Main Concepts of Chemical and Biological Sensing

Part of the Integrated Analytical Systems book series (ANASYS)


Brief historic introduction precedes presentation of main types of transducers used in sensors including electrochemical, optical, mass sensitive, and thermal devices. Review of chemical sensors includes various types of gas sensitive devices, potentiometric and amperometric sensors, and quartz microbalance applications. Mechanisms of biorecognition employed in biosensors are reviewed with the method of immobilization used. Some examples of biomimetic sensors are also presented.


Surface Plasmon Resonance Molecular Imprint Polymer Surface Acoustic Wave Chemical Sensor Bilayer Lipid Membrane 


  1. 1.
    Haber, F.; Klemensiewicz, Z., Über elektrische Phasengrenzekräfte, Z. Phys. Chem. 1909, 67, 385–431Google Scholar
  2. 2.
    Clark Jr., L. C., Monitor and control of blood tissue O2 tensions, Trans. Am. Soc. Artif. Intern. Organs 1956, 2, 41–48Google Scholar
  3. 3.
    Clark Jr., L. C.; Lyons, C., Electrode systems for continuous monitoring in cardiovascular surgery, Ann. N.Y. Acad. Sci. 1962, 102, 29–45CrossRefGoogle Scholar
  4. 4.
    King Jr., W. H., Piezoelectric sorption detector, Anal. Chem. 1964, 36, 1735–1739CrossRefGoogle Scholar
  5. 5.
    Frant, M. S.; Ross Jr., J. W., Electrode for sensing fluoride ion activity in solution, Science 1966, 154, 1553–1555CrossRefGoogle Scholar
  6. 6.
    Stefanac, Z.; Simon, W., Ion specific electrochemical behavior of macrotetrolides in membranes, Microchem. J. 1967, 12, 125–132CrossRefGoogle Scholar
  7. 7.
    Guilbault, G. G.; Montalvo, J., A urea specific enzyme electrode, J. Am. Chem. Soc. 1969, 91, 2164–2165CrossRefGoogle Scholar
  8. 8.
    Bergveld, P., Development of an ion-sensitive solid-state device for neurophysiological measurements, IEEE Trans. Biomed. Eng. BME-19, 1970, 17, 70–71CrossRefGoogle Scholar
  9. 9.
    Mosbach, K.; Danielsson, B., Enzyme thermistor, Biochim. Biophys. Acta 1974, 364, 140–145Google Scholar
  10. 10.
    Davies, C., Ethanol oxidation by an Acetobacter xylinium microbial electrode, Ann. Microbiol. 1975, 126, 175–86Google Scholar
  11. 11.
    Janata, J., An immunoelectrode, J. Am. Chem. Soc. 1975, 97, 2914–2916CrossRefGoogle Scholar
  12. 12.
    Lübbers, D. W.; Optiz, N., Die pCO2/pO2-Optrode: Eine neue pCO2-bzw. pO2-Messonde zur Messung des pCO2 oder pO2 von Gasen und Flüssigkeiten, Z. Naturf. C. 1975, 30, 532–533Google Scholar
  13. 13.
    Lündstrom, I.; Shivaramn, S.; Svenson, C.; Lundkvist, L., A hydrogen-sensitive MOS field-effect transistor, Appl. Phys. Lett. 1975, 26, 55–57CrossRefGoogle Scholar
  14. 14.
    Peterson, J. I.; Goldstein, S. R.; Fitzgerald, R. V.; Buckhold, D. K., Fiber optic pH probe for physiological use, Anal. Chem. 1980, 52, 864–869CrossRefGoogle Scholar
  15. 15.
    Liedberg, B.; Nylander, C.; Lündstrom I., Surface-plasmon resonance for gas-detection and biosensing, Sens. Actuators 1983, 4, 299–304CrossRefGoogle Scholar
  16. 16.
    Belli, S. L.; Rechnitz, G. A., Prototype potentiometric biosensor using intact chemoreceptor structures, Anal. Lett. 1986, 19, 403–416Google Scholar
  17. 17.
    Taylor, R. F.; Marenchic, I. G.; Cook, E. J., Receptor-based biosensors, US Patent 5,001,048: 1987 Google Scholar
  18. 18.
    Matthews, D. R.; Bown, E.; Watson, A.; Holaman, R. R.; Steemson, J.; Hughs, S.; Scott, D., Pen-sized digital 30-second blood-glucose meter, Lancet 1987, 8536, 778–779CrossRefGoogle Scholar
  19. 19.
    Millan, K.; Mikkelson, S. R., Sequence-selective biosensor for DNA based on electroactive hybridization indicators, Anal. Chem. 1993, 65, 2317–2323CrossRefGoogle Scholar
  20. 20.
    Drolet, D. W.; Moon-Dermott, L.; Roming, T. S., An enzyme-linked oligonucleotide assay, Nat. Biotechnol. 1996, 14, 1021–1025CrossRefGoogle Scholar
  21. 21.
    Hulanicki, A.; Glab, S.; Ingman, F., Chemical sensors definitions and classifications, Pure Appl. Chem. 1991, 63, 1247–1250CrossRefGoogle Scholar
  22. 22.
    Vlasov, Y.; Legin, A.; Rudnitskaya, A.; Di Natale, S.; D’Amico, A., Nonspecific sensor arrays (“electronic tongue”) for chemical analysis of liquids, Pure Appl. Chem. 2005, 77, 1965–1983CrossRefGoogle Scholar
  23. 23.
    Stephenson, G. R.; Ferris, I. G.; Holland, P. T.; Nordberg, M., Glossary of terms relating to pesticides, Pure Appl. Chem. 2006, 78, 2075–2154CrossRefGoogle Scholar
  24. 24.
    Thevenot, D. R.; Toth, K.; Durst, R. A.; Wilson, G. S., Electrochemical biosensors: Recommended definitions and classification, Pure Appl. Chem. 1999, 71, 2333–2348CrossRefGoogle Scholar
  25. 25.
    Vadgama, P.; Crump, P.W., Biosensors: Recent trends. A review, Analyst 1992, 117, 1657–1670CrossRefGoogle Scholar
  26. 26.
    Ion-Selective electrodes in analytical chemistry; Freiser, H. Ed.; Plenum: New York, NY, 1978Google Scholar
  27. 27.
    Biosensors: Fundamentals and applications; Turner, A. P. R.; Karube, I.; Wilson, G., Eds.; Oxford University Press: Oxford, 1987Google Scholar
  28. 28.
    Chemical sensors; Edmonds T. E., Ed.; Chapman and Hall: New York, NY, 1988Google Scholar
  29. 29.
    Janata, J. Principles of chemical sensors; Plenum: New York, NY, 1989Google Scholar
  30. 30.
    Biosensors – A practical approach; Cass A. E. G. Ed.; IRL, Oxford University Press: Oxford, 1990Google Scholar
  31. 31.
    Hall, E. A. H. Biosensors; Open University Press: Buckingham, 1990Google Scholar
  32. 32.
    Wise D.; Wingard, L. B. Biosensors with fiberoptics; Humana: Clifton NJ, 1991Google Scholar
  33. 33.
    Fiber optic chemical sensors and biosensors; Wolfbeis, O. S. Ed.; CRC: Boca Raton, FL, 1991Google Scholar
  34. 34.
    Hauptman, P.; Pownall, T. Sensors principles and applications; Prentice-Hall: New York, NY, 1993Google Scholar
  35. 35.
    Gardner, J. W. Microsensors: Principles and applications; Wiley: Chichester, 1994Google Scholar
  36. 36.
    Optical fiber sensor technology; Gatan, K. T. V.; Grattan, K. T. Eds.; Chapman and Hall: London, 1996Google Scholar
  37. 37.
    Handbook of chemical and biological sensors; Taylor, R. F.; Schults, J. S. Eds.; Institute of Physics Publishing: Bristol, 1996Google Scholar
  38. 38.
    Ballantine Jr., S. D.; White, R. M.; Martin, S. J.; Ricco, A. J.; Zellers, E. T.; Frye, G. C.; Wohltjen, H. Acoustic wave sensors: Theory, design and physico-chemical applications (Application of modern acoustics), Academic: London, 1996Google Scholar
  39. 39.
    Boisde, G.; Harmer, A. Chemical and Biochemical Sensing with Optical fibres and waveguides, Artech House: Boston, MA, 1996Google Scholar
  40. 40.
    Brignell, J.E.; White, N.M. Intelligent sensor systems; Institute of Physics Publishing: Bristol, 1996Google Scholar
  41. 41.
    Di Natale, C.; D’Amico, A. Eds.; Sensors and microsystems; World Scientific: Singapore, 1996Google Scholar
  42. 42.
    Fraden, J. Handbook of modern sensors; Springer: Berlin, 1997Google Scholar
  43. 43.
    Cattrall, R. W. Chemical sensors; Oxford University Press: Oxford, 1997Google Scholar
  44. 44.
    Diamond, D. Principles of chemical and biological sensors; Wiley: New York, 1998Google Scholar
  45. 45.
    Solomon, S. Sensors handbook; McGraw-Hill: New York, 1998Google Scholar
  46. 46.
    Frontiers in chemical sensors, Vol. 1, Optical sensors; Narayanaswamy, R.; Wolfbeis, O. S. Eds.; Springer: Berlin, 2004Google Scholar
  47. 47.
    Frontiers in chemical sensors, Vol. 2. Ultra-thin electrochemical chemo- and biosensors; Mirsky, V. Ed.; Springer: Berlin, 2006Google Scholar
  48. 48.
    Frontiers in chemical sensors, Vol. 3, Novel principle and techniques; Orellana, G.; Moreno-Bondi, M.C. Eds.; Springer: Berlin, 2004Google Scholar
  49. 49.
