembly techniques in the design of biocompatible protein microarray surfaces, Electrophoresis, 2002, 23, 3097–3105

    Article  Google Scholar 

  16. Crego-Calama, M.; Reinhoudt, D. N., New materials for metal ion sensing by self-assembled monolayers on glass, Adv. Mater. 2001, 13, 1171–1174

    Article  CAS  Google Scholar 

  17. Basabe-Desmonts, L.; Beld, J.; Zimmerman, R. S.; Hernando, J.; Mela, P.; Garcia Parajo, M. F.; van Hulst, N. F.; van den Berg, A.; Reinhoudt, D. N., A simple approach to sensor discovery and fabrication on self-assembled monolayers on glass, J. Am. Chem. Soc. 2004, 126, 7293–7299

    Article  CAS  Google Scholar 

  18. Basabe-Desmonts, L.; Zimmerman, R. S.; Reinhoudt, D. N.; Crego-Calama, M., Combinatorial method for surface-confined sensor design and fabrication, In Springer Series on Chemical Sensors and Biosensors Vol. 3: Frontiers in Chemical Sensors; Orellana, G.; Moreno-Bondi, M.C., (Eds.); Springer, Berlin 2005

    Google Scholar 

  19. Liedberg, B.; Tengvall, P., Molecular gradients of ド-substituted alkanethiols on gold: preparation and characterization, Langmuir 1995, 11, 3821–3827

    Article  CAS  Google Scholar 

  20. McKenna, M. P.; Raper, J. A., Growth cone behavior on gradients of substratum bound laminin, Develop. Biol. 1988, 130, 232–236

    Article  CAS  Google Scholar 

  21. Halfter, W., The behavior of optic axons on substrate gradients of retinal basal lamina proteins and merosin, J. Neurosci. 1996, 16, 4389–4401

    CAS  Google Scholar 

  22. Bailly, M.; Yan, L.; Whitesides, G. M.; Condeelis, J. S.; Segall, J. E., Regulation of protrusion shape and adhesion to the substratum during chemotactic responses of mammalian carcinoma cells, Exp. Cell Res. 1998, 241, 285–299

    Article  CAS  Google Scholar 

  23. Baier, H.; Bonhoeffer F., Axon guidance by gradients of a target-derived component, Science 1992, 255, 472–475

    Article  CAS  Google Scholar 

  24. Bjellqvist, B.; Ek, K.; Righetti, P. G.; Gianazza, E.; Görg, A.; Westermeier, R.; Postel, W., Isoelectric focusing in immobilized pH gradients: Principle, methodology and some applications, J. Biochem. Biophys. Methods 1982, 6, 317–339

    Article  CAS  Google Scholar 

  25. Görg, A.; Postel, W.; Günther, S., The current state of two-dimensional electrophoresis with immobilized pH gradients, Electrophoresis 1988, 9, 531–546

    Article  Google Scholar 

  26. Groves, J. T.; Boxer, S. G., Electric field-induced concentration gradients in planar supported bilayers, Biophys. J. 1995, 69, 1972–1975

    Article  CAS  Google Scholar 

  27. Matyjaszewski, K.; Ziegler, M. J.; Arehart, S. V.; Greszta, D.; Pakula, T., Gradient copolymers by atom transfer radical copolymerization, J. Phys. Org. Chem. 2000, 13, 775–786

    Article  CAS  Google Scholar 

  28. Bhat, R. R.; Tomlinson, M. R.; Wu, T.; Genzer, J., Surface-grafted polymer gradients: formation, characterization, and applications, Adv. Polym. Sci. 2006, 198, 51–124

    Article  CAS  Google Scholar 

  29. Shen, M.; Bever, M. B., Gradients in polymeric materials, J. Mater. Sci. 1972, 7, 741–746

    Article  CAS  Google Scholar 

  30. Gölander, C. G.; Pitt, W. G., Characterization of hydrophobicity gradients prepared by means of radio frequency plasma discharge, Biomaterials 1990, 11, 32–35

    Article  Google Scholar 

  31. Wu, T.; Efimenko, K.; Vicek, P.; Subr, V.; Genzer, J., Formation and properties of anchored polymers with a gradual variation of grafting densities on flat substrates, Macromolecules 2003, 36, 2448–2453

    Article  CAS  Google Scholar 

  32. Askadskii, A. A., Development and properties of gradient polymeric materials, Russian Polym. News 1999, 4, 34–37

    CAS  Google Scholar 

  33. Pitt, W. G. Fabrication of a continous wettability gradient by radio frequency plasma discharge, J. Colloid Interface Sci. 1989, 133, 223–237

    Article  CAS  Google Scholar 

  34. Bhat, R. R.; Tomlinson, M. R.; Genzer, J., Orthogonal surface-grafted polymer gradients: A versatile combinatorial platform, J. Polym. Sci. B 2005, 43, 3384–3394

    Article  CAS  Google Scholar 

  35. Gersten, D. M.; Bijwaard, K. E., Polyacrylamide gel electrophoresis in vertical, inverse and double-crossing gradients of soluble polymers, Electrophoresis 1992, 13, 282–286

    Article  CAS  Google Scholar 

  36. Kryszewski, M., Gradient polymers and copolymers, Polym. Adv. Technol. 1998, 9, 244–259

    Article  CAS  Google Scholar 

  37. Le Grange, J. D.; Markham, J. L.; Kurjian, C. R., Effects of surface hydration on the deposition of silane monolayers on silica, Langmuir 1993, 9, 1749–1753

    Article  Google Scholar 

  38. Zammatteo, N.; Jeanmart, L.; Hamels, S.; Courtois, S.; Louette, P.; Hevesi, L.; Remacle, J., Comparison between different strategies of covalent attachment of DNA to glass surfaces to build DNA microarrays, Anal. Biochem. 2000, 280, 143–150

    Article  CAS  Google Scholar 

  39. Sullivan, T. P.; Huck, W. T., Reactions on monolayers: Organic synthesis in two dimensions, Eur. J. Org. Chem. 2003, 17–29

    Google Scholar 

  40. Onclin, S.; Ravoo, B. J.; Reinhoudt, D., Engineering silicon oxide surfaces using self-assembled monolayers, Angew. Chem. Int. Ed. 2005, 44, 6282–6304

    Article  CAS  Google Scholar 

  41. Lee, J. P.; Jang, Y. J.; Sung, M. M., Aomic layer deposition of TiO2 thin films on mixed self-assembled monolayers studied as a function of surface free energy, Adv. Funct. Mater. 2003, 13, 873–876

    Article  CAS  Google Scholar 

  42. Wasserman, S. R.; Tao, Y. T.; Whitesides, G. M., Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates, Langmuir 1989, 4, 1074–1087

    Article  Google Scholar 

  43. Mathauer, K.; Frank, C. W., Naphthalene chromophore tethered in the constrained environment of a self-assembled monolayer, Langmuir 1993, 9, 3002–3008

    Article  CAS  Google Scholar 

  44. Mathauer, K.; Frank, C. W., Binary self-assembled monolayers as prepared by successive adsorption of alkyltrichlorosilanes, Langmuir 1993, 9, 3446–3451

    Article  CAS  Google Scholar 

  45. Fadeev, A. Y.; McCarthy, T. J., Binary monolayer mixtures: modification of nanopores in silicon-supported tris(trimethylsiloxy)silyl monolayers, Langmuir 1999, 15, 7238–7243

    Article  CAS  Google Scholar 

  46. Fan, F.; Maldarelli, C.; Couzis, A., Fabrication of surfaces with nanoislands of chemical functionality by the phase separation of self-assembling monolayers on silicon, Langmuir 2003, 19, 3254–3265

    Article  CAS  Google Scholar 

  47. Finnie, K. R.; Nuzzo, R. G., The phase behavior of multicomponent self-assembled monolayers directs the nanoscale texturing of Si(100) by wet etching, Langmuir 2001, 17, 1250–1254

    Article  CAS  Google Scholar 

  48. Elwing, H.; Welin, S.; Askendal A.; Nilsson U.; Lundström, I., A wettability gradient method for studies of macromolecular interactions at the liquid/solid interface, J. Colloid Interface Sci. 1987, 119, 203–210

    Article  Google Scholar 

  49. Elwing, H.; Askendal, A.; Lundström, I., Competition between adsorbed fibrinogen and high-molecular weight kiniogen on solid surfaces incubated in human plasma (the Vroman effect): influence of solid surface wettability, J. Biomed. Mat. Res. 1987, 21, 1023–1028

    Article  CAS  Google Scholar 

  50. Elwing, H.; Askendal A.; Lundström I., Desorption of fibrinogen and gamma-globulin from solid surfaces induced by a nonionic detergent, J. Colloid Interface Sci. 1989, 128, 296–300

    Article  CAS  Google Scholar 

  51. Welin-Klintström, S.; Askendal, A.; Elwing, H., Surfactant and protein interactions on wettability gradient surfaces, J. Colloid Interface Sci. 1993, 158, 188–194

    Article  Google Scholar 

  52. Gölander, C.-G.; Lin, Y.-S.; Hlady, V.; Andrade, J. D., Wetting and plasma-protein adsorption studies using surfaces with a hydrophobicity gradient, Colloid Surf. 1990, 49, 289–302

    Article  Google Scholar 

  53. Gölander, C.-G.; Caldwell, K.; Lin, Y.-S., A new technique to prepare gradient surfaces using density gradient solutions, Colloid Surf. 1989, 42, 165–172

    Article  Google Scholar 

  54. Elwing, H.; Gölander, C.-G., Protein and detergent interaction phenomena on solid surfaces with gradients in chemical composition, Adv. Colloid Interface Sci. 1990, 32, 317–339

    Article  CAS  Google Scholar 

  55. Lin, Y.-S.; Hlady, V., Human serum albumin adsorption onto octadecyl-dimethylsilyl-silica gradient surface, Colloids Surf. B: Biointerfaces 1994, 2, 481–491

    Article  CAS  Google Scholar 

  56. Lin, Y.-S.; Hlady, V.; Gölander, C.-G., The surface density gradient of grafted poly(ethylene glycol): preparation, characterization and protein adsorption, Colloids Surf. B: Biointerfaces 1994, 3, 49–62

    Article  CAS  Google Scholar 

  57. Chaudhury, M. K.; Whitesides, G. M., How to make water run uphill, Science 1992, 256, 1539–1541

    Article  CAS  Google Scholar 

  58. Wu, T.; Efimenko, K.; Genzer, J., Combinatorial study of the mushroom-to-brush crossover in surface anchored polyacrylamide, J. Am. Chem. Soc. 2002, 124, 9394–9395

    Article  CAS  Google Scholar 

  59. Wu, T.; Efimenko, K.; Vlcek P., Subr, V., Genzer, J. Formation and properties of anchored polymers with a gradual variation of grafting densities on flat substrates, Macromolecules 2003, 36, 2448–2453

    Article  CAS  Google Scholar 

  60. Wu, T.; Gong, P.; Szleifer, I.; Vlcek, P.; Subr V.; Grenzer, J., Behavior of surface-anchored poly(acrylic acid) brushes with grafting density gradients on solid substrates: 1. experiment, Macromolecules 2007, 40, 8756–8764

    Article  CAS  Google Scholar 

  61. Zhoa, B., A combinatorial approach to study solvent-induced self-assembly of mixed poly (methyl methacrylate)/polystyrene brushes on planar silica substrates: effect of relative grafting density, Langmuir 2004, 20, 11748–11755

    Article  Google Scholar 

  62. Roberson, S. V.; Fahey, A. J.; Sehgal, A.; Karim, A., Multifunctional ToF-SIMS: combinatorial mapping of gradient energy substrates, Appl. Surf. Sci. 2002, 200, 150–164

    Article  CAS  Google Scholar 

  63. Fasolka, M. J.; Julthongpiput, D.; Briggman, K. A., Gradient reference surfaces for scanning probe microscopy, PMSE 2004, 90, 721

    CAS  Google Scholar 

  64. http://www.polymers.msel.nist.gov/researcharea/combi/Gradient_Reference_Specimens_Advanced_Scanned_Probe_Microscopy.cfm

