Advertisement

Determination of Quantitative Structure–Property Relationships of Solvent Resistance of Polycarbonate Copolymers Using a Resonant Multisensor System

  • Radislav A. Potyrailo
  • Ronald J. Wroczynski
  • Patrick J. McCloskey
  • William G. Morris
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

In sensor and microfluidic applications, the need is to have an adequate solvent resistance of polymers to prevent degradation of the substrate surface upon deposition of sensor formilations, to prevent contamination of the solvent-containing sensor formulations or contamination of organic liquid reactions in microfluidic channels. Unfortunately, no comprehensive quantitative reference solubility data of unstressed copolymers is available to date. In this study, we evaluate solvent-resistance of several polycarbonate copolymers prepared from the reaction of hydroquinone (HQ), resorcinol (RS), and bisphenol A (BPA). Our high-throughput polymer evaluation approach permitted the construction of detailed solvent-resistance maps, the development of quantitative structure–property relationships for BPA-HQ-RS copolymers and provided new knowledge for the further development of the polymeric sensor and microfluidic components.

Keywords

Print Circuit Board Methyl Ethyl Ketone Solvent Resistance Bromothymol Blue Microfluidic Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

Authors are grateful to William D. Richards for helpful discussions on conventional test methods of environmental stress cracking resistance.

References

  1. 1.
    Potyrailo, R. A.; McCloskey, P. J.; Ramesh, N.; Surman, C. M., Sensor devices containing co-polymer substrates for analysis of chemical and biological species in water and air; US Patent Application 2005133697: 2005.Google Scholar
  2. 2.
    Johnson, R. D.; Badr, I. H. A.; Barrett, G.; Lai, S.; Lu, Y.; Madou, M. J.; Bachas, L. G., Development of a fully integrated analysis system for ions based on ion-selective optodes and centrifugal microfluidics, Anal. Chem. 2001, 73, 3940–3946.CrossRefGoogle Scholar
  3. 3.
    Badr I. H. A., Johnson R. D., Madou M. J., Bachas L. G., Fluorescent ion-selective optode membranes incorporated onto a centrifugal microfluidics platform, Anal. Chem. 2002, 74, 5569–5575.CrossRefGoogle Scholar
  4. 4.
    Rolland, J. P.; Van Dam, R. M.; Schorzman, D. A.; Quake, S. R.; DeSimone, J. M., Solvent-resistant photocurable liquid fluoropolymers for microfluidic device fabrication, J. Am. Chem. Soc. 2004, 126, 2322–2323.CrossRefGoogle Scholar
  5. 5.
    Harrison, C.; Cabral, J. T.; Stafford, C. M.; Karim, A.; Amis, E. J., A rapid prototyping technique for the fabrication of solvent-resistant structures, J. Micromech. Microeng. 2004, 14, 153–158.CrossRefGoogle Scholar
  6. 6.
    Cygan, Z. T.; Cabral, J. T.; Beers, K. L.; Amis, E. J., Microfluidic platform for the generation of organic-phase microreactors, Langmuir 2005, 21, 3629–3634.CrossRefGoogle Scholar
  7. 7.
    Cabral, J. T.; Hudson, S. D.; Wu, T.; Beers, K. L.; Douglas, J. F.; Karim, A.; Amis, E. J., Microfluidic combinatorial polymer research, Polym. Mater.: Sci. Eng. 2004, 90, 337–338.Google Scholar
  8. 8.
    Amis, E. J., Combinatorial materials science reaching beyond discovery, Nat. Mater. 2004, 3, 83–85.CrossRefGoogle Scholar
  9. 9.
    Komon, Z. J. A.; Diamond, G. M.; Leclerc, M. K.; Murphy, V.; Okazaki, M.; Bazan, G. C., Triple tandem catalyst mixtures for the synthesis of polyethylenes with varying structures, J. Am. Chem. Soc. 2002, 124, 15280–15285.CrossRefGoogle Scholar
  10. 10.
    Boussie, T. R.; Diamond, G. M.; Goh, C.; Hall, K. A.; LaPointe, A. M.; Leclerc, M.; Lund, C.; Murphy, V.; Shoemaker, J. A. W.; Tracht, U.; Turner, H.; Zhang, J.; Uno, T.; Rosen, R. K.; Stevens, J. C., A fully integrated high-throughput screening methodology for the discovery of new polyolefin catalysts: Discovery of a new class of high temperature single-site group (iv) copolymerization catalysts, J. Am. Chem. Soc. 2003, 125, 4306–4317.CrossRefGoogle Scholar
  11. 11.
    Hoogenboom, R.; Meier, M. A. R.; Schubert, U. S., Combinatorial methods, automated synthesis and high-throughput screening in polymer research: Past and present, Macromol. Rapid Commun. 2003, 24, 15–32.CrossRefGoogle Scholar
  12. 12.
    Potyrailo, R. A.; Wroczynski, R. J.; Lemmon, J. P.; Flanagan, W. P.; Siclovan, O. P., Fluorescence spectroscopy and multivariate spectral descriptor analysis for high-throughput multiparameter optimization of polymerization conditions of combinatorial 96-microreactor arrays, J. Comb. Chem. 2003, 5, 8–17.CrossRefGoogle Scholar
  13. 13.
    Bernier, G. A.; Kambour, R. P., The role of organic agents in the stress crazing and cracking of poly(2,6-dimethyl-1,4-phenylene oxide), Macromolecules 1968, 1, 393–400.CrossRefGoogle Scholar
  14. 14.
    Kambour, R. P.; Romagosa, E. E.; Gruner, C. L., Swelling, crazing, and cracking of an aromatic copolyether-sulfone in organic media, Macromolecules 1972, 5, 335–340.CrossRefGoogle Scholar
  15. 15.
    Kambour, R. P.; Gruner, C. L.; Romagosa, E. E., Biphenol-A polycarbonate immersed in organic media. Swelling and response to stress, Macromolecules 1974, 7, 248–253.CrossRefGoogle Scholar
  16. 16.
