Skip to main content

Determination of Quantitative Structure–Property Relationships of Solvent Resistance of Polycarbonate Copolymers Using a Resonant Multisensor System

  • Chapter
Combinatorial Methods for Chemical and Biological Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 952 Accesses

Abstract

In sensor and microfluidic applications, the need is to have an adequate solvent resistance of polymers to prevent degradation of the substrate surface upon deposition of sensor formilations, to prevent contamination of the solvent-containing sensor formulations or contamination of organic liquid reactions in microfluidic channels. Unfortunately, no comprehensive quantitative reference solubility data of unstressed copolymers is available to date. In this study, we evaluate solvent-resistance of several polycarbonate copolymers prepared from the reaction of hydroquinone (HQ), resorcinol (RS), and bisphenol A (BPA). Our high-throughput polymer evaluation approach permitted the construction of detailed solvent-resistance maps, the development of quantitative structure–property relationships for BPA-HQ-RS copolymers and provided new knowledge for the further development of the polymeric sensor and microfluidic components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Potyrailo, R. A.; McCloskey, P. J.; Ramesh, N.; Surman, C. M., Sensor devices containing co-polymer substrates for analysis of chemical and biological species in water and air; US Patent Application 2005133697: 2005.

    Google Scholar 

  2. Johnson, R. D.; Badr, I. H. A.; Barrett, G.; Lai, S.; Lu, Y.; Madou, M. J.; Bachas, L. G., Development of a fully integrated analysis system for ions based on ion-selective optodes and centrifugal microfluidics, Anal. Chem. 2001, 73, 3940–3946.

    Article  CAS  Google Scholar 

  3. Badr I. H. A., Johnson R. D., Madou M. J., Bachas L. G., Fluorescent ion-selective optode membranes incorporated onto a centrifugal microfluidics platform, Anal. Chem. 2002, 74, 5569–5575.

    Article  CAS  Google Scholar 

  4. Rolland, J. P.; Van Dam, R. M.; Schorzman, D. A.; Quake, S. R.; DeSimone, J. M., Solvent-resistant photocurable liquid fluoropolymers for microfluidic device fabrication, J. Am. Chem. Soc. 2004, 126, 2322–2323.

    Article  CAS  Google Scholar 

  5. Harrison, C.; Cabral, J. T.; Stafford, C. M.; Karim, A.; Amis, E. J., A rapid prototyping technique for the fabrication of solvent-resistant structures, J. Micromech. Microeng. 2004, 14, 153–158.

    Article  Google Scholar 

  6. Cygan, Z. T.; Cabral, J. T.; Beers, K. L.; Amis, E. J., Microfluidic platform for the generation of organic-phase microreactors, Langmuir 2005, 21, 3629–3634.

    Article  CAS  Google Scholar 

  7. Cabral, J. T.; Hudson, S. D.; Wu, T.; Beers, K. L.; Douglas, J. F.; Karim, A.; Amis, E. J., Microfluidic combinatorial polymer research, Polym. Mater.: Sci. Eng. 2004, 90, 337–338.

    CAS  Google Scholar 

  8. Amis, E. J., Combinatorial materials science reaching beyond discovery, Nat. Mater. 2004, 3, 83–85.

    Article  CAS  Google Scholar 

  9. Komon, Z. J. A.; Diamond, G. M.; Leclerc, M. K.; Murphy, V.; Okazaki, M.; Bazan, G. C., Triple tandem catalyst mixtures for the synthesis of polyethylenes with varying structures, J. Am. Chem. Soc. 2002, 124, 15280–15285.

    Article  CAS  Google Scholar 

  10. Boussie, T. R.; Diamond, G. M.; Goh, C.; Hall, K. A.; LaPointe, A. M.; Leclerc, M.; Lund, C.; Murphy, V.; Shoemaker, J. A. W.; Tracht, U.; Turner, H.; Zhang, J.; Uno, T.; Rosen, R. K.; Stevens, J. C., A fully integrated high-throughput screening methodology for the discovery of new polyolefin catalysts: Discovery of a new class of high temperature single-site group (iv) copolymerization catalysts, J. Am. Chem. Soc. 2003, 125, 4306–4317.

    Article  CAS  Google Scholar 

  11. Hoogenboom, R.; Meier, M. A. R.; Schubert, U. S., Combinatorial methods, automated synthesis and high-throughput screening in polymer research: Past and present, Macromol. Rapid Commun. 2003, 24, 15–32.

    Article  CAS  Google Scholar 

  12. Potyrailo, R. A.; Wroczynski, R. J.; Lemmon, J. P.; Flanagan, W. P.; Siclovan, O. P., Fluorescence spectroscopy and multivariate spectral descriptor analysis for high-throughput multiparameter optimization of polymerization conditions of combinatorial 96-microreactor arrays, J. Comb. Chem. 2003, 5, 8–17.

    Article  CAS  Google Scholar 

  13. Bernier, G. A.; Kambour, R. P., The role of organic agents in the stress crazing and cracking of poly(2,6-dimethyl-1,4-phenylene oxide), Macromolecules 1968, 1, 393–400.