    Frontiers in chemical sensors, Vol. 4, Surface plasmon resonance; Homola, J. Ed.; Springer: Berlin, 2005Google Scholar
  50. 50.
    Campbell, M. Sensor systems for environmental monitoring: Sensor technologies; Kluwer: Dordrecht, 1996Google Scholar
  51. 51.
    Commercial biosensors. Application to clinical, bioprocess and environmental samples; Ramsey, G. Ed.; Wiley: New York, NY, 1998Google Scholar
  52. 52.
    Novel approaches in biosensors and rapid diagnostic assays; Liron, Z.; Bormberg, A.; Fisher, M. Eds.; Kluwer: New York, NY, 2001Google Scholar
  53. 53.
    Trojanowicz, M.; Wcisło, M., Electrochemical and piezoelectric enantioselective sensors and biosensors, Anal. Lett. 2005, 38, 523–547Google Scholar
  54. 54.
    Cho, E. J.; Bright, F. V., Pin-printed chemical sensor arrays for simultaneous multianalyte quantification, Anal. Chem. 2002, 74, 1462–1466CrossRefGoogle Scholar
  55. 55.
    Held, M.; Schuhmann, W.; Jahreis, K.; Schmidt, H-L., Microbial biosensor array with transport mutants of Escherichia coli K12 for the simultaneous determination of mono- and disaccharides, Biosens. Bioelectron. 2002, 17, 1089–1094CrossRefGoogle Scholar
  56. 56.
    Krantz-Rulcker, C.; Stenberg, M.; Winquist, F.; Lundstrom, L. Electronic tongues for environmental monitoring based on sensor arrays and pattern recognition: a review, Anal. Chim. Acta 2001, 426, 217–225CrossRefGoogle Scholar
  57. 57.
    Deisingh, A. K.; Stone, D. C.; Thompson, M., Applications of electronic noses and tongues in food analysis, Int. J. Food Sci. Technol. 2004, 39, 587–604CrossRefGoogle Scholar
  58. 58.
    Schöning, M. J.; Hüllenkremer, B.; Glück, O.; Lüth, H.; Emons, E., Voltohmmetry – a novel sensing principle for heavy metal determination in aqueous solutions, Sens. Actuators B 2001, 76, 275–280CrossRefGoogle Scholar
  59. 59.
    Eranna, G.; Joshi, B. C.; Runthala, D. P.; Gupta, R. P., Oxide materials for development of integrated gas sensors – A comprehensive review, Crit. Rev. Solid State Mat. Sci. 2004, 29, 111–188CrossRefGoogle Scholar
  60. 60.
    Park, S. N.; Yoo, J. S., Electrochemical impedance spectroscopy for better electrochemical measurements, Anal. Chem. 2003, 75, 455A–462AGoogle Scholar
  61. 61.
    Lillie, G.; Payne, P.; Vadgama, P., Electrochemical impedance spectroscopy as a platform for reagentless bioaffinity sensing, Sens. Actuat. B. 2001, 78, 249–256CrossRefGoogle Scholar
  62. 62.
    Koncki, R.; Hulanicki, A.; Glab, S., Biochemical modifications of membrane ion-selective sensors, Trends Anal. Chem. 1997, 16, 528–536CrossRefGoogle Scholar
  63. 63.
    Ho, W. O.; Krause, S.; McNeil, C. J.; Pritchard, J. A.; Armstrong, R. D.; Athey, D.; Rawson, K., Electrochemical sensor for measurement of urea and creatinine in serum based on ac impedance measurement of enzyme-catalyzed polymer, Anal. Chem. 1999, 71, 1940–1946CrossRefGoogle Scholar
  64. 64.
    O’Sullivan, C. K.; Guilabault, G. G., Commercial quartz crystal microbalances – theory and applications, Biosens. Bioelectron. 1999, 14, 663–670CrossRefGoogle Scholar
  65. 65.
    Yang, M.; Thompson, M., Multiple chemical information from the thickness shear mode acoustic wave sensor in the liquid phase, Anal. Chem. 1993, 65, 1158–1168CrossRefGoogle Scholar
  66. 66.
    Danielsson, B., Calorimetric biosensors, J. Biotechnol. 1990, 15, 187–200CrossRefGoogle Scholar
  67. 67.
    De Frutos, J.; Jimenez, B., Pure and calcium-modified lead tiotanate ceramics for pyroelectric sensors, Sens. Actuators A. 1992, 32, 393–395CrossRefGoogle Scholar
  68. 68.
    Zipp, A., Development of dry reagent chemistry for the clinical laboratory, J. Autom. Chem. 1981, 3, 71–74Google Scholar
  69. 69.
    Walter, B., Dry reagent chemistries in clinical analysis, Anal. Chem. 1983, 55, 498A–506ACrossRefGoogle Scholar
  70. 70.
