Advertisement

Computational Approaches to Design and Evaluation of Chemical Sensing Materials

  • Margaret A. Ryan
  • Abhijit V. Shevade
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

Materials for use as chemical sensors may be evaluated and selected with computational and experimental approaches. Computational methods have focused on developing fundamental electronic and atomic level descriptions of materials to insight into chemical interactions between targeted analytes and sensing materials. Computational methods also include use of statistical and computational approaches to characterize measured and experimentally observed analyte-sensing material interactions and sensing material responses to the presence of analyte. In the following chapter, we have provided an overview of various approaches that have been used to investigate and select chemical sensing materials.

Keywords

Sensor Response Molecular Descriptor Electronic Nose Grand Canonical Monte Carlo Molar Refractivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

References

  1. 1.
    Goddard, W. A.; Cagin, T.; Blanco, M.; Vaidehi, N.; Dasgupta, S.; Floriano, W.; Belmares, M.; Kua, J.; Zamanakos, G.; Kashihara, S.; Iotov, M.; Gao, G.H., Strategies for multiscale modeling and simulation of organic materials: polymers and biopolymers, Computational and Theoretical Polymer Science 2001, 11, 329–343.CrossRefGoogle Scholar
  2. 2.
    Shevade, A.V.; Homer, M.L.; Taylor, C.J.; Zhou, H.; Manatt, K.; Jewell, A. D.; Kisor, A.; Yen, S.P.S.; Ryan, M.A., Correlating polymer-carbon composite sensor response with molecular descriptors, Journal of Electrochemistry 2006, 153, H209–H21.CrossRefGoogle Scholar
  3. 3.
    Grate, J.W.; Patrash, S.J.; Abraham, M.H., Method for estimating polymer-coated acoustic-wave vapor sensor responses, Analytical Chemistry 1995, 67, 2162–2169.CrossRefGoogle Scholar
  4. 4.
    Livingstone, D., Data Analysis for Chemists, Oxford University Press&rlenis;, New York, 1995.Google Scholar
  5. 5.
    Bartlett, P. N.; Gardner, J. W., Electronic Noses: Principles and Applications, Oxford University Press, Oxford, 1999; pp. 140–183, and references therein.Google Scholar
  6. 6.
    Ryan, M. A.; Homer, M. L.; Zhou H.; Manatt, K.; Jewell, A. D.; Kisor, A.; Shevade, A.; Yen, S. P. S.; Blanco, M.; Goddard, W. A., Expanding the capabilities of the JPL electronic nose for an international space station technology demonstration, Proceedings of the 36th International Conference on Environmental Systems, SAE ICES-2179, 2006.Google Scholar
  7. 7.
    Shevade, A. V; Homer, M. L.; Zhou, H.; Jewell, A. D.; Kisor, A. K.; Manatt, K. S.; Torres, J.; Soler, J.; Yen, S. P. S; Ryan, M. A., Development of the third generation JPL electronic nose for international space station technology demonstration, Proceedings of the 37th International Conference on Environmental Systems, SAE ICES-3149, 2007.Google Scholar
  8. 8.
    Lee, C.; Yang, W.; Parr, R. G., Development of the colle-salvetti correlation-energy formula into a functional of the electron density, Physical Review B 1988, 37, 785–789.CrossRefGoogle Scholar
  9. 9.
    Hay, B. P.; Firman, T. K.; Bryantsev, V. S., HostDesigner User’s Manual, PNNL 13850, Pacific Northwest National Laboratory, Richland, WA, 2006.Google Scholar
  10. 10.
    Maiti, A.; Rodriguez, J.A.; Law M; Kung, P.; McKinney, J.R.; Yang, P.D., SnO2 nanoribbons as NO2 sensors: Insights from first principles calculations, Nano Letters 2003, 3, 1025–1028.CrossRefGoogle Scholar
  11. 11.
    Maiti, A., Electromechanical and chemical sensing at the nanoscale: Molecular modeling applications, Molecular Simulations 2004, 30, 191–198.CrossRefGoogle Scholar
  12. 12.
    Belmares, M.; Blanco, M.; Goddard, W. A.; Ross, R. B.; Caldwell, G.; Chou, S.-H.; Pham, J.; Olofson, P. M.; Thomas, C. J., Hildebrand and Hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors, Journal of Computational Chemistry 2004, 25, 1814–1826.CrossRefGoogle Scholar
  13. 13.
    Severin, E. J.; Lewis, N. S., Relationships among resonant frequency changes on a coated quartz crystal microbalance, thickness changes, and resistance responses of polymer-carbon black composite chemiresistors, Analytical Chemistry 2000, 72, 2008–2015.CrossRefGoogle Scholar
  14. 14.
    Grate, J. W.; Abraham, M. H.; McGill, R. A., Sorbent polymer coatings for chemical sensors and arrays, In Handbook of Biosensors: Medicine, Food, and the Environment, E. Kress-Rogers and S. Nicklin, eds., CRC Press, Boca Raton, FL, 1996; pp. 593–612.Google Scholar
  15. 15.
    Nakamura, K.; Nakamoto, T.; Moriizumi, T., Prediction of QCM gas sensor responses and calculation of electrostatic contribution to sensor responses using a computational chemistry method, Materials Science and Engineering C 2000, 12, 3–7.CrossRefGoogle Scholar
  16. 16.
    Potyrailo, R. A., Polymeric sensor materials: Toward an alliance of combinatiorial and rational design tools? Angewandte Chemie-International Edition 2006, 45, 702–723.CrossRefGoogle Scholar
  17. 17.
    Kramer K. E.; Rose-Pehrsson, S. L.; Hammond, M. H.; Tillett, D.; Streckert, H. H., Detection and classification of gaseous sulfur compounds by solid electrolyte cyclic voltammetry of cermet sensor array, Analytica Chemica Acta 2007, 584, 78–88.CrossRefGoogle Scholar
  18. 18.
    Lewis, N. S., Comparisons between mammalian and artificial olfaction based on arrays of carbon black-polymer composite vapor detectors, Accounts of Chemical Research 2004, 37, 663–672.CrossRefGoogle Scholar
  19. 19.
    Tchoupo, G. N.; Guiseppi-Elie, A., On pattern recognition dependency of desorption heat, activation energy, and temperature of polymer-based VOC sensors for the electronic NOSE, Sensors and Actuators B-Chemical 2005, 110, 81–88.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Margaret A. Ryan
    • 1
  • Abhijit V. Shevade
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations