Construction of a Coumarin Library for Development of Fluorescent Sensors

Part of the Integrated Analytical Systems book series (ANASYS)


Construction of chemical libraries is a useful approach to the discovery of better fluorescent materials, and several types, such as styryl dyes and cyanine dyes, have been reported. In this chapter, we focus on construction of a library of chemicals having a coumarin skeleton as the core structure. Coumarin and its derivatives are key structures in various bioactive or fluorescent molecules, and their fluorescence properties are dependent on the precise structure, including the positions of substituents.


Nitric Oxide Coupling Reaction Fluorescence Property Boronic Acid Fluorescent Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lackowitz, J. R. Principles of Fluorescence Spectroscopy, Third Edition; Springer: New York, NY, 2006CrossRefGoogle Scholar
  2. 2.
    de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E., Signaling recognition events with fluorescent sensors and switches, Chem. Rev. 1997, 97, 1515–1566CrossRefGoogle Scholar
  3. 3.
    Grynkiewicz, G.; Poenie, M.; Tsien, R. Y., A new generation of Ca2+ indicators with greatly improved fluorescence properties, J. Biol. Chem. 1985, 260, 3440–3450Google Scholar
  4. 4.
    Minta, A.; Kao, J. P. Y.; Tsien, R. Y., Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophore, J. Biol. Chem. 1989, 264, 8171–8178Google Scholar
  5. 5.
    Kojima, H.; Nakatsubo, N.; Kikuchi, K.; Kawahara, S.; Kirino, Y.; Nagoshi, H.; Hirata, Y.; Nagano, T., Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins, Anal. Chem. 1998, 70, 2446–2453CrossRefGoogle Scholar
  6. 6.
    Munkholm, C.; Parkinson, D. R.; Walt, D. R., Intramolecular fluorescence self-quenching of fluoresceinamine, J. Am. Chem. Soc. 1990, 112, 2608–2612CrossRefGoogle Scholar
  7. 7.
    Umezawa, N.; Tanaka, K.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Nagano, T., Novel fluorescent probes for singlet oxygen, Angew. Chem. Int. Ed. 1999, 38, 2899–2901CrossRefGoogle Scholar
  8. 8.
    Tanaka, K.; Miura, T.; Umezawa, N.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Nagano, T., Rational design of fluorescein-based fluorescence probes -mechanism-based design of a maximum fluorescence probe for singlet oxygen-, J. Am. Chem. Soc. 2001, 123, 2530–2536CrossRefGoogle Scholar
  9. 9.
    Hirano, T.; Kikuchi, K.; Urano, Y.; Higuchi, T.; Nagano, T., Highly zinc-selective fluorescent sensor molecules suitable for biological applications, J. Am. Chem. Soc. 2000, 122, 12399–12400CrossRefGoogle Scholar
  10. 10.
    Hirano, T.; Kikuchi, K.; Urano, Y.; Nagano, T., Improvement and biological applications of fluorescent probes for zinc, ZnAFs, J. Am. Chem. Soc. 2002, 124, 6555–6562CrossRefGoogle Scholar
  11. 11.
    Miura, T.; Urano, Y.; Tanaka, K.; Nagano, T.; Ohkubo, K.; Fukuzumi, S., Rational design principle for modulating fluorescence properties of fluorescein-based probes by photoinduced electron transfer, J. Am. Chem. Soc. 2003, 125, 8666–8671CrossRefGoogle Scholar
  12. 12.
    Urano, Y.; Kamiya, M.; Kanda, K.; Ueno, T.; Hirose, K.; Nagano, T., Evolution of fluorescein as a platform for finely tunable fluorescence probes, J. Am. Chem. Soc. 2005, 127, 4888–4894CrossRefGoogle Scholar
  13. 13.
    O’Kennedy, R.; Thornes, R. D. Coumarins: Biology, Applications, and Mode of Actions; Wiley: England, 1997Google Scholar
  14. 14.
    Koefod, R. S.; Mann, K. R., Preparation, photochemistry, and electronic-structures of coumarin laser-dye complex of cyclopentadienylruthenium(II), Inorg. Chem. 1989, 28, 2285–2290.CrossRefGoogle Scholar
  15. 15.
    Kido, J.; Iizumi, Y., Fabrication of highly efficient organic electroluminescent devices, Appl. Phys. Lett. 1998, 73, 2721–2723CrossRefGoogle Scholar
  16. 16.
    Komatsu, H.; Miki, T.; Citterio, D.; Kubota, T.; Shindo, Y.; Kitamura, Y.; Oka, K.; Suzuki, K., Single molecular multianalyte (Ca2+, Mg2+) fluorescent probe and applications to bioimaging, J. Am. Chem. Soc. 2005, 127, 10798–10799CrossRefGoogle Scholar
  17. 17.
    Setsukinai, K.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Nagano, T., Fluorescence switching by o-dearylation of 7-aryloxycoumarins. Development of novel fluorescence probes to detect reactive oxygen species with high selectivity, J. Chem. Soc., Perkin Trans. 2 2000, 2453–2457Google Scholar
  18. 18.
    Schiedel, M.-S.; Briehen, C. A.; Bäuerle, P., Single-compound libraries of organic materials: Parallel synthesis and screening of fluorescent dyes, Angew. Chem. Int. Ed. 2001, 40, 4677–4680CrossRefGoogle Scholar
  19. 19.
    Schiedel, M.-S.; Briehen, C. A.; Bäuerle, P., C-C cross-coupling reactions for the combinatorial synthesis of novel organic materials, J. Organomet. Chem. 2002, 653, 200–208CrossRefGoogle Scholar
  20. 20.
    Silvakumar, K.; Xie, F.; Cash, B. M.; Long, S.; Barnhill, H. N.; Wang, Q., A fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes, Org. Lett. 2004, 6, 4603–4606CrossRefGoogle Scholar
  21. 21.
    Hirano, T.; Hiromoto, K.; Kagechika, H., Development of a library of 6-arylcoumarins as candidate fluorescent sensors, Org. Lett. 2007, 9, 1315–1318CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Biomedical SciencesTokyo Medical and Dental UniversityTokyoJapan

Personalised recommendations