    Wolfbeis, O.S., Fiber-optic chemical sensors and biosensors, Anal. Chem. 2006, 78, 3859–3873CrossRefGoogle Scholar
  71. 71.
    Golden, J. P.; Saaski, E. W.; ShriverLake, L. C.; Anderson, G. P.; Ligler, F. S., Portable multichannel fiber optic biosensor for field detection, Opt. Eng. 1997, 36, 1008–1013CrossRefGoogle Scholar
  72. 72.
    Mayes, A. G.; Blyth, J.; Millington, R. B.; Lowe, C. R., A holographic sensor based on a rationally designed synthetic polymer, J. Mol. Recognit. 1998, 11, 168–174CrossRefGoogle Scholar
  73. 73.
    Carrascosa, L. G.; Moreno, M.; Alvarez, M.; Lechiga, L. M., Nanomechanical biosensors: a new sensing tool, Trends Anal. Chem. 2006, 25, 196–206CrossRefGoogle Scholar
  74. 74.
    Liedberg, B.; Nylander, C.; Lundström, I., Biosensing with surface plasmon resonance – how it all started, Biosens. Bioelectron. 1995, 10, i–ixCrossRefGoogle Scholar
  75. 75.
    Homola, J.; Yee, S. S.; Gauglitz, G., Surface plasmon resonance sensors: review, Sens. Actuators B 1999, 54, 3–15CrossRefGoogle Scholar
  76. 76.
    Gardner, J.W.; Pike, A.; de Rooij, N.F.; Koudelka-Hep, M.; Clerc, P.A.; Hierlemann, A.; Göpel, W., Integrated array sensor for detecting organic solvents, Sens. Actuators B 1995, 26–27, 135–139CrossRefGoogle Scholar
  77. 77.
    Okabayashi, T.; Fujimoto, T.; Yamamoto, I.; Utsunomiya, K.; Wada, T.; Yamashita, Y.; Yamashita, N.; Nakagawa, M., High sensitive hydrocarbon gas sensor utilizing cataluminescence of ³-Al2O3 activated with Dy3+, Sens. Actuators B 2000, 64, 54–58CrossRefGoogle Scholar
  78. 78.
    Trojanowicz, M., Analytical applications of carbon nanotubes, Trends Anal. Chem. 2006, 25, 480–489CrossRefGoogle Scholar
  79. 79.
    De Marco, R.; Jiang, Z. T.; Becker, T.; Clarke, G.; Murgatroyd, G.; Prince, K., Response mechanisms and new approaches with solid-state ion-selective electrodes: A powerful multi-technique materials characterization approach, Electroanalysis 2006, 18, 1273–1281CrossRefGoogle Scholar
  80. 80.
    Buhlmann, P.; Pretsch, E.; Bakker, E., Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors, Chem. Rev. 1998, 98, 1593–1687CrossRefGoogle Scholar
  81. 81.
    Horvath, V.; Takacs, T.; Horvai, G.; Huszthy, P.; Bradshaw, J. S.; Izatt, R. M., Enantiomer-selectivity of ion-selective electrodes based on a chiral crown-ether ionophore, Anal. Lett. 1997, 30, 1591–1609Google Scholar
  82. 82.
    Ceresa, A.; Sokalski, T.; Pretsch, E., Influence of key parameters on the lower detection limit and response function of solvent polymeric membrane ion-selective electrodes, J. Electroanal. Chem. 2001, 501, 70–76CrossRefGoogle Scholar
  83. 83.
    Ye, Q.; Meyerhoff, M. E., Rotating electrode potentiometry: lowering the detection limits of nonequilibrium polyion-sensitive membrane electrodes, Anal. Chem. 2001, 73, 332–336CrossRefGoogle Scholar
  84. 84.
    Maksymiuk, K., Chemical reactivity of polypyrrole and its relevance to polypyrrole based electrochemical sensors, Electroanalysis 2006, 18, 1537–1551CrossRefGoogle Scholar
  85. 85.
    Morf, W. E.; De Rooij, N. F., Micro-adaptation of chemical sensor materials, Sens. Actuators A 1995, 51, 89–95CrossRefGoogle Scholar
  86. 86.
    Zen, J. M.; Kumar, A. S.; Tsai, D. M., Recent updates of chemically modified electrodes in analytical chemistry, Electroanalysis, 2003, 15, 1073–1087CrossRefGoogle Scholar
  87. 87.
    Trojanowicz, M., Application of conducting polymers in chemical analysis. A review on recent advances, Microchim. Acta 2003, 143, 75–91CrossRefGoogle Scholar
  88. 88.
    Mirsky, V. M.; Vasjari, M.; Novotny, I.; Rehacek, V.; Tvarozek, V.; Wolfbeis, O. S., Self-assembled monolayers as selective filters for chemical sensors, Nanotechnology 2002, 13, 175–178CrossRefGoogle Scholar
  89. 89.
    Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M., Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev. 2005, 105, 1103–1169CrossRefGoogle Scholar
  90. 90.