    Article  CAS  Google Scholar 

  14. Kambour, R. P.; Romagosa, E. E.; Gruner, C. L., Swelling, crazing, and cracking of an aromatic copolyether-sulfone in organic media, Macromolecules 1972, 5, 335–340.

    Article  CAS  Google Scholar 

  15. Kambour, R. P.; Gruner, C. L.; Romagosa, E. E., Biphenol-A polycarbonate immersed in organic media. Swelling and response to stress, Macromolecules 1974, 7, 248–253.

    Article  CAS  Google Scholar 

  16. Li, X., Environmental stress cracking resistance of a new copolymer of bisphenol-A, Polym. Degrad. Stab. 2005, 90, 44–52.

    Article  CAS  Google Scholar 

  17. Huang, J.-C.; Zhu, Z.-k.; Yin, J.; Qian, X.-F.; Sun, Y.-Y., Poly(etherimide)/montmorillonite nanocomposites prepared by melt intercalation: Morphology, solvent resistance properties and thermal properties, Polymer 2001, 42, 873–877.

    Article  CAS  Google Scholar 

  18. Takeichi, T.; Ujiie, K.; Inoue, K., High performance poly(urethane-imide) prepared by introducing imide blocks into the polyurethane backbone, Polymer 2005, 46, 11225–11231.

    Article  CAS  Google Scholar 

  19. Qi, Y.; Ding, J.; Day, M.; Jiang, J.; Callender, C. L., Cross-linkable highly fluorinated poly(arylene ether ketones/sulfones) for optical waveguiding applications, Chem. Mater. 2005, 17, 676–682.

    Article  CAS  Google Scholar 

  20. Potyrailo, R. A.; Morris, W. G.; Wroczynski, R. J., Acoustic-wave sensors for high-throughput screening of materials, In High Throughput Analysis: A Tool for Combinatorial Materials Science; R. A. Potyrailo and E. J. Amis, Eds.; Kluwer/Plenum: New York, NY, 2003; ch. 11.

    Google Scholar 

  21. Potyrailo, R. A.; Morris, W. G.; Wroczynski, R. J., Multifunctional sensor system for high-throughput primary, secondary, and tertiary screening of combinatorially developed materials, Rev. Sci. Instrum. 2004, 75, 2177–2186.

    Article  CAS  Google Scholar 

  22. Potyrailo, R. A.; Morris, W. G.; Wroczynski, R. J.; McCloskey, P. J., Resonant multisensor system for high-throughput determinations of solvent-polymer interactions, J. Comb. Chem. 2004, 6, 869–873.

    Article  CAS  Google Scholar 

  23. Potyrailo, R. A.; McCloskey, P. J.; Wroczynski, R. J.; Morris, W. G., High-throughput determination of quantitative structure-property relationships using resonant multisensor system: Solvent-resistance of bisphenol a polycarbonate copolymers, Anal. Chem. 2006, 78, 3090–3096.

    Article  CAS  Google Scholar 

  24. Martin, P. M.; Matson, D. W.; Bennett, W. D.; Lin, Y.; Hammerstrom, D. J., Laminated plastic microfluidic components for biological and chemical systems, J. Vac. Sci. Technol. 1999, A 17, 2264–2269.

    Google Scholar 

  25. Becker, H.; Locascio, L. E., Polymer microfluidic devices, Talanta 2002, 56, 267–287.

    Article  CAS  Google Scholar 

  26. Soper, S. A.; Henry, A. C.; Vaidya, B.; Galloway, M.; Wabuyele, M.; McCarley, R. L., Surface modification of polymer-based microfluidic devices, Anal. Chim. Acta 2002, 470, 87–99.

    Article  CAS  Google Scholar 

  27. Erickson, D.; Li, D., Integrated microfluidic devices, Anal. Chim. Acta 2004, 507, 11–26.

    Article  CAS  Google Scholar 

  28. Madou, M. J., Fundamentals of Microfabrication. The Science of Miniaturization; CRC Press: Boca Raton, FL, 2002.

    Google Scholar 

  29. Freud, M. S.; Lewis, N. S., A chemically diverse conducting polymer-based “electronic nose”, Proc. Natl. Acad. Sci. U S A 1995, 92, 2652–2656.

    Article  Google Scholar 

  30. Sivavec, T. M.; Potyrailo, R. A., Polymer coatings for chemical sensors; US Patent 6,357,278 B1: 2002.

    Google Scholar 

  31. Einhorn, A., Ueber die carbonate der dioxybenzole, Liebigs Ann. Chem. 1898, 300, 135–155.

    Article  CAS  Google Scholar 

  32. Kricheldorf, H. R.; Lübbers, D., Polymers of carbonic acid, 1. Synthesis of thermotropic aromatic polycarbonates by means of bis(trichloromethyl) carbonate, Makromol. Chem. Rapid Commun. 1989, 10, 383–386.

    Article  CAS  Google Scholar 

  33. Schnell, H., Polycarbonate, eine gruppe neuartiger thermoplastischer kunststoffe. Herstellung und eigenschaften aromatischer polyester der kohlensäure, Angew. Chem. 1956, 68, 633–640.

    Article  CAS  Google Scholar 

  34. Brunelle, D. J., Solvent-resistant polycarbonates, Trends Polym. Sci. 1995, 3, 154–158.

    CAS  Google Scholar 

  35. Thompson, M.; Stone, D. C., Surface-Launched Acoustic Wave Sensors: Chemical Sensing and Thin-Film Characterization; Wiley: New York, N Y, 1997, pp 196.

    Google Scholar 

  36. Duncan-Hewitt, W. C.; Thompson, M., Four-layer theory for the acoustic shear wave sensor in liquids incorporating interfacial slip and liquid structure, Anal. Chem. 1992, 64, 94–105.

    Article  CAS  Google Scholar 

  37. Kanazawa, K. K., Mechanical behaviour of films on the quartz microbalance, Faraday Discuss. 1997, 107, 77–90.

    Article  Google Scholar 

  38. Jasper, J. J., The surface tension of pure liquid compounds, J. Phys. Chem. Ref. Data 1972, 1, 841–1009.

    Article  CAS  Google Scholar 

  39. Riddle, F. L., Jr.; Fowkes, F. M., Spectral shifts in acid-base chemistry. 1. Van der Waals contributions to acceptor numbers, J. Am. Chem. Soc. 1990, 112, 3259–3264.

    Article  CAS  Google Scholar 

  40. Ballantine, D. S., Jr.; White, R. M.; Martin, S. J.; Ricco, A. J.; Frye, G. C.; Zellers, E. T.; Wohltjen, H. Acoustic Wave Sensors: Theory, Design, and Physico-Chemical Applications; Academic Press: San Diego, CA, 1997, pp. 436.

    Google Scholar 

  41. Daikhin, L.; Urbakh, M., Influence of surface roughness on the quartz crystal microbalance response in a solution new configuration for qcm studies, Faraday Discuss. 1997, 107, 27–38.

    Article  CAS  Google Scholar 

  42. Finklea, H. O.; Phillippi, M. A.; Lompert, E.; Grate, J. W., Highly sorbent films derived from Ni(SCN)2(4-picoline)4 for the detection of chlorinated and aromatic hydrocarbons with quartz crystal microbalance sensors, Anal. Chem. 1998, 70, 1268–1276.

    Article  CAS  Google Scholar 

  43. Grate, J. W.; Patrash, S. J.; Kaganove, S. N.; Wise, B. M., Hydrogen bond acidic polymers for surface acoustic wave vapor sensors and arrays, Anal. Chem. 1999, 71, 1033–1040.

    Article  CAS  Google Scholar 

  44. Park, J.; Groves, W. A.; Zellers, E. T., Vapor recognition with small arrays of polymer-coated microsensors. A comprehensive analysis, Anal. Chem. 1999, 71, 3877–3886.

    Article  CAS  Google Scholar 

  45. Khuri, A. I.; Cornell, J. A., Response Surfaces: Designs and Analyses; Marcel Dekker: New York, NY, 1996.

    Google Scholar 

  46. Santafé-Moros, A.; Gozálvez-Zafrilla, J. M.; Lora-García, J.; García-Díaz, J. C., Mixture design applied to describe the influence of ionic composition on the removal of nitrate ions using nanofiltration, Desalination 2005, 185, 289–296.

    Article  Google Scholar 

  47. Segurola, J.; Allen, N. S.; Edge, M.; Mc Mahon, A., Design of eutectic photoinitiator blends for UV/visible curable acrylated printing inks and coatings, Prog. Org. Coat. 1999, 37, 23–37.

    Article  CAS  Google Scholar 

  48. Cornell, J. A., Experiments with mixtures. Design, Models, and the Analysis of Mixture Data; Wiley: New York, NY, 1981.

    Google Scholar 

  49. LeGrand, D. G.; Bendler, J. T., (Eds.), Handbook of Polycarbonate Science and Technology; Marcel Dekker: New York, NY, 2000.

    Google Scholar 

  50. Potyrailo, R. A., Combinatorial screening, In Encyclopedia of materials: Science and technology; K. H. J. Buschow; R. W. Cahn; M. C. Flemings; B. Ilschner; E. J. Kramer and S. Mahajan, Eds.; Elsevier: Amsterdam, The Netherlands, 2001; Vol. 2; pp. 1329–1343.

    Google Scholar 

Download references

Acknowledgment

Authors are grateful to William D. Richards for helpful discussions on conventional test methods of environmental stress cracking resistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radislav A. Potyrailo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Potyrailo, R.A., Wroczynski, R.J., McCloskey, P.J., Morris, W.G. (2009). Determination of Quantitative Structure–Property Relationships of Solvent Resistance of Polycarbonate Copolymers Using a Resonant Multisensor System. In: Potyrailo, R.A., Mirsky, V.M. (eds) Combinatorial Methods for Chemical and Biological Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73713-3_19

Download citation

Publish with us

Policies and ethics