  65. Julthongpiput, D.; Fasolka, M. J.; Zhang, W.; Nguyen, T.; Amis, E. J., Gradient chemical micropatterns: a reference substrate for surface nanometrology, Nano Lett. 2005, 5, 1535–1540

    Article  CAS  Google Scholar 

  66. Venkateswar, R. A.; Branch, D. W.; Wheeler, B. C., An electrophoretic method for microstamping biomolecule gradients, Biomed. Microdevices 2000, 2, 255–264

    Article  CAS  Google Scholar 

  67. Kumar, A.; Whitesides, G. M., Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching, Appl. Phys. Lett. 1993, 63, 2002–2004

    Article  CAS  Google Scholar 

  68. Wilbur, J.L.; Kumar, A.; Kim E.; Whitesides, G. M., Microfabrication by microcontact printing of self-assembled monolayers, Adv. Mater. 1994, 6, 600–604

    Article  CAS  Google Scholar 

  69. Libioulle, L.; Bietsch, A.; Schmid, H.; Michel, B.; Delamarche, E., Contact-inking stamps for microcontact printing of alkanethiols on gold, Langmuir 1999, 15, 300–304

    Article  CAS  Google Scholar 

  70. Nuzzo, R. G.; Allara, D. L., Adsorption of bifunctional organic disulfides on gold surfaces, J. Am. Chem. Soc. 1983, 105, 4481–4483

    Article  CAS  Google Scholar 

  71. Porter, M. D.; Bright T. B.; Allara, D. L.; Chidsey, C. E. D., Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry, J. Am. Chem. Soc. 1987, 109, 3559–3568

    Article  CAS  Google Scholar 

  72. Bain, C. D.; Whitesides G. M., Correlations between wettability and structure in monolayers of alkanethiols adsorbed on gold, J. Am. Chem. Soc. 1988, 110, 3665–3666

    Article  CAS  Google Scholar 

  73. Kumar, A.; Biebuyck H. A.; Whitesides, G. M., Patterning self-assembled monolayers: applications in material science, Langmuir 1994, 10, 1498–1511

    Article  CAS  Google Scholar 

  74. Schreiber, F., Structure and growth of self-assembling monolayers, Prog. Surf. Sci. 2000, 65, 151–256

    Article  CAS  Google Scholar 

  75. Roberts, C.; Chen, C. S.; Mrksich, M.; Martichonok V., Ingber, D. E.; Whitesides, G. M., Using mixed self-assembled monolayers presenting RGD and (EG)3OH groups to characterize long-term attachment of bovine capillary endothelial cells to surfaces, J. Am. Chem. Soc. 1998, 120, 6548–6555

    Article  CAS  Google Scholar 

  76. Knoll, W.; Liley, M.; Piscevic, D.; Spinke, J.; Tarlov, M. J., Supramolecular architectures for the functionalization of solid surfaces, Adv. Biophys. 1997, 34, 231–251

    Article  CAS  Google Scholar 

  77. Riepl, M.; Enander, K.; Liedberg, B.; Schäferling, M.; Kruschina, M.; Ortigao, F., Functionalized surfaces of mixed alkanethiols on gold as a platform for oligonucleotide microarrays, Langmuir 2002, 18, 7016–7023

    Article  CAS  Google Scholar 

  78. Riepl, M.; Östblom, M.; Lundström, I.; Svensson, S. C. T.; van der Gron, A. W. D.; Schäferling, M.; Liedberg, B., Molecular gradients: an efficient approach for optimizing the surface properties of biomaterials and biochips, Langmuir 2005, 21, 1042–1050

    Article  CAS  Google Scholar 

  79. Valiokas, R.; Svedhem, S.; Svensson, S. C. T.; Liedberg, B., Self-assembled monolayers of oligo(ethylene glycol)-terminated and amide group containing alkanethiolates on gold, Langmuir 1999, 15, 3390–3394

    Article  CAS  Google Scholar 

  80. Benesch, J.; Svedhem, S.; Svensson, S. C. T.; Valiokas, R.; Liedberg, B.; Tengvall, P., Protein adsorption to oligo(ethylene glycol) self-assembled monolayers: experiments with fibrinogen, heparinized plasma, and serum, J. Biomat. Sci. 2001, 12, 581–597