    Trojanowicz, M., Miniaturized biochemical sensing devices based on planar bilayer lipid membranes, Fresenius J. Anal. Chem. 2001, 371, 246–260CrossRefGoogle Scholar
  91. 91.
    Zhang, S.; Cardona, C. C.; Echegoyen, L., Ion recognition properties of self-assembled monolayers (SAMs), Chem. Comm. 2006, 4461–4473Google Scholar
  92. 92.
    Kriz, D.; Ramstrom, O.; Mosbach, K., Molecular imprinting – new possibilities for sensor technology, Anal. Chem. 1997, 69, 345A–349AGoogle Scholar
  93. 93.
    Panasyuk-Delaney, T.; Mirsky, V. M.; Ulbricht, M.; Wolfbeis, O. S., Impedometric herbicide chemosensors based on molecularly imprinted polymers, Anal. Chim. Acta 2001, 435, 157–162CrossRefGoogle Scholar
  94. 94.
    Wolfbeis, O. S., Fiber-optic chemical sensors and biosensors, Anal. Chem. 2006, 78, 3859–3874CrossRefGoogle Scholar
  95. 95.
    Wolfbeis, O. S., Materials for fluorescence-based optical chemical sensors, J. Mater. Chem. 2005, 15, 2657–2669CrossRefGoogle Scholar
  96. 96.
    Dürkop, A.; Wolfbeis, O. S., Nonenzymatic direct assay of hydrogen peroxide at natural pH using the Eu3Tc fluorescent probe, J. Fluoresc. 2005, 15, 755–761CrossRefGoogle Scholar
  97. 97.
    Mikkelsen, S. R., Corton, E. Bioanalytical chemistry; Wiley-Interscience: Huboken, NJ, 2004CrossRefGoogle Scholar
  98. 98.
    Nakamura, H.; Karube, I., Current research activity in biosensors, Anal. Bioanal. Chem.2003, 377, 446–468CrossRefGoogle Scholar
  99. 99.
    Wilchek, M.; Hofstetter, H.; Hofstetter, O., The application of biorecognition, In Novel approaches in biosensors and rapid diagnostic assays; Liron, E. Ed.; Kluwer/Plenum: New York, 2000Google Scholar
  100. 100.
    Taylor, R. F. Protein immobilization: fundamentals and applications; Marcel Dekker: New York, 1991Google Scholar
  101. 101.
    Uses of immobilized biological compounds; Guilbault, G.G.; Mascini, M., Eds.; Kluwer, Amsterdam, 1993Google Scholar
  102. 102.
    Bickerstaff, G.F. Immobilization of enzymes and cells; Humana: Totowa, NJ 1997Google Scholar
  103. 103.
    Cass, I.T.; Light, F.S. Immobilized biomolecules in analysis: a practical approach; Oxford University Press: Oxford, 1998Google Scholar
  104. 104.
    Immobilization of enzymes and cells; Guisan, J.M., Ed.; Humana: Totowa, NJ 2006Google Scholar
  105. 105.
    Matuszewski, W.; Trojanowicz, M., Graphite paste based enzymatic glucose electrode for flow injection analysis, Analyst 1988, 113, 735–738CrossRefGoogle Scholar
  106. 106.
    Gorton, L., Carbon paste electrodes modified with enzymes, tissues, and cells, Electroanalysis 1995, 7, 23–45CrossRefGoogle Scholar
  107. 107.
    Campanella, L.; Favero, G.; Sammartino, M. P.; Tomassetti, M., Further development of catalase, tyrosinase and glucose oxidase based organic phase enzyme electrode response as a function of organic solvent properties, Talanta 1998, 46, 595–606CrossRefGoogle Scholar
  108. 108.
    Cosnier, S.; Mousty, C.; Gondran, C.; Lepellec, A., Entrapment of enzyme within organic and inorganic materials for biosensor applications: Comparative study, Mat. Sci. Eng. C 2006, 26, 442–447CrossRefGoogle Scholar
  109. 109.
    Schügerl, K.; Ulber, R.; Scheper, T., Developments of biosensors for enantiomeric analysis, Trends Anal. Chem. 1996, 15, 56–62CrossRefGoogle Scholar
  110. 110.
    Schultze, H.; Vorlova, S.; Villatte, F.; Bachmann, T. T.; Schmid, R. D., Design of acetylocholinesterases for biosensor applications, Biosens. Bioelectron. 2003, 18, 201–209CrossRefGoogle Scholar
  111. 111.
    Kulys, J.; Vidziunaite, R., Amperometric biosensors based on recombinant laccases for phenols determination, Biosens. Bioelectron. 2003, 18, 319–325CrossRefGoogle Scholar
  112. 112.
    Krawczyński vel Krawczyk, T., Analytical applications of inhibition of enzymatic reactions, Chem. Anal. (Warsaw) 1998, 43, 135–158Google Scholar
  113. 113.
    Amine, A.; Mohammadi, H.; Bourais, I.; Palleschi, G., Enzyme inhibition-based biosensors for food safety and environmental monitoring, Biosens. Bioelectron. 2006, 21, 1405–1423CrossRefGoogle Scholar
  114. 114.
    Wang, J.; Dempsey, E.; Eremenko, A.; Smyth, M.R., Organic-phase biosensing of enzyme inhibitors, Anal. Chim. Acta 1993, 279, 203–208CrossRefGoogle Scholar
  115. 115.
    Luque de Castro, M. D.; Herrera, M. C., Enzyme inhibition-based biosensors and biosensing systems: questionable analytical devices, Biosens. Bioelectron. 2003, 18, 279–294CrossRefGoogle Scholar
  116. 116.
    Mazzei, F.; Botre, F.; Botre, C., Acid phosphatase/glucose oxidase-based biosensors for the determination of pesticides, Anal. Chim. Acta 1996, 336, 67–75CrossRefGoogle Scholar
  117. 117.
    Uchiyama, S.; Tamata, M.; Tofuku, Y.; Suzuki, S., A catechol electrode based on spinach leaves, Anal. Chim. Acta 1988, 208, 287–290CrossRefGoogle Scholar
  118. 118.
    Ionescu, R. E.; Abu-Rabeh, K.; Cosnier, S.; Durrieu, C.; Chovelon, J. M.; Marks, R. S., Amperometric algal Chlorella vulgaris cell biosensors based on alginate and polypyrrolealginate gels, Electroanalysis, 2006, 18, 1041–1046CrossRefGoogle Scholar
  119. 119.
    Baumann, W. H.; Lehmann, M.; Schwinde, A.; Ehret, R.; Brischwein, M.; Wolf, W., Microelectronic sensor system for microphysiological application on living cells, Sens. Actuators B 1999, 55, 77–89CrossRefGoogle Scholar
  120. 120.
    Harms, H.; Wells, M. C.; van der Meer, J. R., Whole-cell living biosensors – are they ready for environmental application? Appl. Microb. Biotechnol. 2006, 70, 273–280CrossRefGoogle Scholar
  121. 121.
    Nomura, Y.; Chee, G.J.; Karube, I., Biosensor technology for determination of BOD, Field Anal. Chem. Technol. 1998, 2, 333–340CrossRefGoogle Scholar
  122. 122.
    Matusnaga, T.; Karube, I.; Suzuki, S., A specific microbial sensor for formic acid, Appl. Microbiol. Biotechnol. 1980, 10, 235–245CrossRefGoogle Scholar
  123. 123.
    Lee, J.I.; Karube, I., A novel microbial sensor for the determination of cyanide, Anal. Chim. Acta 1995, 313, 69–74CrossRefGoogle Scholar
  124. 124.
    Han, T. S.; Kim, Y. C.; Sasaki, S.; Yano, K.; Ikebukuro, K.; Kitahara, A.; Nagamine, T.; Karube, I., Microbial sensor for trichloroethylene determination, Anal. Chim. Acta 2001, 431, 225–230CrossRefGoogle Scholar
  125. 125.
    Ripp, S.; Nivens, D. E.; Werner, C.; Sayler, G. S., Bioluminescent most-probable-number monitoring of a genetically engineered bacterium during a long-term contained field release, Appl. Microbiol. Biotechnol. 2000, 53, 736–741CrossRefGoogle Scholar
  126. 126.
    Billinton, N.; Baker, M. G.; Michel, C. E.; Knight, A. W.; Heyer, W. D.; Goddard, N. J.; Fielden, P. R.; Walmsley, R. M., Development of a green fluorescent protein reporter for a yeast genotoxicity biosensor, Biosens. Bioelectron. 1998, 13, 831–838CrossRefGoogle Scholar
  127. 127.
    Killard, A. J.; Deasy, B.; O’Kennedy, R. and Smyth, M. R., Antibodies: production, functions and applications in biosensors, Trends Anal. Chem. 1995, 14, 257–266Google Scholar
  128. 128.
    Marco, M-P.; Gee, S.; Hammock, B. D., Immunochemical techniques for environmental analysis. I. Immunosensors, Trends Anal. Chem. 1995, 14, 341–350Google Scholar
  129. 129.
    Suri, C. R.; Raje, M.; Varshney, G. C., Immunosensors for pesticide analysis: Antibody production and sensor development, Crit. Rev. Biotechnol. 2002, 22, 15–32CrossRefGoogle Scholar
  130. 130.
    Iqbal, S. S.; Mayo, M. W.; Bruno, J. G.; Bronk, B. V.; Batt, C. A.; Chambers, J. P., A review of molecular recognition technologies for detection of biological threat agents, Biosens. Bioelectron. 2000, 15, 549–578CrossRefGoogle Scholar
  131. 131.
    Blackburn, G. F., Talley, D. B., Booth, P. M., Durfor, C. N., Martin, M. T., Napper, A. D. and Rees, A. R. (1990) Potentiometric biosensor employing catalytic antibodies as the molecular recognition element, Anal. Chem. 1990, 62, 2211–2218CrossRefGoogle Scholar
  132. 132a.
    Belli, S. L.; Rechnitz, G. A., Biosensors based on native chemoreceptors, Fresenius Z. Anal Chem. 1988, 331, 439–447CrossRefGoogle Scholar
  133. 132b.
    Subrahmanyam, S.; Piletsky, S. A.; Turner, A. P. F., Application of natural receptors in sensors and assays, Anal. Chem. 2002, 74, 3942–3951CrossRefGoogle Scholar
  134. 133.
    Breer, H., Olfactory receptors: molecular basis for recognition and discrimination of odors, Anal. Bioanal. Chem. 2003, 377, 427–433CrossRefGoogle Scholar
  135. 134.
    Wu, T.Z., A piezoelectric biosensor as an olfactory receptor for odour detection: electronic nose, Biosens. Bioelectron. 1999, 14, 9–18CrossRefGoogle Scholar
  136. 135.
    Yang, L. C.; Tam, P. Y.; Murray, B. J.; McIntire, T. M.; Overstreet, C. M.; Weiss, G. A.; Penner, R. M., Virus electrodes for universal biodetection, Anal. Chem. 2006, 78, 3265–3270CrossRefGoogle Scholar
  137. 136.
    Susmel, S.; O’Sullivan, C. K.; Guilbault, G. G., Human cytomegalovirus detection by a quartz crystal microbalance immunosensor, Enzyme Microb. Technol. 2000, 27, 631–645CrossRefGoogle Scholar
  138. 137.
    Wang, J., Towards genoelectronics: Electrochemical biosensing of DNA hybridization, Chem. Eur. J. 1999, 5, 1681–1685CrossRefGoogle Scholar
  139. 138.
    Palecek, E.; Fojta, M., DNA hybridization and damage, Anal. Chem. 2001, 73, 75A–83AGoogle Scholar
  140. 139.
    Gooding, J.J., Electrochemical DNA hybridization biosensors, Electroanalysis 2002, 14, 1149–1156CrossRefGoogle Scholar
  141. 140.
    Erdem, A.; Ozsoz, M., Electrochemical DNA biosensors based on DNA-drug interactions, Electroanalysis 2002, 14, 965–974CrossRefGoogle Scholar
  142. 141.
    Pividori, M. I.; Merkoci, A.; Alegret, A., Electrochemical genosensor design: immobilization of oligonucleotides onto transducer surfaces and detection methods, Biosens. Bioelectron. 2000, 15, 291–303CrossRefGoogle Scholar
  143. 142.
    Rosi, N. L.; Mirkin, C. A., Nanostructures in biodiagnostics, Chem. Rev. 2005, 105, 1547–1562CrossRefGoogle Scholar
  144. 143.
    Weizmann, Y.; Patolsky, F.; Willner, I., Amplified detection of DNA and analysis of single-base mismatches by the catalyzed deposition of gold on Au-nanoparticles, Analyst 2001, 126, 1502–1504CrossRefGoogle Scholar
  145. 144.
    Zhao, X. J.; Tapec-Dytioco, R.; Tan, W. H., Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles, J. Am. Chem. Soc. 2003, 125, 11474–11475CrossRefGoogle Scholar
  146. 145.
    Hashimoto, K.; Ito, K.; Ishimori, Y., Microfabricated disposable DNA sensor for detection of hepatitis B virus DNA, Sens. Actuators B 1998, 46, 220–225CrossRefGoogle Scholar
  147. 146.
    Bruckner-Lea, C. J., Biosensor systems for homeland security, Electrochem. Soc. Interface 2004, Summer, 36–42Google Scholar
  148. 147.
    Fu, Y.; Yuan, R.; Chai, Y.; Zhou, L.; Zhang, Y., Coupling of a reagentless electrochemical DNA biosensor with conducting polymer film and nanocomposite as matrices for the detection of the HIV DNA sequence, Anal. Lett. 2006, 39, 467–482CrossRefGoogle Scholar
  149. 148.
    Marin, D.; Perez, P.; Teijeiro, C.; Palecek, E., Interactions of surface-confined DNA with acid-activated mitomycin C, Biophysical Chem. 1998, 75, 87–95CrossRefGoogle Scholar
  150. 149.
    Wang, J.; Ozsoz, M.; Cai, X.; Rivas, G.; Shiraishi, H.; Grant, D. H.; Chicharro, M.; Fernandes, J.; Palecek, E., Interactions of antitumor drug daunomycin with DNA in solution at the surface, Bioelectrochem. Bioenerg. 1998, 45, 33–40CrossRefGoogle Scholar
  151. 150.
