Advertisement

Combinatorial Methods for Chemical and Biological Sensors: Outlook

  • Radislav A. Potyrailo
  • Vladimir M. Mirsky
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

This chapter provides a summary of status of combinatorial development of materials for chemical and biological sensors and an outlook for the future developments.

Keywords

Skeptical Argument Combinatorial Technology Metal Oxide Sensor Work Function Measurement Combinatorial Methodology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Göpel, W., Chemical imaging: I. Concepts and visions for electronic and bioelectronic noses, Sens. Actuators B 1998, 52, 125–142.CrossRefGoogle Scholar
  2. 2.
    Weimar, U.; Göpel, W., Chemical imaging: II. Trends in practical multiparameter sensor systems, Sens. Actuators B 1998, 52, 143–161.CrossRefGoogle Scholar
  3. 3.
    Mitrovics, J.; Ulmer, H.; Weimar, U.; Göpel, W., Modular sensor systems for gas sensing and odor monitoring: The moses concept, Acc. Chem. Res. 1998, 31, 307–315.CrossRefGoogle Scholar
  4. 4.
    Ertl, G., Elementary steps in heterogeneous catalysis, Angew. Chem. Int. Ed. 1990, 29, 1219–1227.CrossRefGoogle Scholar
  5. 5.
    Buhlmann, K.; Schlatt, B.; Cammann, K.; Shulga, A., Plasticised polymeric electrolytes: New extremely versatile receptor materials for gas sensors (VOC monitoring) and electronic noses (odour identification:discrimination), Sens. Actuators B 1998, 49, 156–165.CrossRefGoogle Scholar
  6. 6.
    Walt, D. R.; Dickinson, T.; White, J.; Kauer, J.; Johnson, S.; Engelhardt, H.; Sutter, J.; Jurs, P., Optical sensor arrays for odor recognition, Biosens. Bioelectron. 1998, 13, 697–699.CrossRefGoogle Scholar
  7. 7.
    Conway, V. L.; Hassen, K. P.; Zhang, L.; Seitz, W. R.; Gross, T. S., The influence of composition on the properties of pH-swellable polymers for chemical sensors, Sens. Actuators B 1997, 45, 1–9.CrossRefGoogle Scholar
  8. 8.
    Lundström, I.; Sundgren, H.; Winquist, F.; Eriksson, M.; Krantz-Rülcker, C.; Lloyd-Spetz, A., Twenty-five years of field effect gas sensor research in Linköping, Sens. Actuators B 2007, 121, 247–262.CrossRefGoogle Scholar
  9. 9.
    Dickinson, T. A.; Walt, D. R.; White, J.; Kauer, J. S., Generating sensor diversity through combinatorial polymer synthesis, Anal. Chem. 1997, 69, 3413–3418.CrossRefGoogle Scholar
  10. 10.
    Cho, E. J.; Tao, Z.; Tang, Y.; Tehan, E. C.; Bright, F. V.; Hicks, W. L., Jr.; Gardella, J. A., Jr.; Hard, R., Tools to rapidly produce and screen biodegradable polymer and sol—gel-derived xerogel formulations, Appl. Spectrosc. 2002, 56, 1385–1389.CrossRefGoogle Scholar
  11. 11.
    Apostolidis, A.; Klimant, I.; Andrzejewski, D.; Wolfbeis, O. S., A combinatorial approach for development of materials for optical sensing of gases, J. Comb. Chem. 2004, 6, 325–331.CrossRefGoogle Scholar
  12. 12.
    Simon, U.; Sanders, D.; Jockel, J.; Heppel, C.; Brinz, T., Design strategies for multielectrode arrays applicable for high-throughput impedance spectroscopy on novel gas sensor materials, J. Comb. Chem. 2002, 4, 511–515.CrossRefGoogle Scholar
  13. 13.
    Frantzen, A.; Scheidtmann, J.; Frenzer, G.; Maier, W. F.; Jockel, J.; Brinz, T.; Sanders, D.; Simon, U., High-throughput method for the impedance spectroscopic characterization of resistive gas sensors, Angew. Chem. Int. Ed. 2004, 43, 752–754.CrossRefGoogle Scholar
  14. 14.
    Mirsky, V. M.; Kulikov, V.; Hao, Q.; Wolfbeis, O. S., Multiparameter high throughput characterization of combinatorial chemical microarrays of chemosensitive polymers, Macromol. Rapid Commun. 2004, 25, 253–258.CrossRefGoogle Scholar
  15. 15.
    Cohan, P. E., Combinatorial materials science applied — mini case studies, lessons and strategies, In 2002 Combi — The 4th Annual International Symposium on Combinatorial Approaches for New Materials Discovery, Knowledge Foundation, Arlington, VA, 2002.Google Scholar
  16. 16.
    de Gans, B.-J.; Wijnans, S.; Woutes, D.; Schubert, U. S., Sector spin coating for fast preparation of polymer libraries, J. Comb. Chem. 2005, 7, 952–957.CrossRefGoogle Scholar
