Skip to main content

Construction of a Coumarin Library for Development of Fluorescent Sensors

  • Chapter

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Construction of chemical libraries is a useful approach to the discovery of better fluorescent materials, and several types, such as styryl dyes and cyanine dyes, have been reported. In this chapter, we focus on construction of a library of chemicals having a coumarin skeleton as the core structure. Coumarin and its derivatives are key structures in various bioactive or fluorescent molecules, and their fluorescence properties are dependent on the precise structure, including the positions of substituents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lackowitz, J. R. Principles of Fluorescence Spectroscopy, Third Edition; Springer: New York, NY, 2006

    Book  Google Scholar 

  2. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E., Signaling recognition events with fluorescent sensors and switches, Chem. Rev. 1997, 97, 1515–1566

    Article  Google Scholar 

  3. Grynkiewicz, G.; Poenie, M.; Tsien, R. Y., A new generation of Ca2+ indicators with greatly improved fluorescence properties, J. Biol. Chem. 1985, 260, 3440–3450

    CAS  Google Scholar 

  4. Minta, A.; Kao, J. P. Y.; Tsien, R. Y., Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophore, J. Biol. Chem. 1989, 264, 8171–8178

    CAS  Google Scholar 

  5. Kojima, H.; Nakatsubo, N.; Kikuchi, K.; Kawahara, S.; Kirino, Y.; Nagoshi, H.; Hirata, Y.; Nagano, T., Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins, Anal. Chem. 1998, 70, 2446–2453

    Article  CAS  Google Scholar 

  6. Munkholm, C.; Parkinson, D. R.; Walt, D. R., Intramolecular fluorescence self-quenching of fluoresceinamine, J. Am. Chem. Soc. 1990, 112, 2608–2612

    Article  CAS  Google Scholar 

  7. Umezawa, N.; Tanaka, K.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Nagano, T., Novel fluorescent probes for singlet oxygen, Angew. Chem. Int. Ed. 1999, 38, 2899–2901

    Article  CAS  Google Scholar 

  8. Tanaka, K.; Miura, T.; Umezawa, N.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Nagano, T., Rational design of fluorescein-based fluorescence probes -mechanism-based design of a maximum fluorescence probe for singlet oxygen-, J. Am. Chem. Soc. 2001, 123, 2530–2536

    Article  CAS  Google Scholar 

  9. Hirano, T.; Kikuchi, K.; Urano, Y.; Higuchi, T.; Nagano, T., Highly zinc-selective fluorescent sensor molecules suitable for biological applications, J. Am. Chem. Soc. 2000, 122, 12399–12400

    Article  CAS  Google Scholar 

  10. Hirano, T.; Kikuchi, K.; Urano, Y.; Nagano, T., Improvement and biological applications of fluorescent probes for zinc, ZnAFs, J. Am. Chem. Soc. 2002, 124, 6555–6562

    Article  CAS  Google Scholar 

  11. Miura, T.; Urano, Y.; Tanaka, K.; Nagano, T.; Ohkubo, K.; Fukuzumi, S., Rational design principle for modulating fluorescence properties of fluorescein-based probes by photoinduced electron transfer, J. Am. Chem. Soc. 2003, 125, 8666–8671

    Article  CAS  Google Scholar 

  12. Urano, Y.; Kamiya, M.; Kanda, K.; Ueno, T.; Hirose, K.; Nagano, T., Evolution of fluorescein as a platform for finely tunable fluorescence probes, J. Am. Chem. Soc. 2005, 127, 4888–4894

    Article  CAS  Google Scholar 

  13. O’Kennedy, R.; Thornes, R. D. Coumarins: Biology, Applications, and Mode of Actions; Wiley: England, 1997

    Google Scholar 

  14. Koefod, R. S.; Mann, K. R., Preparation, photochemistry, and electronic-structures of coumarin laser-dye complex of cyclopentadienylruthenium(II), Inorg. Chem. 1989, 28, 2285–2290.

    Article  CAS  Google Scholar 

  15. Kido, J.; Iizumi, Y., Fabrication of highly efficient organic electroluminescent devices, Appl. Phys. Lett. 1998, 73, 2721–2723

    Article  CAS  Google Scholar 

  16. Komatsu, H.; Miki, T.; Citterio, D.; Kubota, T.; Shindo, Y.; Kitamura, Y.; Oka, K.; Suzuki, K., Single molecular multianalyte (Ca2+, Mg2+) fluorescent probe and applications to bioimaging, J. Am. Chem. Soc. 2005, 127, 10798–10799

    Article  CAS  Google Scholar 

  17. Setsukinai, K.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Nagano, T., Fluorescence switching by o-dearylation of 7-aryloxycoumarins. Development of novel fluorescence probes to detect reactive oxygen species with high selectivity, J. Chem. Soc., Perkin Trans. 2 2000, 2453–2457

    Google Scholar 

  18. Schiedel, M.-S.; Briehen, C. A.; Bäuerle, P., Single-compound libraries of organic materials: Parallel synthesis and screening of fluorescent dyes, Angew. Chem. Int. Ed. 2001, 40, 4677–4680

    Article  CAS  Google Scholar 

  19. Schiedel, M.-S.; Briehen, C. A.; Bäuerle, P., C-C cross-coupling reactions for the combinatorial synthesis of novel organic materials, J. Organomet. Chem. 2002, 653, 200–208

    Article  CAS  Google Scholar 

  20. Silvakumar, K.; Xie, F.; Cash, B. M.; Long, S.; Barnhill, H. N.; Wang, Q., A fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes, Org. Lett. 2004, 6, 4603–4606

    Article  Google Scholar 

  21. Hirano, T.; Hiromoto, K.; Kagechika, H., Development of a library of 6-arylcoumarins as candidate fluorescent sensors, Org. Lett. 2007, 9, 1315–1318

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoya Hirano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Hirano, T., Kagechika, H. (2009). Construction of a Coumarin Library for Development of Fluorescent Sensors. In: Potyrailo, R.A., Mirsky, V.M. (eds) Combinatorial Methods for Chemical and Biological Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73713-3_18

Download citation

Publish with us

Policies and ethics