    Liu, J.; Roussel, C.; Lagger, G.; Tacchini, P.; Girault, H. H., Antioxidant sensors based on DNA-modified electrodes, Anal. Chem. 2005, 77, 7687–7694CrossRefGoogle Scholar
  152. 151.
    Yang, M.; McGovern, M. E.; Thompson, M., Genosensor technology and the detection of interfacial nucleic acid chemistry, Anal. Chim. Acta 1997, 346, 259–275Google Scholar
  153. 152.
    Fiammengo, R.; Crego-Calama, M.; Reinhoudt, D. N., Synthetic self-assembled models with biomimetic functions, Curr. Opinion Chem. Biol. 2001, 5, 660–673CrossRefGoogle Scholar
  154. 153.
    Cosnier, S.; Gondran, C., Wessel, R., Montforts, F.-P.; Wedel, M., Poly(pyrrole-metallodeuteroporphyrin)electrodes: towards electrochemical biomimetic devices, J. Electroanal. Chem. 2000, 488, 83–91CrossRefGoogle Scholar
  155. 154.
    Ardiles, P.; Trollund, E.; Isaacs, M.; Armijo, F.; Canales, J. C.; Aguirre, M. J.; Canales, M. J., Electrocatalytic oxidation of hydrazine at polymeric iron-tetraminophthalocyanine modified electrodes, J. Mol. Catal. 2001, 165, 169–175CrossRefGoogle Scholar
  156. 155.
    Sotomayor, M. D. P. T.; Tanaka, A. A.; Kubota, L. T., Development of an amperometric sensor for phenol compounds using a Nafion (R) membrane doped with copper dipyridyl complex as a biomimetic catalyst, J. Electroanal. Chem. 2002, 536, 71–81CrossRefGoogle Scholar
  157. 156.
    Mifune, M.; Odo, J.; Iwado, A.; Saito, Y.; Motohashi, N.; Chikuma, M.; Tanaka, H., Uricase-like catalytic activity of ion-exchange resins modified with metalloporphyrins, Talanta 1991, 38, 779–783CrossRefGoogle Scholar
  158. 157.
    Iwado, A.; Mifune, M.; Harada (nee Noguchi), R.; Mukuno, T.; Motohashi, N.; Saito, Y., Glutathione peroxidase-like catalytic activities of ion-exchange resins modified with metalloporphyrins, Anal. Sci. 1998, 14, 515–518CrossRefGoogle Scholar
  159. 158.
    Iwado, A.; Mifune, M.; Hazawa, T.; Mukuno, T.; Oda, J.; Motohashi, N.; Saito, Y., Peroxidase-like activity of ion exchange resin modified with metal-porphine in fluorescent flow injection analysis, Anal. Sci. 1999, 15, 841–846CrossRefGoogle Scholar
  160. 159.
    Yano, K.; Karube, I., Molecularly imprinted polymers for biosensor applications, Trends Anal. Chem. 1999, 18, 199–204CrossRefGoogle Scholar
  161. 160.
    Haupt, K.; Mosbach, K., Molecularly imprinted polymers and their use in biomimetic sensors, Chem. Rev. 2000, 100, 2495–2504CrossRefGoogle Scholar
  162. 161.
    Yoshikawa, M., Molecularly imprinted polymeric membranes, Bioseparation 2002, 10, 277–286CrossRefGoogle Scholar
  163. 162.
    Nicholls, I. A.; Rosengren, J. P., Molecular imprinting of surfaces, Bioseparation 2002, 10, 301–305CrossRefGoogle Scholar
  164. 163.
    Vlatakis, G.; Andersson, L. I.; Müller, R.; Mosbach, K., Drug assay using antibody mimics made by molecular imprinting, Nature 1993, 361, 645–647CrossRefGoogle Scholar
  165. 164.
    Panasyuk, T. L.; Mirsky, V. M.; Piletsky, S. A.; Wolfbeis, O. S., Electropolymerized molecularly imprinted polymers as receptor layers in a capacitive chemical sensors, Anal. Chem. 1999, 71, 4609–4613CrossRefGoogle Scholar
  166. 165.
    Haupt, K.; Noworyta, K.; Kutner, W., Imprinted polymer-based enantioselective acoustic sensor using a quartz crystal microbalance, Anal. Commun. 1999, 36, 391–393CrossRefGoogle Scholar
  167. 166.
    Mukhopadhyay, R., Aptamers are ready for the spotlight, Anal. Chem. 2005, 77, 114A–118AGoogle Scholar
  168. 167.
    Liss, M.; Petersen, B.; Wolf, H.; Priohaska, E., An aptamer-based quartz crystal protein biosensor, Anal. Chem. 2002, 74, 4488–4495CrossRefGoogle Scholar
  169. 168.
    Yoshida, W.; Sode, K.; Ikebukuro, K., Aptameric enzyme subunit for biosensing based on enzymatic activity measurement, Anal. Chem. 2006, 78, 3296–3303CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of WarsawWarsawPoland

Personalised recommendations