    Li, X., Environmental stress cracking resistance of a new copolymer of bisphenol-A, Polym. Degrad. Stab. 2005, 90, 44–52.CrossRefGoogle Scholar
  17. 17.
    Huang, J.-C.; Zhu, Z.-k.; Yin, J.; Qian, X.-F.; Sun, Y.-Y., Poly(etherimide)/montmorillonite nanocomposites prepared by melt intercalation: Morphology, solvent resistance properties and thermal properties, Polymer 2001, 42, 873–877.CrossRefGoogle Scholar
  18. 18.
    Takeichi, T.; Ujiie, K.; Inoue, K., High performance poly(urethane-imide) prepared by introducing imide blocks into the polyurethane backbone, Polymer 2005, 46, 11225–11231.CrossRefGoogle Scholar
  19. 19.
    Qi, Y.; Ding, J.; Day, M.; Jiang, J.; Callender, C. L., Cross-linkable highly fluorinated poly(arylene ether ketones/sulfones) for optical waveguiding applications, Chem. Mater. 2005, 17, 676–682.CrossRefGoogle Scholar
  20. 20.
    Potyrailo, R. A.; Morris, W. G.; Wroczynski, R. J., Acoustic-wave sensors for high-throughput screening of materials, In High Throughput Analysis: A Tool for Combinatorial Materials Science; R. A. Potyrailo and E. J. Amis, Eds.; Kluwer/Plenum: New York, NY, 2003; ch. 11.Google Scholar
  21. 21.
    Potyrailo, R. A.; Morris, W. G.; Wroczynski, R. J., Multifunctional sensor system for high-throughput primary, secondary, and tertiary screening of combinatorially developed materials, Rev. Sci. Instrum. 2004, 75, 2177–2186.CrossRefGoogle Scholar
  22. 22.
    Potyrailo, R. A.; Morris, W. G.; Wroczynski, R. J.; McCloskey, P. J., Resonant multisensor system for high-throughput determinations of solvent-polymer interactions, J. Comb. Chem. 2004, 6, 869–873.CrossRefGoogle Scholar
  23. 23.
    Potyrailo, R. A.; McCloskey, P. J.; Wroczynski, R. J.; Morris, W. G., High-throughput determination of quantitative structure-property relationships using resonant multisensor system: Solvent-resistance of bisphenol a polycarbonate copolymers, Anal. Chem. 2006, 78, 3090–3096.CrossRefGoogle Scholar
  24. 24.
    Martin, P. M.; Matson, D. W.; Bennett, W. D.; Lin, Y.; Hammerstrom, D. J., Laminated plastic microfluidic components for biological and chemical systems, J. Vac. Sci. Technol. 1999, A 17, 2264–2269.Google Scholar
  25. 25.
    Becker, H.; Locascio, L. E., Polymer microfluidic devices, Talanta 2002, 56, 267–287.CrossRefGoogle Scholar
  26. 26.
    Soper, S. A.; Henry, A. C.; Vaidya, B.; Galloway, M.; Wabuyele, M.; McCarley, R. L., Surface modification of polymer-based microfluidic devices, Anal. Chim. Acta 2002, 470, 87–99.CrossRefGoogle Scholar
  27. 27.
    Erickson, D.; Li, D., Integrated microfluidic devices, Anal. Chim. Acta 2004, 507, 11–26.CrossRefGoogle Scholar
  28. 28.
    Madou, M. J., Fundamentals of Microfabrication. The Science of Miniaturization; CRC Press: Boca Raton, FL, 2002.Google Scholar
  29. 29.
    Freud, M. S.; Lewis, N. S., A chemically diverse conducting polymer-based “electronic nose”, Proc. Natl. Acad. Sci. U S A 1995, 92, 2652–2656.CrossRefGoogle Scholar
  30. 30.
    Sivavec, T. M.; Potyrailo, R. A., Polymer coatings for chemical sensors; US Patent 6,357,278 B1: 2002.Google Scholar
  31. 31.
    Einhorn, A., Ueber die carbonate der dioxybenzole, Liebigs Ann. Chem. 1898, 300, 135–155.CrossRefGoogle Scholar
  32. 32.
    Kricheldorf, H. R.; Lübbers, D., Polymers of carbonic acid, 1. Synthesis of thermotropic aromatic polycarbonates by means of bis(trichloromethyl) carbonate, Makromol. Chem. Rapid Commun. 1989, 10, 383–386.CrossRefGoogle Scholar
  33. 33.
    Schnell, H., Polycarbonate, eine gruppe neuartiger thermoplastischer kunststoffe. Herstellung und eigenschaften aromatischer polyester der kohlensäure, Angew. Chem. 1956, 68, 633–640.CrossRefGoogle Scholar
  34. 34.
    Brunelle, D. J., Solvent-resistant polycarbonates, Trends Polym. Sci. 1995, 3, 154–158.Google Scholar