    Article  CAS  Google Scholar 

  81. Geissler, M.; Chalsani, P.; Cameron, N. S.; Veres, T., Patterning of chemical gradients with submicrometer resolution using edge-spreading lithography, Small 2006, 2, 760–765

    Article  CAS  Google Scholar 

  82. Mougin, K.; Ham, A. S.; Lawrance, M. B.; Fernandez, E. J.; Hiller, A. C., Construction of a tethered poly(ethylene glycol) surface gradient for studies of cell adhesion kinetics, Langmuir 2005, 21, 4809–4812

    Article  CAS  Google Scholar 

  83. Morgenthaler, S. M.; Lee, S.; Zürcher, S.; Spencer, N. D., A simple, reproducible approach to the preparation of surface-chemical gradients, Langmuir 2003, 19, 10459–10462

    Article  CAS  Google Scholar 

  84. Morgenthaler, S. M.; Lee, S.; Spencer, N. D., Submicrometer structure of surface-chemical gradients prepared by a two-step immersion method, Langmuir 2006, 22, 2706–2711

    Article  CAS  Google Scholar 

  85. Venkataraman, N. V.; Zürcher, S.; Spencer, N. D., Order and composition of methyl-carboxyl and methyl-hydroxyl surface-chemical gradients, Langmuir 2006, 22, 4184–4189

    Article  CAS  Google Scholar 

  86. Kraus, T.; Stutz, R.; Balmer, T. E.; Schmid, H.; Malaquin, L.; Spencer, N. D.; Wolf, H., Printing chemical gradients, Langmuir 2005, 21, 7796–7804

    Article  CAS  Google Scholar 

  87. Herbert, C. B.; McLernon, T. L.; Hypolite, C. L.; Adams, D. N.; Pikus, L.; Huang, C. C.; Fields, G. B.; Letourneau, P. C.; Distefano, M. D.; Hu, W.-S., Micropatterning gradients and controlling surface density of photoactivatable biomolecules on self-assembled monolayers of oligo(ethylene glycol) alkanethiolates, Chem. Biol. 1997, 4, 731–737

    Article  CAS  Google Scholar 

  88. Wang, Q.; Bohn, P.W., Surface composition gradients of immobilized cell signaling molecules. Epidermal growth factor on gold, Thin Solid Films 2006, 513, 338–346

    Article  CAS  Google Scholar 

  89. Wang, Q.; Jakubowski, J. A.; Sweedler, J. V.; Bohn, P. W., Quantitative submonolayer spatial mapping of Arg-Gly-Asp-containing peptide organo-mercaptan gradients on gold with matrix-assisted laser desorption/ionization mass spectrometry, Anal. Chem. 2004, 76, 1–8

    Article  CAS  Google Scholar 

  90. Plummer, S. T.; Bohn, P.W., Spatial dispersion in electrochemically generated surface composition gradients visualized with covalently bound fluorescent nanospheres, Langmuir, 2002, 18, 4142–4149

    Article  CAS  Google Scholar 

  91. Daniel, S.; Chaudhury, M. K.; Chen, J. C., Fast drop movements resulting from the phase change on a gradient surface, Science 2001, 291, 633–636

    Article  CAS  Google Scholar 

  92. Lestelius, M.; Engquist, I.; Tengvall, P.; Chaudhury, M. K.; Liedberg, B., Order/disorder gradients of n-alkanethiols on gold, Colloids Surf., B: Biointerfaces 1990, 15, 57–70

    Article  Google Scholar 

  93. Riepl, M.; Lundström, I.; Liedberg, B., New methods for the preparation of (bio)sensor surfaces: Molecular gradients and mixed monolayers containing oligo(ethylene glycols), Proceedings 2. Deutsches Biosensor-Symposium, Tübingen, Germany, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schäferling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Schäferling, M., Riepl, M., Liedberg, B. (2009). Self-Assembled Monolayers with Molecular Gradients. In: Potyrailo, R.A., Mirsky, V.M. (eds) Combinatorial Methods for Chemical and Biological Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73713-3_3

Download citation

Publish with us

Policies and ethics