  17. 17.
    Egger, S.; Higuchi, S.; Nakayama, T., A method for combinatorial fabrication and characterization of organic/inorganic thin film devices in uhv, J. Comb. Chem. 2006, 8, 275–279.CrossRefGoogle Scholar
  18. 18.
    Potyrailo, R. A.; Morris, W. G.; Leach, A. M.; Hassib, L.; Krishnan, K.; Surman, C.; Wroczynski, R.; Boyette, S.; Xiao, C.; Shrikhande, P.; Agree, A.; Cecconie, T., Theory and practice of ubiquitous quantitative chemical analysis using conventional computer optical disk drives, Appl. Opt. 2007, 46, 7007–7017.CrossRefGoogle Scholar
  19. 19.
    Potyrailo, R. A.; Maier, W. F., Combinatorial materials and catalysts development: Where are we and how far can we go?, In Combinatorial and High-Throughput Discovery and Optimization Of Catalysts and Materials; R. A. Potyrailo and W. F. Maier, Eds.; CRC Press: Boca Raton, FL, 2006; 3–16.CrossRefGoogle Scholar
  20. 20.
    Frenzer, G.; Frantzen, A.; Sanders, D.; Simon, U.; Maier, W. F., Wet chemical synthesis and screening of thick porous oxide films for resistive gas sensing applications, Sensors 2006, 6, 1568–1586.CrossRefGoogle Scholar
  21. 21.
    Villoslada, F. N.; Takeuchi, T., Multivariate analysis and experimental design in the screening of combinatorial libraries of molecular imprinted polymers, Bull. Chem. Soc. Jpn. 2005, 78, 1354–1361.CrossRefGoogle Scholar
  22. 22.
    Mijangos, I.; Navarro-Villoslada, F.; Guerreiro, A.; Piletska, E.; Chianella, I.; Karim, K.; Turner, A.; Piletsky, S., Influence of initiator and different polymerisation conditions on performance of molecularly imprinted polymers, Biosens. Bioelectron. 2006, 22, 381–387.CrossRefGoogle Scholar
  23. 23.
    Potyrailo, R. A.; McCloskey, P. J.; Wroczynski, R. J.; Morris, W. G., High-throughput determination of quantitative structure-property relationships using resonant multisensor system: Solvent-resistance of bisphenol A polycarbonate copolymers, Anal. Chem. 2006, 78, 3090–3096.CrossRefGoogle Scholar
  24. 24.
    Jandeleit, B.; Schaefer, D. J.; Powers, T. S.; Turner, H. W.; Weinberg, W. H., Combinatorial materials science and catalysis, Angew. Chem. Int. Ed. 1999, 38, 2494–2532.CrossRefGoogle Scholar
  25. 25.
    Potyrailo, R. A.; Olson, D. R.; Chisholm, B. J.; Brennan, M. J.; Lemmon, J. P.; Cawse, J. N.; Flanagan, W. P.; Shaffer, R. E.; Leib, T. K. High throughput analysis of polymer materials and coatings, In: Invited Symposium “Analytical Tools For High Throughput Chemical Analysis And Combinatorial Materials Science”, Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, March 4–9, New Orleans, Louisiana, 2001.Google Scholar
  26. 26.
    Jansen, M., A concept for synthesis planning in solid-state chemistry, Angew. Chem. Int. Ed. 2002, 41, 3746–3766.CrossRefGoogle Scholar
  27. 27.
    Potyrailo, R. A., High-throughput experimentation in early 21st century: Searching for materials descriptors, not for a needle in the haystack, 6th DPI Workshop on Combinatorial and High-Throughput Approaches in Polymer Science, September 1011, Darmstadt, Germany, 2007.Google Scholar
  28. 28.
    Göpel, W.; Reinhardt, G., Metal oxide sensors: New devices through tailoring interfaces on the atomic scale, In Sensors Update, vol. 1; H. Baltes; W. Göpel and J. Hesse, Eds.; VCH: Weinheim, 1996; 47–120.Google Scholar
  29. 29.
    Frantzen, A.; Sanders, D.; Scheidtmann, J.; Simon, U.; Maier, W. F., A flexible database for combinatorial and high-throughput materials science, QSAR Comb. Sci. 2005, 24, 22–28.CrossRefGoogle Scholar
  30. 30.
    Sieg, S. C.; Suh, C.; Schmidt, T.; Stukowski, M.; Rajan, K.; Maier, W. F., Principal component analysis of catalytic functions in the composition space of heterogeneous catalysts, QSAR Comb. Sci. 2007, 26, 528–535.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Chemical and Biological Sensing Laboratory, Chemistry Technologies and Material CharacterizationGeneral Electric Global Research, NiskayunaNew YorkUSA
  2. 2.Department of NanobiotechnologyLausitz University of Applied SciencesSenftenbergGermany

Personalised recommendations