  35. 35.
    Thompson, M.; Stone, D. C., Surface-Launched Acoustic Wave Sensors: Chemical Sensing and Thin-Film Characterization; Wiley: New York, N Y, 1997, pp 196.Google Scholar
  36. 36.
    Duncan-Hewitt, W. C.; Thompson, M., Four-layer theory for the acoustic shear wave sensor in liquids incorporating interfacial slip and liquid structure, Anal. Chem. 1992, 64, 94–105.CrossRefGoogle Scholar
  37. 37.
    Kanazawa, K. K., Mechanical behaviour of films on the quartz microbalance, Faraday Discuss. 1997, 107, 77–90.CrossRefGoogle Scholar
  38. 38.
    Jasper, J. J., The surface tension of pure liquid compounds, J. Phys. Chem. Ref. Data 1972, 1, 841–1009.CrossRefGoogle Scholar
  39. 39.
    Riddle, F. L., Jr.; Fowkes, F. M., Spectral shifts in acid-base chemistry. 1. Van der Waals contributions to acceptor numbers, J. Am. Chem. Soc. 1990, 112, 3259–3264.CrossRefGoogle Scholar
  40. 40.
    Ballantine, D. S., Jr.; White, R. M.; Martin, S. J.; Ricco, A. J.; Frye, G. C.; Zellers, E. T.; Wohltjen, H. Acoustic Wave Sensors: Theory, Design, and Physico-Chemical Applications; Academic Press: San Diego, CA, 1997, pp. 436.Google Scholar
  41. 41.
    Daikhin, L.; Urbakh, M., Influence of surface roughness on the quartz crystal microbalance response in a solution new configuration for qcm studies, Faraday Discuss. 1997, 107, 27–38.CrossRefGoogle Scholar
  42. 42.
    Finklea, H. O.; Phillippi, M. A.; Lompert, E.; Grate, J. W., Highly sorbent films derived from Ni(SCN)2(4-picoline)4 for the detection of chlorinated and aromatic hydrocarbons with quartz crystal microbalance sensors, Anal. Chem. 1998, 70, 1268–1276.CrossRefGoogle Scholar
  43. 43.
    Grate, J. W.; Patrash, S. J.; Kaganove, S. N.; Wise, B. M., Hydrogen bond acidic polymers for surface acoustic wave vapor sensors and arrays, Anal. Chem. 1999, 71, 1033–1040.CrossRefGoogle Scholar
  44. 44.
    Park, J.; Groves, W. A.; Zellers, E. T., Vapor recognition with small arrays of polymer-coated microsensors. A comprehensive analysis, Anal. Chem. 1999, 71, 3877–3886.CrossRefGoogle Scholar
  45. 45.
    Khuri, A. I.; Cornell, J. A., Response Surfaces: Designs and Analyses; Marcel Dekker: New York, NY, 1996.Google Scholar
  46. 46.
    Santafé-Moros, A.; Gozálvez-Zafrilla, J. M.; Lora-García, J.; García-Díaz, J. C., Mixture design applied to describe the influence of ionic composition on the removal of nitrate ions using nanofiltration, Desalination 2005, 185, 289–296.CrossRefGoogle Scholar
  47. 47.
    Segurola, J.; Allen, N. S.; Edge, M.; Mc Mahon, A., Design of eutectic photoinitiator blends for UV/visible curable acrylated printing inks and coatings, Prog. Org. Coat. 1999, 37, 23–37.CrossRefGoogle Scholar
  48. 48.
    Cornell, J. A., Experiments with mixtures. Design, Models, and the Analysis of Mixture Data; Wiley: New York, NY, 1981.Google Scholar
  49. 49.
    LeGrand, D. G.; Bendler, J. T., (Eds.), Handbook of Polycarbonate Science and Technology; Marcel Dekker: New York, NY, 2000.Google Scholar
  50. 50.
    Potyrailo, R. A., Combinatorial screening, In Encyclopedia of materials: Science and technology; K. H. J. Buschow; R. W. Cahn; M. C. Flemings; B. Ilschner; E. J. Kramer and S. Mahajan, Eds.; Elsevier: Amsterdam, The Netherlands, 2001; Vol. 2; pp. 1329–1343.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Radislav A. Potyrailo
    • 1
  • Ronald J. Wroczynski
    • 2
  • Patrick J. McCloskey
    • 2
  • William G. Morris
    • 2
  1. 1.Chemical and Biological Sensing Laboratory, Chemistry Technologies and Material CharacterizationGeneral Electric Global Research, NiskayunaNew YorkUSA
  2. 2.Global Research CenterGeneral Electric CompanyNiskayunaUSA

Personalised recommendations